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1 Practical application of pseudospectral method and visualiz-

ing the numerical solutions.

Kert Tamm, kert@ioc.ee

The purpose of the present document is to give approximately master level student who might
not be very fluent in Python and Matlab necessary information in reasonably compact form for
implementing pseudospectral method (PSM) and ability to visualise the results at level which
might be acceptable for MSc or starting phase of PhD thesis. The style used is relatively personal
and the document should be taken with grain of salt and some common sense as it contains few
personal opinions.

The theoretical foundations of the method are described in [1] with acceptable detail. The
document at hand focuses on practical applications of the described numerical method. The key
points being that we use discrete Fourier transform and that implies that we are also using the
discrete frequency function ω. Some data visualisation techniques are also described which can
be applied independently of the numerical method used for solving the model equations. All
examples and applications are in the 1D case in the present document. The examples are mix of
Python and Matlab languages, the language used is noted at the location of the example. The
key difference to keep in mind in the examples is that Matlab index starts with 1 while Python
index starts at 0 for the vectors/arrays.

One of the assumptions we do in a nutshell is that locally and over short enough time intervals
the process is “linear enough”. Just something to keep in mind if your nonlinear parameters are
starting to creep close to the rest of your equation parameters in magnitude. At the end of the
day in physics the measure of reality is experiment so if it is possible at all check your results
against known experimental results. Failing that check at least with normalized wave equation
and make sure amplitude and speed of the wave is as expected.

Check also:

http://digi.lib.ttu.ee/i/?582

www.ioc.ee/lints/MSc_Martin_Lints.pdf

www.ioc.ee/lints/PsM_precision_MLints2015.pdf

These links are my PhD thesis (PSM application on Boussinesq like equation with mixed partial
derivatives) the MSc thesis (in particular the sections about the accuracy and the application
limits of the PSM) of Martin Lints and some notes on filtering by Martin Lints (included as third
document in the present collection) who is currently a PhD student of prof. Andrus Salupere
who was also my supervisor during my BSc, MSc and PhD studies.

PSM is a tool. Like with all tools user should be aware what can and can not be done with it
and prerequisite for proper application is thinking it first through what is the goal and how to
apply the tool properly. The worst way to apply a numerical method is the “black box” method
meaning that user gives some input, pushes the button and something comes out which must be
true because it came from computer. There is a special term for that kind of approach in engi-
neering which is “Computer Assisted Catastrophe”. Unless one writes ALL his code and librarys
him/her-self some level of black box is unavoidable - in the present examples, for example, the
ODE solver used is “Black Box” as well as Fast Fourier Transform implementations already ex-
isting in the used languages or packages. Fortunately these are reasonably well documented and
going over that documentation is encouraged to be able to answer some inconvenient question
about these which will be asked sooner or later. Do not apply the provided code samples like a
black box - think through and understand them as well as you can.

1



1.1 The Pseudospectral method in a nutshell

The idea in a nutshell is relatively simple. You have to get your equation into a format where all
time derivatives are on one side and the opposing side contains only space derivatives. Then you
can make your partial differential equation (PDE) into ordinary differential equation (ODE) by
using the Fourier transform. There is two possibilities: (1) solve it in the Fourier space and then
do the inverse transform for getting back to the real space and (2) flip back and forth between
Fourier space and real space each timestep. We use the second option (it works better for that
kind of equation as there is no fast convulution algorithm to deal with nonlinearities without
leaving the Fourier space).

ODE is usually a lot simpler to solve than PDE and you can use any of the existing ODE solvers.

Without getting into gritty details in practice one uses usually some-kind of already implemented
FFT and IFFT functions (both Python and Matlab have these). If there arises any kind of
problems using these it is good idea to read the documentation as different implementations can
change in small but relevant details. As long as you are using the forward and inverse discrete
Fourier transforms from the same package there should be no practical problems. If you are
using different spatial length than 2π check if your FFT and IFFT functions are aware of that
fact (usually an optional input parameter) as this is important. In Python:

import numpy

import scipy

from scipy.fftpack import *

fft_r = fft(temp2,n,-1) # forward transform

ru = ifft(fft_r).real # reverse transform

u0 = Ao/(cosh(Bo*xx))**2 # sech**2 pulse amplitude Ao, width Bo

u0x = diff(u0,period=2*numpy.pi*loik); #speed is -c*u0x

u0xx = diff(u0x,period=2*numpy.pi*loik);# second derivative by space

Few notes - diff (in scipy.fftpack) is Fourier transform based scheme for taking numerical deriva-
tives by default. The variable “loik” is number of 2π section in your space interval, “n” is
number of grid points. Just flat out forward and inverse Fourier transforms do not need that
parameter in default implementation. Only real part is taken in the inverse transform for getting
rid of practically zero imaginary part which can arise under some parameter combinations as
a result of limited machine precision and accumulating errors (especially if you have high rank
derivatives in your equations).

It is important to note that in Matlab the “diff” is implemented differently (not based on FFT)
and reduces the length of your vector by one! The “fft” and “ifft” implementation is basically
the same and in the simplest case takes just a vector as an argument. If the number of points in
the vector is not power of 2 (2n where n is number of grid-points) the algorithm takes significant
performance penalty regardless of the language used.

Implementation example in Python. Normalized wave equation

import numpy

import scipy

from scipy.fftpack import diff

from scipy.integrate import ode

def cosh(x): # hyperbolic cosine
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sisene = numpy.exp(x)/2+1/(2*numpy.exp(x))

return sisene

def InitialCondition(Ao,Bo,x,loik,c): # Sech**2 initial condition

xx = x-loik*numpy.pi #profile shift

u0 = Ao/(cosh(Bo*xx))**2 #initial pulse

u0x = diff(u0,period=2*numpy.pi*loik); #speed -c*u0x

yx[:n] = u0 # space

yx[n:] = -c*u0x; # speed

return yx.real

def EQ(t,yx): # equation to be solved

nn = len(yx)/2

ru = yx[:nn] # space displacement

v = yx[nn:] # speed, or dr/dt, y[n] to y[2n-1]

x_xx = diff(ru,2,period=2*numpy.pi*loik) # second spatial derivative

ytx[:nn] = v #du/dt=v

ytx[nn:] = x_xx # wave equation utt = c* uxx, c=1 in normalized equation

return ytx

n = 2**12 #number of grid-points

loik = 64 # number 2 pi sections in space

dt = 1 #time step

narv = 6001 # number of time-steps

x = numpy.arange(n,dtype=numpy.float64)*loik*2*numpy.pi/n #coordinate x

yx = numpy.arange(n*2,dtype=numpy.float64)

ytx = numpy.arange(n*2,dtype=numpy.float64)

c = 1 # speed squared of wave equation

Bo = 1/8; Ao = 1; # initial pulse param

yx = InitialCondition(Ao,Bo,x,loik,c);

t0 = 0.0; t_end = narv*dt #final time to integrate to

tvektorx = []; tulemusx = []; #arrays for results

runnerx = ode(EQ) #using ode from scipy

runnerx.set_integrator(’vode’,nsteps=1e7,rtol=1e-10,atol=1e-12);

runnerx.set_initial_value(yx,t0);

while runnerx.successful() and runnerx.t < t_end: #integration

tvektorx.append(runnerx.t);

tulemusx.append(runnerx.y);

print(’z ’,runnerx.t);

runnerx.integrate(runnerx.t+dt);

This should work. If it does not let me know. This is copy-pasted together from a much larger
program so I might have forgotten to carry over something I’m using. This code example does
not visualize and note that the resulting array contains both space and speed side by side with
the time-step defined by the variable “dt”.

1.1.1 Scaled wavenumber

Fourier transfrom, by default, assumes that the spatial length is 2π. If this is not the case
then for a practical application it is advisable to use scaled wavenumber (rarely called also the
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discrete frequency function) which is needed if you start taking derivatives “by hand” in Fourier
space or if you have mixed partial derivatives in your governing equations and you need to do
change of variables for making it possible to apply PSM for that kind of model equation. For a
start few equations very shortly.

You have some-kind of equation you need to solve in a format:

A · utt = B · uxx + C · uxxtt +D · uxxxx.

This is some-kind of Boussinesq-type equation, there is no nonlinearity in it but there are two
dispersive terms including a mixed partial derivative term that prevents direct application of
the PSM. Let’s change it a bit for a start (it’s not exactly needed but I like it that way).

utt = B/A · uxx + C/A · uxxtt +D/A · uxxxx.

Now lets move all terms containing time derivatives to the left hand side

utt − C/A · uxxtt = B/A · uxx +D/A · uxxxx.

Introducing new variable and using properties of Fourier transform

Φ = u− C/A · uxx; Φ = F−1 (F(u))− C/A · F−1
(

(i · k)2F (u)
)

.

Then one can just solve the equation

Φtt = B/A · uxx +D/A · uxxxx,

returning to the “real space” by switching variables back whenever needed (if you do not you
will get results which look like the results you expect but are, in fact, incorrect at the best case
at least in amplitude). Meaning that you can express the original variable in terms the new
function Φ as

u = F−1

[

F(Φ)

1 + C/Ak2

]

; um = F−1

[

(i · k)mF(Φ)

1 + C/Ak2

]

.

Here subscript denotes partial differentiation rank and k is wave number (scaled wavenumber
if the spatial length is not 2π). For just taking spatial derivatives in Fourier space ux·m =
F−1[(i · k)mF(u)]. For Φ note the different sign in denominator which results from the fact that
i2 = −1 flipping the sign. You could, in theory, somehow use the same logic for integration
(by dividing with ik) but one should be very careful with that as in computer you get only
one result and dividing with a complex number should, in reality have m valid values/roots
so this is normally not done. In the Boussinesq type equations higher order even derivatives
usually represent dispersive effects and odd derivatives dissipative effects. If you have more than
6th order derivatives in the model equation it is essential to keep eye on results in particularly
critical way and if possible go for higher than double precision floating point (which usually
means quite significant performance penalty) as it is probable that higher harmonics in your
results have very little to do with reality because of limited machine precision.

Scaled wavenumber implementation in Python (in Matlab index is shifted by 1)

def oomega(n): #omega calculation

qq = 0.0

kk = 0

while kk<(n/2):

omega[kk] = qq/loik #first part

omega[n/2+kk] = (-(n/2)+qq)/loik #second part

qq=qq+1.0

kk=kk+1

return omega

Here “loik” is number of 2π sections in space and n is number of grid points. Spatial period is
from 0 to loik * 2π, not from −π to +π as is assumed by default in Fourier transform.
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1.1.2 Initial and boundary conditions

The boundary conditions must be periodical in the PSM based on Fourier transform. It is one
of the limitations (or advantage, depending on how you look at it) of the method. There is other
integral transforms that do not have this limitation like, for example, Laplace transform and
it is possible to construct a spectral method based on these but they all have their drawbacks
(for the Laplace transform it is complexity of the inverse transform if you have some-kind of
not-nice function). The key advantage of the Fourier based PSM is the existence of Fast Fourier
Transform algorithms, keyword being the “fast”. It really is as long as number of grid-points n
is 2n and one has integer number of 2π spatial sections.

In implementation boundary conditions do not need to be defined or handled in any special way,
they will be periodical because of using FFT based algorithm.

Do note that any discontinuities on the boundary are as inconvenient (if not even more, as they
are easier to miss) as they are in the middle of ones space domain. For example the pulse type
initial condition used mostly in this document in the form of hyperbolic secant does also have
a small discontinuity at the boundary. Derivatives should be as continuous as possible as well,
any no matter how small discontinuity is amplified each time a derivative is taken.

There is multiple possibilities of defining Fourier transform, the most common finite interval
implementations are from −π to π and from 0 to 2π. Depending on the implementation and if the
spatial length is 2π or something else a correct discrete frequency function must be constructed.
Here length 0 to loik·2π is preferred. One of the reasons for that is to keep the spatial coordinates
all positive.

Note about initial conditions is that some functions are defined around zero so if the spatial
period is shifted to be starting from 0 it can be necessary to shift also the function (as is done
with the sech-type initial pulse in the present examples).

You need one initial condition for each time derivative you have in the model equations. So for
the regular wave equation (second order) two initial conditions are needed, usually displacement
and speed. If you have utttt in your model you will need four initial conditions! Fortunately
boundary conditions are periodic so you do not need to deal with these.

In practice it is possible to set all the higher order initial conditions to zero other than some
kind of initial displacement (or whatever the interpretation of the lowest order initial condition).
In essence this means that one is starting from the peak of interaction of two waveprofiles
propagation in opposite directions (in the case of second order equation). The initial pulse,
regardless of its shape, will split into two waveprofiles propagating in opposite directions with
correct amplitude and speed, if its the linear model the amplitude must be exactly half of the
initial pulse amplitude and speed must be exactly the speed of the sound in that environment if
there is no dispersive terms, in the nonlinear models life can be much richer and 2+2 is not quite
4 most of the time. You can get away with the same approach for equations that are higher
than 2nd order but it is not physically correct most of the time.

For initial condition in the examples an assumption has been made (which is usually done for
evolution equations, like KdV (Korteweg de Vries) equation). The assumption is that one can
move the solution into moving frame of reference so that ξ = x − ct, i.e, the solution “stands
in place” as you ride along with it – this assumption is in essence incorrect for second order
equation which contains nonlinearities as with second order equation you have two solutions
propagating in opposite directions (you might get away with ξ = x± ct) and with nonlinearity
the superposition principle does not hold anyway. But it works in practice so it is used which
means that using these not entirely correct assumptions you can take the speed initial condition
as ut = −c · ux. It is trivial to find ux and one gets some-kind of more or less reasonable initial
condition.
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1.1.3 Filtering, accuracy and stability

For a start read the third section by Martin Lints. Filtering in Fourier space is something that
is very common in various PSM implementations. One can get away without filtering as the
examples in the present document are without any kind of filtering and they work. Reason why
filtering is often used is that it makes the algorithm more stable and can be necessary especially
if high number of grid-points or high rank derivatives are present. There is also some inherent
dangers in filtering as with strong enough filter it is possible to stabilize a solution that should
not be stable. In a sense that means with strong filter one can prevent, for example, shock-
wave from forming under the conditions where it should form or prevent wave from breaking
when it should break.

Computers have finite resolution. What is done, in essence, is taking a Fourier series which is
in essence a infinite series and cutting it at some point saying that anything higher is already
negligible enough to not count. If you have n grid-points the number of members (harmonics)
in the discrete Fourier series is n/2. If you go over the texts pointed in the beginning by Martin
Lints note that PSM is limited by both sides. At the lower end if you have too small number of
grid points your accuracy suffers as you are trying to approximate whatever you are trying to
simulate with small number of spectral components. On the other hand if you dial the number
of grid-points too high you will run into trouble with machine precision with high harmonics,
especially if you have high ranked derivatives present.

In practice the simplest form of filtering is dialling the highest harmonic to zero at each time-
step. If this is not used it is advisable to keep an eye on highest harmonic at least and if it starts
growing significantly take note that the result is no longer as accurate as it should. Reason for
paying attention to the highest harmonic in your series is that it tends to collect the truncation
error and as such can be the trouble-starter. Filtering breaks energy conservation as it takes
energy away from the wave by dampening higher harmonics (good to keep in mind if you need to
check for energy conservation). Normally the filter is some-kind of exponent suppressing some
number of higher harmonics.

In general PSM tends to be computationally cheaper at the same accuracy than finite ele-
ments/differences based methods. It seems (that is an opinion, I have not checked it in rigorous
way) that it also has smaller numerical dispersion than finite difference/elements based methods.
There are some effects though, like for example Gibbs phenomenon one should be aware of (just
Google it, English wiki article seems to be good enough at summarizing it).

460 480 500 520 540 560 580 600 620 640
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0.4
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This is a regular wave equation with rectangular function pulse propagating to the right demon-
strating the Gibbs phenomenon.

6



What Gibbs phenomenon means in practice is that if your solution gets steep slopes it will start
generating high frequency oscillations which are not physical, note that leading oscillations
in the example solution travel faster than the speed of sound (or light) in the model. Gibbs
phenomenon is not specific to PSM and exists in most numerical schemes.

1.1.4 Random notes and ramblings

Python is object oriented language. What this means in practice is that if you do

A = B

# some code happens here and suddenly you do:

B = C

# some more stuff happens here where you change the content of C

then A changes as a result of you changing the content of C! In practice this means that you
can have some stuff “leaking” into places which you are not expecting if you are sloppy with
variables.

Examples of inverse transform and solvable function in the case of mixed partial derivative in
Python. Equation is

∂2U

∂T 2
= (1 + PU +QU2)

∂2U

∂X2
+ (P + 2QU)

(

∂U

∂X

)

2

−H1

∂4U

∂X4
+H2

∂4U

∂X2∂T 2
, (1)

def ibioD(tulemusx,tvektorx,n): # inverse transfrom of results with H2 uttxx dimensionless EQ

i = 0 ; um_t_reaalne = [] ; aprox_kiirus = []

temp2 = [] ; ru = [] ; fft_r = [] # siirde jaoks

temp3 = [] ; rut = [] ; fft_rt = [] # kiiruse jaoks

omega = oomega(n)

while i<len(tvektorx): # transfrom into real space

temp2 = tulemusx[i][:n] # first part (space)

temp3 = tulemusx[i][n:] # speed

fft_r = fft(temp2,n,-1) # r forward

fft_rt = fft(temp3,n,-1)

r_ajutine = numpy.arange(n,dtype=numpy.complex128) #

rt_ajutine = numpy.arange(n,dtype=numpy.complex128) #arange(n,dtype=’complex128’)

k = 0

while k < n: # index 0 kuni n-1. calculation to inverse transform

r_ajutine[k] = fft_r[k]/(1+HH2*omega[k]**2)

rt_ajutine[k] = fft_rt[k]/(1+HH2*omega[k]**2)

k = k+1

ru = ifft(r_ajutine).real # end of inverse transform

rut = ifft(rt_ajutine).real

um_t_reaalne.append(ru) # space [row = coordinate, column = time]

aprox_kiirus.append(rut)

i=i+1

return um_t_reaalne,aprox_kiirus

def Biosech2D(Ao,Bo,x,loik,c,HH2): # Sech**2 initial condition

xx = x-loik*numpy.pi #profile shift

u0 = Ao/(cosh(Bo*xx))**2

u0x = diff(u0,period=2*numpy.pi*loik); #speed -c*u0x

u0xx = diff(u0x,period=2*numpy.pi*loik);# second space derivative

yx[:n] = u0-HH2*u0xx # space transformed

yx[n:] = -c*u0x; #speed;

return yx.real

def Bio2D(t,yx): #Improved HJ equation, dimensionless form

nn = len(yx)/2
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omega = oomega(nn)

temp2 = [] ; ru = [] ; fft_r = []

temp2 = yx[:nn] #first part

fft_r = fft(temp2,nn,-1) #r forward transform

r_ajutine = numpy.arange(nn,dtype=numpy.complex128) # complex array ’D’

kkk = 0

while kkk < nn: #index 0 to n-1.

r_ajutine[kkk] = fft_r[kkk]/(1+HH2*omega[kkk]**2)

kkk = kkk+1

ru = ifft(r_ajutine).real #inverse transform end

rr = ru*ru #nonlinear

v = yx[nn:] #speed or dr/dt, y[n] to y[2n-1]

x_x = diff(ru,1,period=2*numpy.pi*loik) # first derivative

x2 = x_x*x_x # square of first derivative

x_xx = diff(ru,2,period=2*numpy.pi*loik) # second derivative

x_xxxx = diff(ru,4,period=2*numpy.pi*loik)# fourth derivative

ytx[:nn] = v #du/dt=v

ytx[nn:] = x_xx + PP * ru * x_xx + QQ * rr * x_xx + PP * x2 + 2 * QQ * ru * x2 - HH * x_xxxx

return ytx

# example set of normalized parameters

co = 1; co2 = co * co; rho0 = 1; l = 1; # geometric / material param

c = 1 + 0.1; gamma2 = (c*c)/co2

p = 0.05; q = 0.075; # nonlinear param

h2 = 0.05; h1 = gamma2*h2; # dispersion param

Bo = 1/8; Ao = 1; # initial pulse param

# dimensionless P = p * roo_0 / co2; Q = q * roo_0**2 / co2; H = h / (co2 * l)

PP = p * rho0 / co2; QQ = q * rho0**2 / co2; HH = h1 /(co2 * l**2); HH2 = h2 /(l**2);

yx = Biosech2D(Ao,Bo,x,loik,c,HH2); tyyp=’sech2’;

# ---------- integration of EQ -------------------------------------

t0 = 0.0; aeg_alg = clock() #initial time, floating point number

t_end = narv*dt #end time

tvektor1 = []; tvektor2 = [] ; tvektor3 = [] ; tulemus1 = []; tulemus2 = []; tulemus3 = [];

tvektor4 = [] ; tulemus4 = []; tvektor5 = [] ; tulemus5 = []; tvektorx = []; tulemusx = [];

runnerx = ode(Bio2D) #for dimensionless form!

runnerx.set_integrator(’vode’,nsteps=1e7,rtol=1e-10,atol=1e-12);

runnerx.set_initial_value(yx,t0);

while runnerx.successful() and runnerx.t < t_end: #-h uxxxx - H2 uxxtt

tvektorx.append(runnerx.t);

tulemusx.append(runnerx.y);

print(’z ’,runnerx.t);

runnerx.integrate(runnerx.t+dt);

(um_t_reaalne,aproxkiirus) = ibioD(tulemusx,tvektorx,n) # inverse transform, dimensionless form

umx = transpose(um_t_reaalne); #umtx = transpose(aproxkiirus) H2 member

# and here you can save the results into Matlab

Linux might need first few lines of your Python script to be something like that:

#coding=iso-8859-15

#/usr/bin/env python

1.2 Visualising and analysing the solutions

Getting the model equations solved is the easy part. Real trick is to make some sense of the
stuff that popped out. For that the data needs to be analysed and presented somehow in human
understandable format. Often this is some-kind of graphical presentation of data.

The simplest form of visualization is just plotting the 1D waveprofile at some time which is
interesting for some reason. While this is simple undertaking in principle there are few tricks
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in here for producing graphs that are suitable for publication. Few notes that can make the life
simpler in the long run.

• Always write a script. Store that script in some logical location so you can find it a while
later. Do a separate script for each separate graph. It takes a little longer at first but
really helps down the road when the supervisor or editor or reviewer asks “X” months
later to change something.

• By default (that means as Matlab and Python using matplotlib save them) dashes and
dots in .eps format files which are usually used for scientific publication are ugly. Open
the file in text editor, find field “0 cap” and change it to “1 cap”. Leave this process for
the last as if you need to change something file gets overwritten (you did write a script for
that right?)

• If the amount of data or number of data files is significant it is advisable to implement
scripts for speeding up the process of “getting some kind of picture”. Look at example
provided which generates just quick .jpg format plots of all fittingly named files in a
directory so you can flip through them in more or less sane manner.

• If the data has more than 2 dimensions (for example, numerical experiment results where
you are trying to determine what is the effect of 7 different parameters in 1D model
equation) be extra careful, try to somehow group the dimensions based on some kind of
shared characteristics. Make sure all the parameters you are looking are really independent,
if they are not reduce the degrees of freedom to the minimal possible set. If it is not clear
from the picture what you are trying to show most people will not understand what you
are trying to show from long winded explanation.

• Colors are useful and help to make the graph readable in electronic formats but for all
practical purposes you are limited to maximum 4 different lines per 2D plot. Journals are
printed in black and white and red and blue are exactly the same when printed in black
and white. The 4 different lines are line types in Matlab, (solid, dashed, dash-dotted and
dotted lines).

• It can be useful to use “pseudo 3D”. See the “timeslice” plot example.

• For conferences or other presentations a good animation might be better than dozen graphs
for explaining some kind of dynamic process.

• Best scripts are hand written. Failing that you can auto-generate a script for getting figure
which is initially done manually in Matlab figure environment .. I think .. somehow. Auto
generated scripts can contain a lot of noise and can be quite hard to dig through if you do
need to change something later (you will most likely).

Example 1: Matlab script for generating .jpg files from a directory of data-files for getting a
overview of what is there. In here and following example the “um” is data array holding the
data, first index is space and second index is time coordinate.

clear; %esimene joon

cd(’D:\Teadus\Tallinn2014\Ettekande_data\Large’) % dir with data

poz = [1 1 1920 1088]; %you do not need that

dataFiles = dir(’HN_IUTAM_Hvar09*.mat’); %find suitable files

numfiles = length(dataFiles); %number of fitting files

for s=1:numfiles %

cd(’D:\Teadus\Tallinn2014\Ettekande_data\Large’)

load(sprintf(’%s’,dataFiles(s,1).name)); %load datafile

figure(s); hold on;

plot(um(:,1),’linestyle’,’-’,’color’,’k’,’linewidth’,2) %T=1
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plot(um(:,5902),’linestyle’,’:’,’color’,’r’,’linewidth’,2) %T=5902

ylabel(’{\it U}’,’FontSize’,16,’FontName’,’Times New Roman’);

xlabel(’\it X’,’FontSize’,16,’FontName’,’Times New Roman’);

axis tight; grid on;

cd(’D:\Teadus\Tallinn2014\pildid\Large’) %place where to put pictures

print(s,sprintf(’%s’,dataFiles(s,1).name),’-djpeg’);

end

“print” in script is preferable to the “save as” in Matlab figure environment as it “freezes” the
font-size into the figure. One should be writing scripts for everything anyway.

Example 2: Generating the figures for a journal publication. Was enchanted before final sub-
missions with the “0 cap to 1 cap” macro.

% Tallinn 2014 konverents artikkel joonis 2

% Gamma 1.1 H changes two fig side by side

clear; %esimene joon

cd(’D:\Teadus\Tallinn2014\Ettekande_data\Large’) % kataloog kus on datafailid

poz = [1 1 1920 1088];

moment2=1070;

figure(21); hold on;

load(’Fig2a.mat’);

[n m]=size(um); n2=.5*n;

plot(x(1:n2),um(1:n2,moment2),’k’,’clipping’,’off’,’linewidth’,2,’linestyle’,’-’);

set(gca,’XTick’,0:16*pi:64*pi,’XTickLabel’,{’0p’,’16p’,’32p’,’48p’,’64p’},’FontName’,’Symbol’);

set(gca,’YTick’,-0.6:0.15:0.75,’YTickLabel’,{’-0.6’,’-0.45’,’-0.3’,’-0.15’,’0’,’0.15’,’0.3’,...

’0.45’,’0.6’,’0.75’},’FontName’,’Symbol’);

axis([0 64*pi+0.01 -0.601 0.755]);

l1=legend(’H = 0.1’); set(l1,’Location’,’NorthEast’); set(l1,’FontName’,’Times’);

grid on; set(21,’pos’,poz); pbaspect([1 1 1])

cd(’D:\Teadus\Tallinn2014\Artikkel’)

print(21,sprintf(’Fig21_Gamma2_%d_H1_%d_H2_%d_P_%d_Q_%d.eps’,gamma2,H1,H2,PP,QQ),’-dpsc2’);

cd(’D:\Teadus\Tallinn2014\Ettekande_data\Large’)

figure(22); hold on;

load(’Fig2b.mat’);

[n m]=size(um); n2=.5*n;

plot(x(1:n2),um(1:n2,moment2),’k’,’clipping’,’off’,’linewidth’,2,’linestyle’,’-’);

set(gca,’XTick’,0:16*pi:64*pi,’XTickLabel’,{’0p’,’16p’,’32p’,’48p’,’64p’},’FontName’,’Symbol’);

set(gca,’YTick’,-0.6:0.15:0.75,’YTickLabel’,{’-0.6’,’-0.45’,’-0.3’,’-0.15’,’0’,’0.15’,’0.3’,...

’0.45’,’0.6’,’0.75’},’FontName’,’Symbol’);

axis([0 64*pi+0.01 -0.601 0.755]);

l1=legend(’H = 1.0’); set(l1,’Location’,’NorthEast’); set(l1,’FontName’,’Times’);

grid on; set(22,’pos’,poz); pbaspect([1 1 1])

cd(’D:\Teadus\Tallinn2014\Artikkel’)

print(22,sprintf(’Fig22_Gamma2_%d_H1_%d_H2_%d_P_%d_Q_%d.eps’,gamma2,H1,H2,PP,QQ),’-dpsc2’);
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Note how most of the lines are more or less the same. After you have established the first few
scripts for proper visualization the following ones will go much easier.

Example 3: Timeslice plot

% EC540 profiilid

clear; %esimene joon

cd(’F:\Teadus\WAVE13\USA2013’) % datafiles

poz = [1 1 1920 1088];

file = ’USA_II_GA_0.2_G1_0.4_c_0.0_Ao_1_n_2048_l2pi_32_A_20_B_25.0_C_3.2_D_10_N_50_M_500.mat’;

load(file); %load datafile

um = um4(:,1:15:2401); %drawing every 15th line in time of array um4

ku = 12; %viewing angle

figure(1); set(1,’position’,[poz]);

ij=[];

clf,hold off

[n,m]=size(um);

if 9==0,N=64; % increase num of gridpoints if needed

if n<N,

nd=N/n;

dx=(x(2)-x(1))/nd; x=dx*[0:N-1]’;

U=fft(um);

um=nd*ifft([U(1:.5*n,:);zeros((nd-1)*n,m);U(.5*n+1:n,:)]);

n=N;

end

end

u0=um(:,1); u=um(:,m);

umax=max(real(u));

ymin=min(real(u0));

ymax=ymin+ku*abs(max(real(u0))-ymin);

am=(ymax-umax)/(m-1);

uum=um+am*ones(n,1)*[0:m-1];

ax=[min(x),max(x),1.05*ymin,1.05*ymax];

axis(ax), axis(’off’);

hold on

u0=uum(:,1);

h=plot(x,u0,’b-’,’linewidth’,1.5);

for l=2:m

u1=uum(:,l);
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i=find(u1<u0);

if length(i)>=1, u1(i)=u0(i); end

h=plot(x,u1,’k-’); %,’linewidth’,1

u0=u1;

end;

hy=ylabel(’Time \rightarrow’,’visible’,’on’,’FontSize’,12,’FontName’,’Times’);

ylxy=get(hy,’position’)

1

hx=xlabel(’Space \rightarrow’,’visible’,’on’,’FontSize’,12,’FontName’,’Times’);

set(hx,’VerticalAlignment’,’bottom’)

xlxy=get(hx,’position’)

if 0

ttx=[setstr(190),setstr(190),setstr(190),setstr(190),setstr(174)];

huh=text(xlxy(1),xlxy(2),ttx,’fontsize’,18); %text(xlxy(1),xlxy(2),’X’)

set(huh,’fontname’,’symbol’,...

’HorizontalAlignment’,’center’,...

’VerticalAlignment’,’top’)

huh=text(ylxy(1),ylxy(2),ttx,’fontsize’,18);

set(huh,’fontname’,’symbol’,...

’HorizontalAlignment’,’center’,...

’VerticalAlignment’,’bottom’,’Rotation’,90)

set(gcf,’paperunits’,’centimeters’,’paperposition’,[3,9,16,12])

end

pbaspect([1.85 1 1])

print(1,sprintf(’TSlice_II_A_%d_B_%d_C_%d_D_%d_N_%d_M_%d.eps’,A,B,C,D,Nparam,Mparam),’-dpsc2’);

T
im

e 
→

Space →

In essence timeslice plot is similar in function to contour or pseudocolor plots. The main strength
of this plot-style is that it is very intuitive and gives a good overview of solution behaviour at a
glance.

Example 4: Making animation in Matlab. Reasonably fancy set up with four sub plots running
in one window in parallel. If you need animation make it early, this can take a while, especially
if you do it in high resolution. In older Matlab versions file size limit is 2 GB which gets full
really fast if you do not use compression. Proper compression is best done afterwards in some
other program. If you run into file size limits it is possible to do animation in pieces and merge
pieces together afterwards in some other program.

% EC540_presentantsiooni muuvi

12



% um1 - approx, um - full eq

% um3 - doublemcro hierarchical um4 - doublemcro concurrent connected

% um5 - doublemcro concurrent intependent

clear

poz = [1 1 1920/2 1088/2];

cd(’F:\Teadus\WAVE13\USA2013’) % datafiles

dataFiles = dir(’USA_II_GA_0.4_G1_0.6_c_0.0_Ao_1_n_2048_l2pi_32_A_20_B_12.5_C_4.8_D_10_N_50_M_500.mat’);

numfiles = length(dataFiles); %laetavate failide arv

for s=1:numfiles %

load(sprintf(’%s’,dataFiles(s,1).name)); %laeb sisse vajalikud muutujad

[n m]=size(um); n2=.5*n; %t = length(tv);

muuvi = [sprintf(’Run_II_GA_%d_G1_%d_A_%d_B_%d_C_%d_D_%d_N_%d_M_%d’,GA,G1,...

A,B,C,D,Nparam,Mparam),’.mp4’]; %’.avi’

writerObj = VideoWriter(muuvi,’MPEG-4’) %’Uncompressed AVI’

writerObj.FrameRate = 66; %writerObj.Quality = 100;

open(writerObj);

ffs=figure(s);

set(s,’units’,’points’);

set(s,’position’,[poz]); %hoho = gca;

for j = 1:m

subplot(2,2,1);

plot(x,um(:,j),’r’,’clipping’,’off’,’linewidth’,2,’linestyle’,’-’); hold on

xlabel(’0 \leq {\it X} < 64\pi’,’FontSize’,10,’FontName’,’Times’);

ylabel(’{\it U}’,’FontSize’,10,’FontName’,’Times’);

set(gca,’XTick’,0:8*pi:64*pi,’XTickLabel’,{’0p’,’8p’,’16p’,’24p’,’32p’,’40p’,’48p’,’56p’,...

’64p’},’FontName’,’Symbol’);

set(gca,’YTick’,0:0.1:0.5,’YTickLabel’,{’0’,’0.1’,’0.2’,’0.3’,’0.4’,’0.5’},’FontName’,’Symbol’);

axis([0 64*pi+0.01 0 0.505]);

l1=legend([’FSE T = ’,num2str(tv(j),’% 10.2f’)],’Location’,’NorthWest’);

set(l1,’FontName’,’Times’);

grid on; hold off;

% --------------------------------

subplot(2,2,2);

plot(x,um3(:,j),’k’,’clipping’,’off’,’linewidth’,2,’linestyle’,’-’); hold on

xlabel(’0 \leq {\it X} < 64\pi’,’FontSize’,10,’FontName’,’Times’);

ylabel(’{\it U}’,’FontSize’,10,’FontName’,’Times’);

set(gca,’XTick’,0:8*pi:64*pi,’XTickLabel’,{’0p’,’8p’,’16p’,’24p’,’32p’,’40p’,’48p’,’56p’,...

’64p’},’FontName’,’Symbol’);

set(gca,’YTick’,0:0.1:0.5,’YTickLabel’,{’0’,’0.1’,’0.2’,’0.3’,’0.4’,’0.5’},’FontName’,’Symbol’);

axis([0 64*pi+0.01 0 0.505]);

l3=legend([’HED T = ’,num2str(tv(j),’% 10.2f’)],’Location’,’NorthWest’);

set(l3,’FontName’,’Times’);

grid on; hold off;

% --------------------------------

subplot(2,2,3);

plot(x,um4(:,j),’b’,’clipping’,’off’,’linewidth’,2,’linestyle’,’-’); hold on

xlabel(’0 \leq {\it X} < 64\pi’,’FontSize’,10,’FontName’,’Times’);

ylabel(’{\it U}’,’FontSize’,10,’FontName’,’Times’);

set(gca,’XTick’,0:8*pi:64*pi,’XTickLabel’,{’0p’,’8p’,’16p’,’24p’,’32p’,’40p’,’48p’,’56p’,...

’64p’},’FontName’,’Symbol’);

set(gca,’YTick’,0:0.1:0.5,’YTickLabel’,{’0’,’0.1’,’0.2’,’0.3’,’0.4’,’0.5’},’FontName’,’Symbol’);

axis([0 64*pi+0.01 0 0.505]);

l4=legend([’COC T = ’,num2str(tv(j),’% 10.2f’)],’Location’,’NorthWest’);

set(l4,’FontName’,’Times’);

grid on; hold off;

% --------------------------------

subplot(2,2,4);

plot(x,um5(:,j),’g’,’clipping’,’off’,’linewidth’,2,’linestyle’,’-’); hold on

xlabel(’0 \leq {\it X} < 64\pi’,’FontSize’,10,’FontName’,’Times’);

ylabel(’{\it U}’,’FontSize’,10,’FontName’,’Times’);

set(gca,’XTick’,0:8*pi:64*pi,’XTickLabel’,{’0p’,’8p’,’16p’,’24p’,’32p’,’40p’,’48p’,...

’56p’,’64p’},’FontName’,’Symbol’);

set(gca,’YTick’,0:0.1:0.5,’YTickLabel’,{’0’,’0.1’,’0.2’,’0.3’,’0.4’,’0.5’},’FontName’,’Symbol’);
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axis([0 64*pi+0.01 0 0.505]);

l5=legend([’COI T = ’,num2str(tv(j),’% 10.2f’)],’Location’,’NorthWest’);

set(l5,’FontName’,’Times’);

grid on; hold off;

% -------

F(j) = getframe(ffs);

writeVideo(writerObj,F(j));

pause(0.02); %oota 20 millisekundit

clear F; hold off;

end

close(writerObj);

end4

One does not need to avoid colour all the time. In particular in presentations colour is useful
aspect for making graphs easier to read, however, always have a plan how you can present your
data in black and white if you will need to write something about the presented things afterwards.

γ A2
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Example filled contour plot. Difference between two solutions in time, logarithmic scale. Plotted
in axis of combined parameter γ2

A
and time.

Important note about using contour plots (and any kind of isolines in general) in Matlab. The
algorithm looks only at closest 4 orthogonal neighbours so if you have some kind of ridge along
the “diagonal” (the other 4 neighbours of the cell) you will get artificial visual oscillations which
are just a visual artefact! Before you go off and claim to have found some kind of new never
before seen effect make sure it’s not an artefact of your visualisation algorithm.

Another alternative to contour or pseudocolor plot is tracking the wave peak which can be useful
for highlighting some effects in a format that is visible when printed in black and white as well.
Example:
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1.2.1 From Python to Matlab

Saving in Python in Matlab format can be useful if you use Matlab for analysing and visualizing
the results. There are free alternatives (Matlab is relatively expensive program) like using
matplotlib in Python environment or GNU Octave which is open-source Matlab alternative.

from scipy.io import savemat

% solving the equations is here

fn = ’HN_IUTAM_Hvar11_H_%s.mat’%(HH2)

sonaraamat = dict([(’um’, (umx)), (’tv’, (transpose(tvektorx))), (’x’, x),\

(’co’, co), (’loik’, loik), (’Ao’, Ao), (’Bo’, Bo), (’oo’, omega),\

(’arvutusaeg_sekund’, aeg_arvutus), (’p’, p), (’q’, q),\

(’PP’, PP), (’QQ’, QQ),(’H1’, HH), (’H2’, HH2), (’gamma2’, gamma2)]);

savemat(fn,sonaraamat);

The dictonary contains pairs of variable name in Matlab style save file and the value of that
variable.

1.2.2 Spectral analysis

Example: Spectral amplitude histogram in Matlab

ina = 0; TT=5902;

[n,m]=size(um);

komponent=n/2;

Uavektor = zeros(komponent);

figure(100); hold on

for i=1:komponent

Ua=fft(um);

Ua=2*abs(Ua(i,TT))/n; %presuming that ina(end)<n2

Ua=Ua.^2;

Uavektor(i) = Ua;

end

bar(Uavektor(:,1),’LineStyle’,’-’,’LineWidth’,2,’BarWidth’,0.6); axis tight; grid on;

xlabel(sprintf(’Pulse @ Bo = %s - k’,Bo),’FontSize’,12,’FontName’,’Times New Roman’);

ylabel(’{\it Spectral Amplitude}’,’FontSize’,12,’FontName’,’Times New Roman’);

set(gca,’FontSize’,12,’FontName’,’Times New Roman’);

axx=[0,101,0, max(max(Uavektor))+0.02*max(max(Uavektor))];

axis(axx)

print(100,’Spekter_alg_n4096.eps’,’-dpsc2’);

Resulting in the following graph for rectangular function pulse at the initial time-step
at n = 8192 (meaning that there is 4096 harmonics in the Fourier series altogether)
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Depending on what is under investigation it is often reasonable to look at spectral amplitudes
in the logarithmic scale.

This is just one example how it is possible to take look at the spectrum of your waveprofile. It
is advisable to go over the cited textbook PSM section which contains the analytical formulas.

1.2.3 Phase plots

Looking at just plain waveprofile plot at given time moment it can be hard to spot small changes
in the waveprofile shape. One possibility of highlight (or amplify) small changes is phase plot
which is in essence plotting the waveprofile in a little unusual axis. For 1D wave plot the
reasonable axis are U and UX , however these are not the only options. Couple examples:
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1 2D Pseudospectral example

Kert Tamm, kert@ioc.ee and Mart Ratas, Pearu Peterson

Example of Pseudospectral method (PSM) implementation in 2D based on a Python code from
the e-mail correspondence between Mart Ratas and Pearu Peterson of which I was also part
of. Python script has very minor editing by Kert Tamm to make it run without errors under
Python 3.x. Matlab script for reshaping and visualizing by Kert Tamm.

The example is based on the classical heat equation in 2D

ut − α (uxx + uyy + uzz) = 0, (1)

for 2D a uzz is just absent. Subscript denotes partial differentiation.

The Python script:

# -*- coding: utf-8 -*-

"""

Created on Sun Apr 12 17:51:42 2015

PSM HEAT EQUATION

u_t=a*(u_xx+u_yy)

12.04.15 algus

@author: Mart

"""

#siin paneme paika vajalikud parameetrid

punktide_arv=256

salv=.01 #kui tiheda sammuga salvestan

tf=0.1 #lppaeg

atol=1e-12

rtol=1e-10

nsteps=1e7

integrator=’vode’

#momg vajalikud raamatukogud

import numpy, scipy.io

def psm_start(punktide_arv,salv,tf,atol,rtol):

dx=(1*2*numpy.pi/punktide_arv)

#sisuliselt omega, et tuletisi vtta

abi=numpy.hstack((numpy.arange(punktide_arv/2),numpy.arange(-punktide_arv/2,0)))

suurK=abi

for i in range(punktide_arv-1):

suurK=numpy.vstack((suurK,abi))

#omega transponeeritud, et tuletisi vtta y’st

suurL=suurK.swapaxes(0,1)

#print ’max,min’,numpy.max(suurKP),numpy.min(suurKP)

x=dx*numpy.arange(-punktide_arv/2,punktide_arv/2)

y=x

xx,yy=numpy.meshgrid(x,y)

u0=numpy.exp(-(xx**2+yy**2)*25.0)

#nd siis integreeerima!

import scipy.integrate

print(’integreerin ’,integrator,"’ga", u0.shape)

solver=scipy.integrate.ode(funktsioon).set_integrator(integrator,nsteps=nsteps,atol=atol, rtol=rtol)
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u0 = u0.flatten ()

solver.set_initial_value(u0, 0).set_f_params(suurK,suurL)

lahend=[u0.copy()]

tv=[0,]

counter=0

while solver.t< tf:#solver.successful() and solver.t < tf:

counter+=1

solver.integrate(solver.t + salv)

print(numpy.min(solver.y), numpy.max(solver.y))

ucurrent=solver.y

print(numpy.shape(ucurrent), numpy.max(numpy.abs(ucurrent-u0)))

#proovisin!

lahend.append(ucurrent)

#print numpy.min(ucurrent), numpy.max(ucurrent)

tv.append(solver.t)

print(’arvutan, aeg: ’,solver.t,solver.successful())

if counter-1>tf/float(salv):

break

scipy.io.savemat(’heat_eq_test_12_04’,{’u0’:u0,’suurK’:suurK,’lahend’:lahend,’tv’:tv,’x’:x\

,’y’:y,’punktide_arv’:punktide_arv})

def funktsioon(t,xxyy,suurK,suurL):

#kasuta seda integreerimiseks!

import numpy

a=1

xxyy = numpy.reshape( xxyy, (punktide_arv,)*2)

#print ’SIIN!!!’

#print ’================================================================’

uxx=numpy.real(numpy.fft.ifft(-suurK**2*numpy.fft.fft(xxyy,axis=1),axis=1))

uyy=numpy.real(numpy.fft.ifft(-suurL**2*numpy.fft.fft(xxyy,axis=0),axis=0))

tul=a*(uxx+uyy)

#print ’sain tulemuse:’, tul.shape

#print max(tul),min(tul)

return tul.flatten ()

psm_start(punktide_arv,salv,tf,atol,rtol)

Do note that this script gives out a vector, not matrix as one would expect for vizualisation, so
the visualising Matlab script reshapes the result vector into correct format.

% 2D heat EQ visualization

clear

fsize = 12; %font size

cd(’D:\Teadus\Python’) %kataloog kus on datafail

load(’heat_eq_test_12_04.mat’); % failinimi

U02D=reshape(u0,[punktide_arv,punktide_arv]); % initial condition

for i=1:length(tv)

Lah2D{i,1}=reshape(lahend(i,:),[punktide_arv,punktide_arv]);

end

% plotting

for i=1:length(tv)

hh=figure(i)

contour(Lah2D{i,1})

l1=legend([’T = ’,num2str(tv(i),’% 10.2f’)],’Location’,’SouthWest’);
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set(l1,’FontName’,’Times’,’FontSize’,fsize);

set(gca,’FontName’,’Times’,’FontSize’,fsize); %axis to correct font

grid on; pbaspect([1 1 1]); %grid and aspect ratio

print(hh,sprintf(’%d_T_%d.eps’,i,tv(i)),’-dpsc2’); %plot eps

end

Te resulting plots should look by default something like this:
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Please ignore the different size of the graphs. This is some kind of a LaTeX issue as the resulting
.eps files are all of same size from the visualisation script.

Few things to note when using Matlab contour and contourf functions. (1) The blue area around
the edges is very low amplitude noise which contour plot has picked up when it sets the levels
automatically - for a clear picture one would need to set the isolines manually and in a such way
that they are the same for all graphs one intends to compare. (2) Matlab contour plots can and
do create artefacts which are not present in the underlying data as the algorithm only takes into
account the 4 perpendicular neighbours of the data-point ignoring the diagonal neighbours. So
if you have a maxima running on the diagonal of the matrix you will get a row of “islands” on
the diagonal instead of a single continuous ridge present in the data.
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Limit of wavenumbers in Fourier Pseudospectral
Method considering available numerical precision

Martin Lints
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1 Introduction

Pseudospectral methods are widely used to calculate partial differential equations nu-
merically, often for equations which require spatial derivatives of high orders [1]. These
equations can require wavenumber filtering to suppress the contribution of high wavenum-
bers [2] for the solution to remain stable in computations in danger of shock conditions
or discontinuities [3].

This paper discusses an alternate source of unstability due to the problem of finite
accuracy of computers which can also destroy the solution by multiplying the energy in
high wavenumbers by a large number. It will be shown that the numerical discretization
must be limited in order for the computation to not have unphysical oscillations produced
by the limited precision of the computer. For this is useful to know the point where the
numerical precision does not support any additional information.

Because computers work on binary numbers of finite length in each register, round-
off and representation errors occur for floating point numbers. Moreover floating point
operations do not necessarily behave like arithmetic operations [4]. Dahlquist [5] has
pointed out that the floating point addition and multiplication are commutative but not
associative nor distributive. In short we only get a finite precision when using traditional
programming languages in calculations. It is possible to extend the precision by using,
for example, quadruple precision numbers built now into some compilers or software
packages which allow arbitrary precision. This comes with additional computational cost
per operation, because the number does not “fit” into the CPU and this computational
expense needs to be carefully considered.

Modern CPU-s mostly use 64-bit arithmetic which, in case of IEEE 754 “double pre-
cision” floats, comprise of 1 sign bit, 11 exponent bits and 52 significand bits. These 52
significand bits can represent a decimal number with ∼ 16 significant decimal places. The
“extended precision” of 80-bit and “quadruple precision” of 128-bit numbers and higher
has lately become available in some Fortran and C/C++ compilers (gcc), or as external
libraries which can be used if more precision is required. The effect of various precision
computations on the end result will be shown in the following work.

The numerical codes for this paper were written in C using the FFTW3 library [6] and
compiled with Gnu C Compiler (gcc) version 4.8.2 with its quadmath library for float128
quad precision support.
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2 The application of Fourier Pseudospectral Method

In the Fourier Pseudospectral Method, the spatial derivatives of a periodic function are
found by approximating it with a Fourier series. The theory is well known, so only the
main steps of the application are shown in this section. As summarized by Salupere [1],
it is a global method approximating a function as a sum of smooth basis functions Φk(x):

u(x) ≈
N∑
k=0

akΦk(x). (1)

If the function u(x) is periodic then we can choose trigonometric functions as a basis and
use Fast Fourier Transform (FFT) algorithms to do the work efficiently. This function,
given in an interval 0 ≤ x ≤ 2π and space grid is composed of N points, has a Discrete
Fourier Transform (DFT)

U(k, t) = Fu =
N−1∑
j=0

u(j∆x, t) exp

(
−2πijk

N

)
, (2)

and inverse DFT(IDFT)

u(j∆x, t) = F−1U =
1

N

∑
k

U(k, t) exp

(
2πijk

N

)
, (3)

where i is imaginary unit, and wavenumbers are

k = 0,±1,±2, . . . ,±(N/2− 1),−N/2. (4)

The derivatives of the approximation of the function u(x) in Eq. (1) are given by only
the derivatives of Φk(x), as the coefficients ak do not depend on x. Differentiating the
IDFT Eq. (3)

∂u(x, t)

∂x
≈ ∂u(j∆x, t)

∂x
=
∂F−1U

∂x
=

1

N

∑
k

(ik)U(k, t) exp

(
2πijk

N

)
, (5)

where ∆x = 2π/N . Alternatively, if the space period is 2mπ, then ∆x = 2mπ/N and
the quantities k/m are used instead. Therefore the differentiation ∂

∂x
in the original space

transforms to multiplication by ik/m in Fourier space in the following way

∂nu(x, t)

∂xn
= F−1

[(
ik

m

)n

Fu

]
. (6)

3 Example with numerical derivatives of sin(x)

Lets look at the range where x = [0, 2π) (or in other words m = 1 in Eq. (6)). This range
is discretisized with 2048 points, allowing the Fourier transform to contain very high
wavenumbers. Various derivatives of sin(x) are examined. The sinusoid has infinitely
many derivatives, all of which are sinusoidal functions and should not have any energy
in wavenumbers other than |k| = 1, making the numerical result easy to compare with
analytical result and exposing the numerical inaccuracies.

The derivatives of sin(x) are found with Eq. (6), by using DFT and IDFT from FFTW
library [6]. It is done for several different precisions: i) 32-bit single precision; ii) 64-bit
double precision; iii) 80-bit extended precision; and iv) 128-bit quadruple precision. It
is observed that FFT routines usually have a precision of 2-3 magnitudes of order above
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machine zero at any given precision (for a derivation of precise error bounds, see [7]
and the accuracy benchmarks for FFTW [8]). This means that when applying a FFT
to a sinusoid (where only |k| = 1 wavenumbers should be nonzero) , the wavenumbers
|k| 6= 1 oscillate near the maximum representable precision, seen from the red lines in
Figs. 1(b), 2(b) and 3(b): i) ∼ 5 − 6 decimal places for 32-bit single precision; ii)
∼ 13 − 14 decimal places for 64-bit double precision; iii) ∼ 16 − 17 decimal places for
80-bit extended precision; iv) ∼ 32 − 33 decimal places for 128-bit quadruple precision.
The red lines in the aforementioned figures show a bit higher precision because for the
plotting the wavenumbers have been normalized by N/2 in order for the lines to start at
magnitude of 1.

In pseudospectral differentiation with high enough derivatives and wavenumbers, the
oscillations can and will become apparent. This happens due to the multiplication by
the wavenumber vector (ik)n (where n is the order of the derivative in Eq. (6)), shown
by dotted lines in Figs. 1(b), 2(b) and 3(b). Multiplying the numerical oscillations on
the limit of the precision with high enough wavenumbers can bring the contribution of
the high wavenumber modes to close to the same magnitude as the useful information
contained in wavenumbers |k| = 1 of the sinusoid. This is shown by green and blue lines
in the aforementioned figures.

Even though the precision offered from the FFT seems enough for most cases, when
taking a high spatial derivative of datasets with thousands of space-grid points the Eq. (6)
leads to multiplication by a wavenumber (ik)n that can have very large numbers. For
example when taking a 5-th derivative of sin(x) using pseudospectral method with double
precision FFT, the highest wavenumber in the power of 5 (disregarding the imaginary unit
i) would be (N/2)5 = 10245 = 1.126 · 1015 which will bring numerical error oscillations
(magnitude of ∼ 1014 − 1015) to the visible range, seen by the green and blue lines
in Figs. 1(b), 2(b) and 3(b). The loss of accuracy is shown for various precisions in
Figs. 1(a), 2(a) and 3(a). After that point any further derivatives will show just noise.

Expanding this further and knowing the desired precision after the differentiation, it
is possible to work out the upper limit of the number of spatial points N . For example,
knowing that FFT in double precision is precise to ∼ 1014 and supposing that fifth spatial
derivative is needed with accuracy ∼ 106, then the maximum elements of the wavenumber
vector can be of magnitude ∼ 108. Since (N/2)5 < 108 ⇒ N < 80. Figure 4 shows this
relation in the clearest way. In practical calculation, since the |k| = 1 wavenumber has
magnitude of 103, even N < 200 is suitable and gives a maximum difference of 1.02 · 106

between numerical and analytical 5-th derivative of sin(x), but in general this cannot be
assumed.

3.1 Practical considerations

This exercise, as also most of the simulations, deal with real-valued data in the original
vector u(x). It makes sense to use the real-to-complex transform as DFT and complex-
to-real as IDFT such as such as fftw plan dft r2c 1d and fftw plan dft c2r 1d. This
should bring a speedup of factor of two compared to using complex-to-complex transforms.

Filtering is often used in pseudospectral methods for various purposes: suppressing
the influence of higher harmonics [1], preventing unwanted transfer of energy into higher
modes, to counteract aliasing errors or to improve the convergence in case of discontinuities
[9]. In these cases, only the wavenumbers that passed through low-pass filter should be
considered as the wavenumbers which would get multiplied by elements of vector (ik)n.
However, it might not be advisable to use the filter for the sole purpose of increasing
the discretization of the spatial length N and compensating for it with a filter, because
the maximum largest frequency that can be represented this way by the pseudospectral
method will still remain limited by the available precision. The increase of discretiza-
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(a) Derivatives of sinusoid (b) FFT spectrum and wavenumber vector

Figure 1: The second derivative in single precision breaking down

(a) Derivatives of sinusoid (b) FFT spectrum and wavenumber vector

Figure 2: The fifth derivative in double precision breaking down

(a) Derivatives of sinusoid (b) FFT spectrum and wavenumber vector

Figure 3: The 11-th derivative in quadruple precision breaking down
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tion can be acquired by interpolation in post-processing. The increase of information
about higher wavenumbers can be obtained by only increase of precision with increase
of discretization N in simulation. The tests conducted in this work indicate an expected
slowdown of about one order of magnitude when using 128-bit quadruple precision instead
of 64-bit double precision.

4 Conclusions

This work gives an upper possible limit of the discretization and derivatives depending on
the available precision when using the Pseudospectral Fourier Method. The limit where
any scheme will definitely be stable depends on the spectral content of the wave pulse
transformed by FFT, as the Fourier Pseudospectral Method will amplify any numerical
oscillations in the high wavenumbers. These amplified oscillations could, instead of re-
sulting from FFT, come from the timestep scheme or appear from the solved formula (for
example, the non-linear formulae will naturally introduce energy into high-wavenumber
modes due to the wave steepening).

The remaining precision of the Pseudospectral Fourier Method depends on the dis-
cretization N and could also be useful in determining the precision to which the timestep
scheme should converge. Alternatively if the required precision is given, it could reveal
the upper limit on the spectrum which can be differentiated while retaining the minimum
required precision. If more precision is required from timestep than could be given by
Pseudospectral Fourier Method, the time scheme would spend unnecessary time in trying
to make the result converge. Alternatively, this knowledge could be used in selecting the
most economical precision.

Figure 4: Maximum wavenumber k for derivatives, before the computer runs out of the
precision. The actual precision of FFT routines are 2-3 magnitudes of order lower than
the machine precision used.
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A Practical Guide to Solving 1D Hyperbolic Problem with

Finite Element Method

Dmitri Kartofelev, Päivo Simson

1 Introduction

The following tutorial is designed to guide the student through the numerical solving of a 1D
hyperbolic partial differential equation (PDE) using the finite element method (FEM). The tutorial
does not provide rigorous mathematical explanations or proofs behind some aspects of FEM.

In this tutorial an initial value problem (IVP) of the wave equation is solved. The FEM approx-
imation is realized in Python programming language. In addition the same problem is solved with
FEniCS project software. The FEniCS project software that is widely used is designed to simplify
and automate the solution of mathematical models based on differential equations and PDEs. Af-
ter the student has introduced him or herself to this tutorial, the student should be able to solve
independently other simpler problems, such as parabolic or elliptic problems.

2 Initial value problem

Initial value problem of the wave equation is in the form

∂2u

∂t2
= c2

∂2u

∂x2
, (1)

u(x, 0) = g(x),
∂

∂x
u(x, 0) = h(x) = 0,

∂

∂t
u(x, 0) = w(x) = 0 (2)

where functions g(x), h(x) and w(x) are the initial values distributed along the x-axis at time
moment t = 0. We assume that space and time domains extend respectively 0 < x < L and
0 6 t < T . Additionally, the boundaries are considered to be fixed i.e. u(0, t) = u(L, t) = 0.

3 FEM

Lets solve the IVP (1), (2) numerically using FEM. The following are step-by-step instructions:

1. Construct a variational or weak formulation, by multiplying both sides of the PDE (1) by a
test function v(x) satisfying the boundary conditions (BC) v(0) = 0, v(L) = 0 to get(

∂2u

∂t2
− c2∂

2u

∂x2

)
v = 0, (3)

and then integrating from 0 to L∫ L

0

[(
∂2u

∂t2
− c2∂

2u

∂x2

)
v

]
dx = 0⇒

∫ L

0

∂2u

∂t2
v dx− c2

∫ L

0

∂2u

∂x2
v dx = 0. (4)

The first part of the resulting equation is left as it is, since it depends on time. The second
part of the equation can be integrated by parts

−c2
∫ L

0

∂2u

∂x2
v dx = −c2

(
∂u

∂x
v
∣∣∣L
0
−
∫ L

0

∂u

∂x

∂v

∂x
dx

)
= c2

∫ L

0

∂u

∂x

∂v

∂x
dx. (5)
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From here (4) takes the following form∫ L

0

∂2u

∂t2
v dx+ c2

∫ L

0

∂u

∂x

∂v

∂x
dx = 0⇒

∫ L

0

(
∂2u

∂t2
v + c2

∂u

∂x

∂v

∂x

)
dx = 0. (6)

2. Generate mesh, e.g., a uniform Cartesian mesh xi = i∆x, i = 0, 1, . . . , n, where ∆x = L/n,
defining the intervals [xi−1, xi], i = 1, 2, . . . , n.

3. Construct a set of basis functions based on the mesh, such as the piecewise linear functions
(i = 1, 2, . . . , n− 1)

φi(x) =


x− xi−1

∆x
if xi−1 6 x 6 xi,

xi+1 − x
∆x

if xi 6 x 6 xi+1,

0 otherwise,

(7)

often called the hat functions.

4. Represent the approximate (FEM) solution by the linear combination of basis functions. For
every fixed value of time t it must hold

u(x, t) ≈ uh(x, t) =

n−1∑
i=1

Uiφi(x), (8)

where the coefficients Ui are the unknowns to be determined. On assuming the hat basis
functions, obviously uh(x, t) is also a piecewise linear function, although this is not usually
the case for the true solution u(x, t). We then derive a linear system of equations for the
coefficients by substituting the approximate solution uh(x, t) for the exact solution u(x, t) in
the weak form (6) ∫ L

0

(
n−1∑
i=1

d2Ui

dt2
φiv + c2

n−1∑
i=1

Ui
∂φi
∂x

∂v

∂x

)
dx = 0, (9)

n−1∑
i=1

∫ L

0

(
d2Ui

dt2
φiv + c2Ui

∂φi
∂x

∂v

∂x

)
dx = 0. (10)

Now the test function v(x) is chosen to be φ1, φ2, . . . , φn−1 successively, to get the system of
n− 1 linear equations:

n−1∑
i=1

∫ L

0

(
d2Ui

dt2
φiφj + c2Ui

∂φi
∂x

∂φj
∂x

)
dx = 0. (11)

It is obvious that quantities

A =

∫ L

0
φiφj dx, (12)

B =

∫ L

0

∂φi
∂x

∂φj
∂x

dx, (13)

can be understood and represented as matrices. System of Eqs. (11) can be written in a
matrix form as follows:

A
d2U

dt2
+ c2BU = 0, (14)

where U = (U1, U2, . . . , Un−1)
T is a vector that contains coefficients Ui that are to be deter-

mined. The values of sparse matrices A and B can be obtained by taking the integrals shown
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in (12) and (13). In this particular case

A =



4 1 0 · · · 0 0
1 4 1 · · · 0 0
0 1 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 1
0 0 0 · · · 1 4


, (15)

B =
6

∆x2



2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 2


. (16)

5. Integrate the obtained Eq. (14) with respect to time using standard ordinary differential equa-
tion (ODE) numerical integrators. The matrix equation (14) can be solved for U, and from
there one can obtain the approximate solution uh(x, t) ≈ u(x, t).

More suitable form of Eq. (14) for numerical integration is

d2U

dt2
+ c2A−1BU = 0, (17)

where A−1 denotes the inverse matrix of A. The final form of FEM approximation of the wave
equation (1) is thus in the following form

d2U

dt2
+ CU = 0, (18)

where C = c2A−1B. This equation can be rewritten as a system of two first order equations
with respect to time 

dU

dt
= V,

dV

dt
= −CU.

(19)

This system of equations can in turn be solved with ODE solvers.

6. Carry out the error analysis and triple-check Your work. Congratulations You’re done!

4 Implementation in Python

The following is a Python program code which is based on the results presented in the previous
section. The time dependent part of the problem is solved using scipy.integrate package.

1 from s c ipy . i n t e g r a t e import ∗ #used f o r ODE in t e g r a t i o n
2 from matp lo t l i b . pylab import ∗ #array and matrix manipuation rou t i n e s
3
4 c = 1 #Parameter in the wave equat ion (wave speed )
5 n = 100 #Number o f mesh po in t s ( nodes )
6 L = 10 . #Space domain l en g t h
7 dx = L/(n−1) #Mesh s t e p s i z e
8 t 0 = 0 .0 #Sta r t i n g time ( f o r ODE in t e g r a t o r )
9 t l = 5 .0 #End time ( f o r the ODE in t e g r a t o r )

10 dt = 0.05 #Time s t ep ( f o r the ODE in t e g r a t o r )
11
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12 #I n i t i a l cond i t i on
13 u 0 = exp (−(2.0∗( arange (0 , L , dx )−L/2) ) ∗∗2 .0 ) #i n i t i a l va lue g ( x )
14 v 0 = ze ro s (n−1) #i n i t i a l va lue h ( x )
15
16 #FEM matrix A
17 A = 4∗ eye (n−1, k=0)+eye (n−1, k=−1)+eye (n−1, k=1)
18
19 #FEM matrix B
20 B = 2∗ eye (n−1, k=0)−eye (n−1, k=−1)−eye (n−1, k=1)
21 d = 6∗ c∗c /(dx∗dx )
22 B ∗= d
23
24 #FEM matrix C
25 invA = inv (A) #A inve r s e matrix
26 C = dot ( invA , B)
27
28 #In t e g r a t i n g the time dependent system of l i n e a r equa t i ons
29 def eqsys ( t , u v ) :
30 u = u v [ : n−1]
31 v = u v [ n−1: ]
32 u t = v #FEM, see Eq . (19)
33 v t = −dot (C, u) #FEM, see Eq . (19)
34 u v t = hstack ( [ u t , v t ] ) #reshap ing v e c t o r s in t o a s i n g l e v e c t o r
35 return u v t
36 r = ode ( eqsys ) . s e t i n t e g r a t o r ( ’ dopr i5 ’ , r t o l=1e−15, a t o l=1e−13, ns teps =10000)
37 u v 0 = hstack ( [ u 0 , v 0 ] ) #reshap ing the i n i t i a l va lue v e c t o r s
38 r . s e t i n i t i a l v a l u e ( u v 0 )
39 while r . s u c c e s s f u l ( ) and r . t < t l :
40 r . i n t e g r a t e ( r . t+dt )
41 u = r . y [ : n−1] #the s o l u t i o n vec t o r at time moment r . t
42 e x i t ( )

Figure 1 shows the numerical solution obtained by the aforementioned Python code. One can
clearly see that the solution becomes more stable and less dispersive as the number of mesh point
n grows (∆x→ 0).
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Figure 1: Numerical solution of the wave equation for bell-shaped initial value function (dashed
line). Solution shown for t = 3.25 and for three different numbers of mesh points n: n = 30 (hollow
bullets), n = 45 (hollow triangles), n = 100 (small filled bullets).
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5 Implementation in Python using FEniCS

Using FEniCS for solving the same IVP drastically shortens the time spent on the preparation for
the actual numerical calculations. If one uses FEniCS only two steps are required from the coder
compared to the six steps in the previous approach that was discussed in Section 3.

Lets solve IVP (1), (2) numerically using FEniCS software package. The following are step-by-
step instructions which are followed by an example Python program code:

1. Take care of the integration over time. In the case of hyperbolic (and parabolic) problem some
attention needs to be allocated to the time dependent part of the equation. One can use ODE
integrators in a similar manner as was shown in the previous approach. In this tutorial a
simple finite difference method (FDM) is used in order to preserve clarity.

The left-side part of wave equation (1) needs to be approximated by two steps backwards
finite differences

∂2u

∂t2
≈ uk − 2uk−1 + uk−2

∆t2
, (20)

here uk = u(x, k∆t), uk−1 = u(x, (k − 1)∆t) and uk−2 = u(x, (k − 2)∆t), where the index
k = 1, 2, . . . ,m and ∆t = T/m.

Using (20) the wave equation is rewritten in the following form

uk − 2uk−1 + uk−2

∆t2
= c2

∂2uk

∂x2
⇒ uk − 2uk−1 + uk−2 = c2∆t2

∂2uk

∂x2
⇒ (21)

⇒ uk + c2∆t2
∂2uk

∂x2
= 2uk−1 − uk−2. (22)

2. Construct a variational or weak formulation of the Eq. (22). See Step 1 in Section 3.∫ L

0
ukv dx+ c2∆t2

∫ L

0

∂uk

∂x

∂v

∂x
dx =

∫ L

0

(
2uk−1 − uk−2

)
v dx, (23)

where v was the test function. Obtained mathematical expression (23) of the variational
formulation is directly inserted into the program code and the FEniCS solves it by taking care
of everything else that is required.

3. Congratulations You’re done!

1 from d o l f i n import ∗ #Dolphin i n t e r f a c e imports FEniCS
2 import numpy as np #NumericPython
3
4 c = 1 #Parameter in the wave equat ion (wave speed )
5 a = 0 .0 #Space v a r i a b l e
6 L = 10 .0 #Space v a r i a b l e
7 n = 1000 #Space v a r i a b l e number o f mesh po in t s
8 dt = 0.01 #Time s t e p s i z e
9 t = 0 .0 #Time v a r i a b l e

10 T = 5.0 #Time v a r i a b l e
11
12 #I n i t i a l cond i t i on
13 x = np . l i n s p a c e (a , L , num = n + 1)
14 u0 = np . exp(−4∗(x − 5) ∗( x − 5) )
15
16 #Mesh and func t i on spaces
17 mesh = IntervalMesh (n , a , L)
18 V = FunctionSpace (mesh , ’CG’ , 1) #FEniCS genera t e s a l l necessary f o r the mesh
19
20 #Previous s o l u t i o n s f o r time i n t e g r a t i o n
21 uk1 = Function (V)
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22 uk2 = Function (V)
23 uk1 . vec to r ( ) [ : ] = u0
24 uk2 . vec to r ( ) [ : ] = u0 #I n i t i a l v e l o c i t y i s 0
25
26 uk = Function (V) #Current s o l u t i o n
27
28 #Var ia t i ona l problem at each time moment (FEM)
29 u = Tria lFunct ion (V)
30 v = TestFunction (V)
31 const = c∗c∗dt∗dt
32 A = u∗v∗dx + const ∗ i nne r ( grad (u) , grad (v ) ) ∗dx #Weak formulat ion , see Eq . (23)
33 L = (2 .∗ uk1 − uk2 ) ∗v∗dx #Weak formulat ion , see Eq . (23)
34
35 #Time i n t e g r a t i o n and FEniCS s o l v e r
36 while t <= T:
37 s o l v e (A == L , uk ) #FEniCS s o l v e r
38 uk2 . a s s i gn ( uk1 ) #Needed f o r time in t e g ra t i on , uˆ( k−2)
39 uk1 . a s s i gn (uk ) #Needed f o r time in t e g ra t i on , uˆ( k−1)
40 t += dt
41 p l o t (uk ) #FEniCS p l o t s the FEM so l u t i o n at time t

Additional useful feature of the FEniCS is that it can solve 2D, 3D or higher dimensional
problems. For more detail refer to the FEniCS manual. This feature is especially useful in various
engineering applications.

6 Conclusions

A short tutorial for solving the 1D wave equation numerically was presented. The IVP (1), (2) was
successfully solved using FEM.
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