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Abstract

Felt is a non-woven fabric that is widely used in

various acoustic applications. Mostly to dampen

vibration and acoustic waves travelling through

it. In this study the 1D nonlinear governing

equation that describes deformation wave prop-

agation through wool felt is studied both an-

alytically and numerically. The equation was

derived using experimentally obtained constitu-

tive relation that features hysteretic damping.

Dispersion analysis of the equation shows that

a band gap (BG) and a negative group velocity

(NGV) exist. An explanation of the influence

of BG and NGV on the wave evolution is pre-

sented. It is speculated that BG and NGV in-

fluence spectral wave components with periods

that are comparable to felt relaxation time. Ad-

ditionally, a weakly nonlinear case is considered.

The presented results shed light on the existence

of waves with NGV in solids.
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1 Introduction

Felt is formed by intertwining fibres using heat,

moisture, and pressure in a process called felt-

ing. Felt finds application in various industries,

such as automotive, aeronautical, etc., where

it performs noise reduction, vibration damping,

and shock absorption functions. The governing

equation describing the wave propagation in felt

is obtained from the 1D equation of motion
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where ⇢ is the density, u(x, t) is the displace-

ment, and � is the stress. The experimentally

confirmed constitutive relation is the following:
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Figure 1: Typical dynamic stress-strain curves

and loops describing the felt material. The ar-

row indicates the direction of the material load-

ing.

where Ed is the dynamic Young’s modulus, " =
@u/@x is the strain, p � 1, p 2 R is the com-

pliance exponent introducing the nonlinearity,

0 6 � < 1 is the hereditary amplitude, and ⌧0 is

the relaxation time [1–4].

Analysis of (2) indicates that under an ex-

tremely rapid loading-unloading cycle lasting for

t = tc ⌧ ⌧0 the constitutive equation takes the

following form:

�(") = Ed"
p(t). (3)

The material loading and unloading curves now

follow the same path. Similarly, a relationship

for a slow loading-unloading cycle, valid for low

frequency waves and wave components, is found

for t = tc � ⌧0

�(") = Es"
p(t), (4)

where Es = Ed(1��) is the static Young’s mod-

ulus. Figure 1 shows a typical stress-strain re-

lationships given by (2), (3), and (4). For com-

pacted wool felt p can be as high as 3.7 [2]. Ad-

ditionally, the figure shows the fitting of param-

eters in (2) using an experimentally obtained

curve.
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Figure 2: Phase and group velocities define by

(10) for � = 0.04. BG exist for k 2 (k1, k2)
where k1 = 1.9 and k2 = 2.9. NGV re-

gion exist for k 2 [1.4, k1] and it is shown

with the grey coloured region. When k ! 0,
{vph(k), vgr(k)} ! 1 = cs and at the limit

k ! 1, {vph(k), vgr(k)} ! 1/
p
� = cd.

Substituting (2) into (1) and elimination of

the integral term yield the following equation:
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The dimensionless form of the above equation

in terms of displacement variable u(x, t) was de-

rived in [3]

utt = [(ux)
p]x + [(ux)

p]xt � �uttt, (6)

where � = 1 � � is the hereditary parameter.

For � ! 0, i.e., � ! 1 the hereditary proper-

ties approach maximum levels and the dissipa-

tive properties approach minimum levels. Here,

the subscripted indices denote the differentia-

tion with respect to the indicated variables.

The most suitable form of equation for study-

ing the wave propagation through the felt ma-

terial is obtained for the strain variable "(x, t)

"tt = ("p)xx + ("p)xxt � �"ttt. (7)

In the linear case for p = 1 the equation is re-

ferred to as the Moore-Gibson-Thompson equa-

tion [5]. The corresponding equations of (7) for

extremely fast and slow loading cycles that cor-

respond to constitutive relationships (3) and (4)

are the following:

"tt = ("p)xx, (8)

"tt = �2("p)xx. (9)

Equation (8) describes the propagation of a fully

formed shock wave’s front.

1.1 Negative group velocity in solids

Dispersion relation corresponding to (7) has the

form

k2 � !2 � ik2! + i�!3 = 0, (10)

where k is the wavenumber, ! is the angular

frequency, and i is the imaginary unit. Analysis

of (10) shows that felt can feature a band gap

(BG) for certain wavenumbers and a region with

negative group velocity (NGV) shown in Fig. 2.

Both properties are surprising for the ma-

terial that is comprised of randomly oriented

elastic lossy fibres. The BG and NGV influence

only low frequency wave components. It can be

shown that for realistic parameters the waves

with wavenumbers located in the BG and/or

NGV region correspond to the case where tc �
⌧0. Meaning that a long wave or a pulse cor-

responding to the BG and/or NGV region is

successfully described by (9) in addition to full

model (7). For realistic parameters, no disper-

sive effects driven by NGV on wave shape evo-

lution exist. [4] The presented results shed light

on the existence of waves with NGV in solids.
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