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ABSTRACT

Analysis of nonlinear phenomena associated with string–
barrier collision dynamics is a long-standing open problem
in musical acoustics. In order to advance towards a com-
plete understanding of the problem good supporting exper-
imental data are needed. The experimental and theoretical
analysis of the string vibration in the monochord equipped
with a smooth and rigid barrier is presented. The exper-
imental data are gathered using video-kymographic tech-
nique that relies on digital image analysis of high-speed
line-scan camera imagery. The data are then compared
against a time-stepping model proposed by the authors.
The measurements show that the string–barrier dynamics
features two distinct vibration regimes. The initial short-
lasting violent regime characterised by the high energy col-
lisions and the resulting pitch glide effect, and the more
peaceful regime characterised by the nonlinear inter-modal
energy transfer phenomenon. It is shown that the proposed
model can predict many aspects of the investigated system.
The results and methods presented here should in general
find application in string instrument acoustics of similar
phenomena.

1. INTRODUCTION

Experimental research into the fundamental mechanical as-
pects of musical instruments is an important part of the
history of musical acoustics and of physics in general. The
standard model of a musical instrument has traditionally
been based around the canonical picture of a linear res-
onator, such as an acoustic tube, string, or metal bar, ex-
cited by a device with a nonlinear character, such as the
lip–reed mechanism, hammer contact, or a friction model
of a bow [1]. In recent years, attention has shifted to the
nonlinearity in the resonator itself, and the major effect it
can have on the resulting sound of the instrument. Two ex-
amples are: shock wave propagation in acoustic tubes [2],
leading to the brassy timbre of the trombone at high am-
plitude playing levels; and geometric nonlinearity in thin
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plate and shell structures, leading to crashes of cymbals
[3]. More widespread than either of these two effects is
the nonlinearity associated with the collision of a vibrating
object such as a string with a barrier. Such an effect plays
a dominant role, for example, in guitars and various lutes
where the string interacts with a fretboard. It can produce
pleasant distortion, increasing the brightness and perceived
loudness of the string instrument’s sound. However, it has
been the most recent nonlinearity to be considered in de-
tail, is least understood, and most lacking in supporting
experimental data.

The theoretical study and modeling of string–barrier in-
teraction are long-standing open problems in musical acous-
tics. In the early twentieth century, Raman [4] was first
to study the problem and identify the veena bridge as the
main reason for the distinctive sound of the tambura and
veena. He noted that all string frequencies in these instru-
ments are excited irrespective of the location of the exci-
tation thereby violating the Young-Helmholtz law which
states that the vibrations of a string do not contain the nat-
ural modes which have a node at the point of excitation.
He notes that this is caused by the geometry of the bridge
but did not explain the reason behind the inapplicability
of the Young-Helmholtz law. Since then, much effort has
been devoted to modeling the collision dynamics of a vi-
brating string with various obstacles or boundary barriers.
Over the years many authors have solved this problem us-
ing different approaches: method of characteristics [5, 6];
assuming an inelastic constraint where the string is losing
kinetic energy during contact [7]; physical modeling ac-
companied by the finite difference method [8–14]; a modal
analysis approach [15–17]; by describing the movement of
the sitar string with partial differential equations [18–20];
waveguide modeling [21–23]; and finite element method
with Ivanov transformation to integrate the problem [24].

Some direct experimental measurements of string vibra-
tion in various string–barrier systems have been previously
conducted. The methods of string displacement measure-
ment can be divided into three categories: electromagnetic
methods, electric field sensing, and optical methods. The
electromagnetic methods exploit Faraday’s law. The prin-
ciple of the string displacement detection is the following:
An electromagnetic coil is placed near the string, and the
motion of the string induces a voltage in the circuit that



Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

170

is proportional to the string’s velocity from which the dis-
placement of the string is obtained. This method was used
and described in [25, 26]. The electric field sensing met-
hod makes use of the phenomenon of capacitance change
between two electrodes, when the distance between them
is varied. In the simplest approach, a conducting string is
grounded, and direct current (DC) is applied to an elec-
trode plate. The string’s movement modulates the volt-
age between the string and the plate, and thus information
about the string’s displacement is obtained (cf. [27]). The
optical methods exploit various light or laser emitting and
detecting sensors to capture vibration. For example, high-
speed cameras with suitable video analysis have been used
to measure string vibration successfully [28]. Also, differ-
ent devices that convert laser rays into a uniform parallel
beam and detect their shadows can ensure the result [29].
Devices that are based on various photovoltaic detectors
have also been successful [30].

Our experimental approach can be classified under the
aforementioned optical methods. The non-invasive video-
kymographic method based on the exploitation of digital
high-speed line-scan camera (LSC) is used. The method
has been used successfully in musical acoustics research
[31–34].

In this paper a monochord equipped with a rigid barrier
with circular cross-section profile made from rigid polyvinyl
chloride plastic is experimentally investigated. This type
of plastic has compression strength ≈ 66 MPa which is
comparable to concrete. Figure 1a shows the position of
the barrier with respect to the speaking length of the str-
ing. The experimentally obtained string vibration data are
then compared against a simplified theoretical model, pro-
posed by the authors, with the aim to deduce some benefi-
cial conclusions in addition to the direct observations. The
model assumes frequency-independent lossy ideal string
vibration. The interaction between the vibrating string and
the barrier is modeled in terms of kinematics, i.e., we study
the string motion without considering its mass nor the pos-
sible inertial and reactional forces acting between the str-
ing and the barrier while colliding. The heuristics of our
approach are directly determined by d’Alembert formula
(traveling wave solution). Modeling approach presented
here is a continuation of the work done in [34–36].

The organisation of the paper is as follows: Secs. 2 and 3
present the numerical time-stepping model of string–barrier
interaction; in Sec. 4, the experimental approach and set-
up are further clarified; Sec. 5 compares the experimental
results with the model output and presents our findings;
Sec. 6 presents the conclusions.

2. STRING VIBRATION MODEL

We consider vibration of a lossy ideal string in a single vi-
bration plane described by one-dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2
− 2α

∂u

∂t
, (1)

where u(x, t) is the transverse displacement of the string,
c =

√
T/µ is the speed of the waves traveling on the str-

ing, T is the tension and µ is the linear mass density (mass
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Figure 1. (a) Schematic of the problem studied. Triangu-
lar initial condition u(x, 0) exited at x = xe = L/4 is
shown with the solid black line, and corresponding (over-
lapped) traveling waves r(x, 0) and l(x, 0) are shown with
the thin line. The barrier is shown with the grey forma-
tion located at x = b. The resting position of the string is
shown with the horizontal dash-dotted line. String position
in the absence of the barrier u(x, P/2) after half a period
P is shown with the dashed line. LSC measurement point
x = xm is shown with the blue dash-dotted line. (b) Cross-
section profile B(x) of the barrier and its discrete samples
Bi, where Bβ = Bβ+1 = −D.

per unit length) of the string. In the context of a real string
Eq. (1) can be used as a valid approximation of thin homo-
geneous elastic string vibration under a small amplitude re-
striction. In this case wave speed c =

√
T/µ =

√
T/ρA,

where ρ is the volumetric density of string material (ny-
lon) and A is the cross-section area of a cylindrical string.
The second term on the right-hand side of Eq. (1) intro-
duces frequency-independent loss. It is easy to show that
for α > 0 all frequency components will decay ∼ e−αt.
This term can be seen as a perturbation term acting on the
wave equation in the form

∂2u

∂t2
= c2

∂2u

∂x2
, (2)

thus its linear effects on the final solution can be added sep-
arately. For now we focus on Eq. (2). It is well known that
Eq. (2) has an analytical solution—d’Alembert formula. For
an infinite string (ignoring boundary conditions for now),
for initial conditions u(x, 0) = u0(x), and ∂u(x, 0)/∂t =
0 the solution takes the following form:

u(x, t) = (u0(x− ct) + u0(x+ ct)) /2. (3)

This solution represents the superposition of two traveling
waves: u0(x − ct)/2 moving to the right (positive direc-
tion of the x-axis); and u0(x + ct)/2 moving to the left.
Function u0/2 describes the shape of these waves and stays
constant with respect to x-axis, as they are translated in op-
posite directions at speed c [37].
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In general, a wave on any arbitrary segment of the string
can be understood as a sum of two traveling waves that do
not need to be equal. It can be written

u(x, t) = r(x− ct) + l(x+ ct), (4)

where r(x − ct) is the traveling wave moving to the right
and l(x+ ct) is the traveling wave moving to the left.

A well-known time-stepping method for implementing
d’Alembert formula is the following. We discretise xt-
plane into n × m discrete samples. We discretise the x-
axis with grid spacing ∆x = L/n where L is the speak-
ing length of the string, and the t-axis with grid spacing
∆t = tmax/m, where tmax is the integration time. We
let xi = i∆x, where 0 ≤ i ≤ n and tj = j∆t, where
0 ≤ j ≤ m. Additionally, the values of ∆x, ∆t, n and m
are selected such that

c

2L
=
∆x/∆y

2L
=

√
T/µ

2L
=

√
T/ρA

2L
= f0, (5)

where f0 is the fundamental frequency of the string [37,
38]. From here it follows that uji = u(xi, t

j), rji = r(xi, t
j),

and lji = l(xi, t
j). And, by applying

rj+1
i = rji−1 and lj+1

i = lji+1, (6)

for all grid points i and j in a sorted order one gets the
translation of numerical values rji and lji propagating in op-
posite directions with respect to xi-axis. This result agrees
with d’Alembert formula (3) or (4) and can be understood
as a digital waveguide based on traveling wave decompo-
sition and use of two delay lines. The equivalence between
the model used here and the digital waveguide modeling is
shown in [37, 38].

So far we have not addressed the boundary conditions of
Eq. (2). We assume that the string is fixed at both ends.
The following boundary conditions apply:

u(0, t) = u(L, t) = 0, t ∈ [0, tmax], (7)

where tmax > 0 is the desired integration time. By ap-
plying boundary conditions (7) to general solution (4) the
reflected traveling wave located at x = 0 can be found in
the following form:

u(0, t) = r(−ct) + l(ct) = 0⇒ r(−ct) = −l(ct), (8)

and similarly for x = L:

u(L, t) = r(L− ct) + l(L+ ct) = 0⇒
⇒ l(L+ ct) = −r(L− ct). (9)

These results are discretised according to the discretisation
scheme discussed above. The traveling wave (8) reflected
from the left boundary at x = 0 takes the form

rj0 = −lj0, j ∈ [0,m], (10)

and the traveling wave (9) reflected from the right bound-
ary at x = L takes the form

ljn = −rjn, j ∈ [0,m]. (11)

In order to obtain the resulting string displacement uji , for
the selected initial and boundary conditions, a superposi-
tion of traveling waves (6), (10), and (11) is found in ac-
cordance with general solution (4)

uji = rji + lji , i ∈ [0, n], j ∈ [0,m]. (12)

Finally, there remains only the question of loss introduced
in Eq. (1). Since loss is ∼ e−αt in the continuous domain
and ∼ e−αj∆t in the discrete domain then the loss factor
per single time step ∆t is

e−α(j+1)∆t

e−αj∆t
= e−α∆t(j+1−j) = e−α∆t. (13)

We introduce loss by updating (6) to

rj+1
i = rji−1e

−α∆t and lj+1
i = lji+1e

−α∆t. (14)

3. STRING–BARRIER INTERACTION MODEL

We consider a smooth and absolutely rigid impenetrable
obstacle. The obstacle is placed near the vibrating string
so that it is able to obscure string displacement u(x, t), see
Fig. 1a. For simplicity, we select a barrier with circular
cross-section profile

B(x) = −R−D +
√
R2 − (x− b)2, (15)

where x = b is the position of the barrier along the string,
D is the vertical proximity of the barrier to the string at its
rest position, and R is the radius of the positive half circle.
The function B(x) is discretised according to the discreti-
sation scheme presented in Sec. 2. We let Bi = B(xi).
Figure 1 shows cross-section profile function B(x) and its
discretised samples Bi in addition to the barrier position
with respect to the string.

The kinematic modeling of the string–barrier interaction
is a twofold problem. First, traveling wave r(x − ct) ap-
proaching the barrier form the left side is considered. Sec-
ondly, traveling wave l(x + ct) approaching the barrier
from the right side is considered.

3.1 Reflection of traveling wave r(x− ct)

The heuristics of the following approach are strictly de-
termined by d’Alembert formula (3) or (4). Any change
in string displacement u(x, t) imposed by the barrier must
involve both traveling waves that compose it. The reflec-
tion of traveling wave r(x − ct) approaching the barrier
from the left is determined by a change in traveling wave
l(x + ct). We assume that the traveling wave l(x + ct)
resulting from the interaction first appears, or already ex-
isting one is modified, only at the point x = x∗ ≤ b, where
the amplitude of string displacement u(x∗, t) < B(x∗).
The position of this point x∗ is determined by barrier pro-
file geometry B(x). Since, the barrier is impenetrable we
must have u(x∗, t) = B(x∗) during the collision. This
condition determines the shape of the reflected traveling
wave

l̂(x∗, t) = B(x∗)− u(x∗, t). (16)
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After determining the shape of the reflected traveling wave
given by (16) it is used to modify the existing traveling
wave l(x+ ct) in the following manner:

l(x∗, t) = l(x∗, t) + l̂(x∗, t). (17)

The above modification of traveling wave l(x+ ct) simply
ensures that the resulting string displacement u(x∗, t) =
r(x∗, t) + l(x∗, t) does not penetrate the barrier B(x).

The determination of points x∗ do not require consider-
ation of points x > b. In the absence of any waves ap-
proaching from the right and for x∗ = b the string dis-
placement u(b, t) = −D (caused by the reflection pro-
cess explained in Sec. 3.2). This means that the string dis-
placement u(x, t) becomes truncated and equal to the max-
imum value of the circular barrier as the propagating wave
passes over its apex. This phenomenon is shown in Fig. 2
in the case of a short wavelength (width) inverted bell-
shaped pulse reflecting from the barrier during the first pe-
riod of vibration. Because, the barrier profile is a half-
circle with its maximum at x = b, then for x > b it holds
that u(x, t) > B(x)⇒ x 6= x∗.

The numerical implementation of this procedure is straight-
forward. We let xβ = β∆x = b (see Fig. 1) and xi∗ =
i∗∆x = x∗. Using this notation the reflected traveling
wave (16) takes the following form:

l̂ji∗ = Bi∗ − uji∗ , i ∈ [0, β]. (18)

The resulting reflection and consequent string shape ac-
cording to (12) and (17) for grid points i∗ takes the form

uji∗ = rji∗ + lji∗ , i ∈ [0, β], (19)

where
lji∗ = lji∗ + l̂ji∗ , i ∈ [0, β]. (20)

3.2 Reflection of traveling wave l(x+ ct)

The determination of the reflection of traveling wave l(x+
ct) approaching the barrier from the right side is similar
to the previous case. In fact, it is a mirror image of that
problem with the symmetry axis at x = b. However, there
is a slight difference in the region where it is necessary
to evaluate and determine points x = x∗. This differ-
ence stems from the selection of barrier cross-section pro-
file (15), namely, function B(x). Since, B(x) is a smooth
unimodal (single humped) function, it has one maximum
maxB(x) = −D at x = b. The problem arises from
the fact that one has already evaluated this point inside the
same time moment t, and used it to calculate the reflec-
tion of traveling wave r(x− ct). By using this point again
one would introduce an undesired discontinuity in the str-
ing displacement u(x, t). In principle it is not possible to
use some other closely located neighbouring point, e.g.,
x = b′ = b + ∆x (see Fig. 1). This selection, too, would
introduce a small discontinuity due to B(b) 6= B(b′), and
more importantly, in the continuous domain of real num-
bers there is no such thing as the neighbouring number be-
cause the set of real numbers is uncountable. One way of
resolving this problem is to slightly modify the discretised
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Figure 2. Reflection of traveling wave r(x − ct), shown
with the thin marked green line, from the barrier that is
shown with the grey formation. Reflected traveling wave
l̂(x+ ct) is shown with the thin blue line. Resulting string
shape u(x, t) is shown with the bold marked line. Arrows
indicate the directions of wave propagation. Bell-shaped
initial condition is shown with the dashed line. Results are
shown for three time moments, such that t1 < t2 < t3.

approximation of barrier profile Bi as shown in Fig. 1b. A
second maximum pointBβ+1 = −D is simply squeezed in
after the grid point i = β corresponding to xβ = β∆x = b.
Because∆x� 1 the overall change introduced inBi com-
pared to B(x) remains negligibly small.

This problem arises only for symmetric unimodal func-
tionsB(x) with their symmetry axis passing through a dis-
crete grid point i. Alternatively to the solution proposed
above, one could also redefine B(x) so that two neigh-
bouring grid samples i, e.g., β and β+1 would straddle the
symmetry peak, i.e., the peak would occur at the midpoint
between two samples. It must be noted that for barriers
with monotonic flat peaks this problem can be ignored.

Let us formalise the final result. Similarly to the previous
case only at the points x = x∗ ≥ b′ a reflected traveling
wave moving to the right is introduced in the following
form:

r(x∗, t) = r(x∗, t) + r̂(x∗, t), (21)

where
r̂(x∗, t) = B(x∗)− u(x∗, t). (22)

The numerical implementation, using the notation proposed
in Sec. 3.1, is the following: the resulting reflection and
consequent string shape according to (12), (21), and (22)
for grid points i∗ takes the form

uji∗ = rji∗ + lji∗ , i ∈ (β, n], (23)

where

rji∗ = rji∗ + r̂
j
i∗ and r̂ji∗ = Bi∗−uji∗ , if i ∈ (β, n]. (24)
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Figure 3. Placement of the LSC with respect to the vibrat-
ing string. Geometry of the area that is being imaged (the
line) is shown with the vertical dotted red line. Transverse
string vibration takes place in the xz-plane.

4. EXPERIMENTAL SET-UP

The transverse uniplanar displacement of a single point
along the string is measured using the high-speed LSC.
The camera produces two-dimensional images (not videos)
called the kymographs. The geometry of the digital imag-
ing sensor of the LSC differs from sensors found in com-
monly used video cameras. Usually, the video camera sen-
sor pixels are placed in rows and columns forming a grid.
The LSC sensor consists only of a single pixel array, re-
ferred here to, as the line, see Fig. 3. While filming the
camera continuously stacks these lines to form an image.
Figure 3 also shows the placement of the LSC with respect
to the string while recording.

The transverse string displacement time-series extraction
is based on the discrete one-dimensional convolution inte-
gral of the individual kymograph lines

s[i] = (p ∗ k)[i] =
∞∑

n=−∞
p[n] k[i− n], (25)

where i ∈ [1, 1024] is the pixel number in any given line,
p[i] is the image depth value in bits, k[i] is the convolution
kernel. Kernel k[i] is selected to be similar in shape to the
string (its line/image), this guarantees that convolved line
s[i] has a clear and unique maximum that will coincide
with the string position with respect to the measured line.
Thus, for any given line, pixel i corresponding to string
position

i = arg(max s[i]). (26)

This procedure is repeated for all kymograph lines. The
additional explanation and examples of applying formula
(25) can be found in [31, 32]. Figure 4a shows an ex-
ample of kymograph recording and the result of the afore-
mentioned image analysis. Figure 4b shows the calibrated
time-series where the line number is multiplied by dt =
1/44100 s since the camera is recording at audio sampling
rate of 44100 lines/s, and the line pixel number is multi-
plied by dx which value is determined by filming a high-
contrast calibration sheet with known dimensions. The ac-
curate calibration is of paramount importance because the
string–barrier system features a strong amplitude nonlin-
earity.

In this study we use the controlled and repeatable str-
ing excitation method explained in [34]. The string point
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Figure 4. (a) Kymograph of transverse string displacement
u(xm, t). String displacement tracking with line convolu-
tion method (25) is shown with the overlaid dashed line.
(b) Calibrated string displacement time-series u(xm, t)
corresponding to the kymograph above.

x = xe is displaced to a desired amplitude with the aid
of a cotton thread and abruptly released by burning the
thread. This method of string excitation produces triangu-
lar shaped initial condition shown in Fig. 1a and guarantees
uniplanar vibration of the string [34]. Figure 1a also shows
the position of measurement point xm, excitation point xe
(tip of the triangle), and the placement of the barrier along
the string’s speaking length x ∈ [0, L].

The following parameter values of the experimental set-
up shown in Fig. 1 are used: speaking length of the un-
wound nylon guitar string 1 L = 0.66 m; fundamental
frequency f0 = 196 Hz (if not stated otherwise); exci-
tation point x = xe = L/4 = 0.165 m; initial ampli-
tude A = 1.85 mm; barrier position x = b = 0.735L =
0.485 m; barrier’s proximity to the string at its rest posi-
tion D = 1.61 mm; barrier radius R = 0.1 m; loss pa-
rameter α = 9 s−1. All time and frequency-domain result
are shown or calculated for string displacement u(xm, t)
where measurement point xm = 0.41L = 0.235 m. The
spectrograms of power spectra, amplitude spectra and in-
stantaneous spectral centroid 〈f ′〉(t) are calculated using
the Fast Fourier Transform algorithm. In calculating spec-
trograms a sliding window approach, in combination with
Hanning window function are used. Here, window size
is 45 ms and window overlap value is 80%. Instantaneous
spectral centroid 〈f ′〉(t) is calculated with the window size
40 periods and overlap of 16 periods, precisely. The (ex-
ample) numerical parameters of the model presented in
Secs. 2 and 3 are the following: n = 1105,∆x ≈ 6.0·10−4
m, m = 68 796, ∆t ≈ 1.9 · 10−6 s (resulting in 130 ms of
vibration, shown in Fig. 5).

1 String set: Earthwood Light 2148. String gauge: 15. Manufacturer:
Ernie Ball Inc. Coachella, California, USA 92236
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Figure 5. Transverse vibration of the string u(xm, t).
Comparison of a typical experimental result shown with
the red line and the model shown with the marked line.
Here, the model is tuned to f0 = 240 Hz—the initial pitch
glided frequency valid for t . 0.25 s.

5. RESULTS AND DISCUSSION

Analysis of repeated experiments shows that the resulting
string–barrier dynamics can be divided into two distinct
regimes. The initial short-lasting violent regime dominated
by the high amplitude collisions and the resulting pitch
glide effect, and the more peaceful regime dominated by
the nonlinear energy transfer phenomena. The frequency-
domain results shown/discussed below indicate that the tem-
poral dividing line between these regimes t ≈ 0.25 s.

Figure 5 compares the model output to a typical experi-
mental measurement for the first 130 ms of vibration. The
shapes of waveforms u(xm, t) match up relatively well,
given the simplicity of our model and the nonlinearity of
the experiment. During the experiments it was discovered
that the monochord tuned to f0 = 196 Hz vibrated at fre-
quency 240 Hz for t . 0.25 s (violent regime). This fre-
quency lies almost precisely between 196 Hz the frequency
related to speaking length L = 0.66 m and 278 Hz the fre-
quency related to speaking length b = 0.485 m. Eventu-
ally, for t & 0.25 s (peaceful regime), the frequency settles
down to the nominal frequency of 196 Hz. Although, our
model is capable of generating pitch glided outcomes (e.g.,
for smaller D) [39] the glide is not accurately reproduced
for the actual parameters used in the experiment. The glide
in the modelled data is much smaller than in the experi-
ment. Hence, the incorrect tuning of the model in Fig. 5.
The most likely explanation for this discrepancy is the fact
that our model ignores the stiffness of the real string.

The time-domain explanation of the pitch glide is the fol-
lowing: The pitch is higher at the beginning of the vibra-
tion, because of the effective shortening of the speaking
length L due to the spatial extent of the barrier and the
string–barrier interaction. The segment of the string that
“clings” to the barrier, as it collides with it, is temporar-
ily forced not to participate in the vibration. This makes
the actively moving part of the string slightly shorter for
a fraction of the period and thus raising the average value
of the fundamental frequency. This phenomenon also ex-

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time t [s]

1

0

1

u(
x m

,t
) [

m
m

]

Model

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time t [s]

0

1

2

Fr
eq

ue
nc

y 
f [

kH
z]

60
45
30
15

0

Po
we

r [
dB

]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time t [s]

1

0

1

u(
x m

,t
) [

m
m

]

Experiment

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time t [s]

0

1

2
Fr

eq
ue

nc
y 

f [
kH

z]
f ′ , Experiment

60
45
30
15

0

Po
we

r [
dB

]

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Frequency f [kHz]

0.00

0.02

0.04

0.06

Am
pl

itu
de

 [m
m

]

| [u(xm, t)]| 3 10 3, Model
| [u(xm, t)]|, Experiment

(a)

(b)

(c)

Figure 6. Spectral analysis of the model (a) and the exper-
iment (b). Instantaneous spectral centroid 〈f ′〉(t) is shown
with the marked line. (c) Amplitude spectra of the above
time-domain signals. Spectral peak indicated by the arrow
corresponds to frequency 240 Hz.

plains the fact that a stiff string must feature more promi-
nent pitch glide. The stopped string segment is shorter in
the case of ideal string that is capable of wrapping itself
around the barrier whereas it is much harder to wrap a stiff
string around it. This means that the effective shortening
of the speaking length L is greater in the case of a stiff
string—the experiment.

Figure 6 shows the frequency-domain results for the cor-
rectly tuned model, where f0 = 196 Hz. The initial pitch
glide is clearly visible on the spectrogram of the typical ex-
periment. The glide is also confirmed by the spectral cen-
troid 〈f ′〉(t) graph for t . 0.25 s. For t ≈ 0.3 s centroid
shifts abruptly upwards, which is explained by the dimin-
ished average amplitude (less violent collisions) and the
nonlinearity of the problem. The string–barrier collisions
force energy to move from the lower partials to the higher
ones. The visual inspection of the centroid 〈f ′〉(t) graph
shows that after the abrupt change at t ≈ 0.3 s the centroid
continues to slowly creep upwards towards higher frequen-
cies as predicted by nonlinear theories. The comparison of
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the model and experimental spectrograms suggests that our
model is not suitable for sound synthesis applications.

The amplitude spectrum, shown in Fig. 6c reveals that a 0
Hz DC component is present. Most likely, it is also related
to the pitch glide phenomenon. More precisely, to the most
violent initial stages of the vibration, when the barrier is
heavily restricting the string displacement by forcing it to
a stop. Again, although the duration of this stopping lasts
for only a fraction of period it is, nevertheless, picked up by
the Fourier transform. The amplitude spectrum in Fig. 6c
shows a clear peak corresponding to the initial higher pitch
f = 240 Hz present for t . 0.25 s discussed above. This
peak is missing from the modeled result.

6. CONCLUSIONS

The experimental measurements conducted for this paper
revealed that the string–barrier dynamics features two dis-
tinct vibration regimes. The initial short-lasting violent
regime characterised by the high energy collisions and the
resulting pitch glide effect, and the more peaceful regime
characterised by the nonlinear inter-modal energy transfer.

The method of modeling string–obstacle interaction pre-
sented in this paper is probably one of the most simplified
and idealised approaches that is still able to retain scien-
tific relevance and provide a useful insight into more real-
istic problems. This was proven by its ability to predict the
string displacement, as shown in Fig. 5, quite accurately.
The idealised nature of the method guarantees numerical
robustness. The biggest mismatch between our model and
the experiment was the magnitude of the pitch glide phe-
nomenon, which for the actual experimental parameters,
was not sufficiently reproduced by our model. The most
likely explanation for this discrepancy is the fact that our
model ignores string stiffness. The proposed approach can
be applied for estimating the effect that an obstacle with
various cross-section profiles has on a string vibration—a
beneficial tool in musical acoustics research. Additionally,
the model can be used to study the effects of different ini-
tial and plucking conditions, including dynamic ones, on a
string–barrier system dynamics. Using the tools of signal
processing and sound synthesis the presented model can be
improved so to synthesise sounds of string instruments that
are equipped with nonlinearity inducing obstacles, such as,
frets, bridges, snares and nuts.

The video-kymographic experimental measurement tech-
nique used in this paper has proven to be highly reliable
for our purposes. The method was able to measure sub-
millimetre objects and displacements. Therefore it is suit-
able in applications where high spatial and temporal reso-
lutions of measurements are required.
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