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Abstract. Interactions of a vibrating string with its supports and other spatially distributed barriers play a significant role in
the physics of many stringed musical instruments. It is well known that the tone of the string vibrations is determined by the
string supports, and that the boundary conditions of the string termination may cause a short-lasting initial fundamental frequency
shifting. Generally, this phenomenon is associated with the nonlinear modulation of the stiff string tension. The aim of this paper
is to study the initial frequency glide phenomenon that is induced only by the string–barrier interaction, apart from other possible
physical causes, and without the interfering effects of dissipation and dispersion. From a numerical simulation perspective, this
highly nonlinear problem may present various difficulties, not the least of which is the risk of numerical instability. We propose a
numerically stable and a purely kinematic model of the string–barrier interaction, which is based on the travelling wave solution of
the ideal string vibration. The model is capable of reproducing the motion of the vibrating string exhibiting the initial fundamental
frequency glide, which is caused solely by the complex nonlinear interaction of the string with its termination. The results presented
in this paper can expand our knowledge and understanding of the timbre evolution and the physical principles of sound generation
of numerous stringed instruments, such as lutes called the tambura, sitar and biwa.

INTRODUCTION

It is well known that the fundamental frequency of a vibrating string is determined by the type of the string termination.
Pitch glide is a short-lasting phenomenon where at the beginning of the string vibration the fundamental frequency
is slightly larger then the nominal (desired) value. This effect can be clearly audible in some instruments, such as in
the Finnish kantele [1]. Generally, this phenomenon is associated with and discussed in context with the nonlinear
modulation of stiff string tension [2, 3]. This paper investigates the pitch glide that is solely generated by the nonlinear
string–barrier interaction, apart from other possible physical causes, and without the interfering effects of dissipation
and dispersion.

The problem at hand is twofold. First, one needs to solve the highly nonlinear string–barrier collision problem.
Second, one needs to accurately estimate the short-lasting and relatively weak effect of the pitch glide. Much effort has
been devoted to modelling the collision dynamics of a vibrating string with a distributed unilateral constraint during
the past decades. Over the years many authors have solved this problem using different approaches. The problem
was considered by Schatzman [4], Burridge et al. [5], and Cabannes [6], who used the method of characteristics
and assumed that the string does not lose energy when it hits an obstacle. Krishnaswamy and Smith [7], Han and
Grosenbaugh [8], Bilbao and Torin [9, 10], Chatziioannou and Walstijn [11], and Taguti [12] used a finite difference
method to study the string interaction with the barrier. Vyasarayani, et al. [13] described the movement of the sitar
string with a set of partial differential equations. Rank and Kubin [14], Evangelista and Eckerholm [15], and Siddiq
[16] used a waveguide modelling approach to study the plucked string vibration with nonlinear limitation effects.

However, not much attention has been dedicated to the study of initial pitch glides that are induced by the same
barriers studied in the above papers. Although, few reports of the numerical model’s ability to reproduce the effect

xxx

1



have been previously published [9, 17]. The aim of the current work is to briefly analyse these results.
The organization of the paper is as follows. In Sec. ”String–barrier collision model”, problem description and

numerical model are presented. In Sec. ”Estimation of fundamental frequency”, a novel method for estimating the
pitch glide is presented and briefly explained. Sections ”Results” and ”Conclusions” present the main results and
conclusions.

STRING–BARRIER COLLISION MODEL

The string–barrier interaction problem is solved using a method based on the d’Alembert’s travelling wave solution,
making it numerically stable and accurate. The numerical model is best explained in [17, 18]. Problem is studied in a
single transverse polarization. Figure 1 a shows the schematic drawing of the problem at hand.
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FIGURE 1. (a) The scheme of the problem. The travelling waves ur and ul, shown for two different time moments (unmarked solid
lines). The form of the string (solid lines marked with circles). The position of the barrier is shown by the grey formation. The
profile of the barrier is described by the function B(x). (b) Sawari located at the nut of the Chikuzen biwa neck.

In order to explore only the effect of the influence of the barrier on the string motion, and thus on the produced
pitch glide, we eliminate the possible contribution that the lossy and dispersive wave propagation may introduce to
this problem. The wave equation for the lossless ideal string is in the form

∂2
t u = c2∂2

xu, (1)

where u(x, t) is the string displacement, c =
√

T/µ is the speed of the travelling waves, T is the tension, and µ is the
linear mass density of the string.

We normalise Eq. (1) by choosing c = 1 and by introducing the following dimensionless variables:

t ⇒ t/P0, x⇒ x/λ, u⇒ u/λ, (2)

where P0 is the fundamental period and λ is the corresponding wavelength. The speaking length L of the string is
chosen to be a half of the wavelength, i.e., L = 0.5. This ensures that the fundamental frequency f = 1, since for
Eq. (1) it holds that f = c/(2L) = c/λ.

The barrier is considered to be absolutely rigid. Ensuring the conservation of energy of the system. Additionally,
it is selected to have a parabolic cross-section profile. Parabola is described by the function B(x) = (2R)−1x2, where
R is the radius of the barrier’s curvature at x = 0. The selection of a parabolic barrier is inspired by the nut of the
Chikuzen biwa called sawari, shown in Fig. 1 b. Position of the barrier relative to the string is shown in Fig. 1 a.

The string plucking condition is introduced as follows. We assume that at the point x = l = 0.8L the emerging
travelling wave û is of the form

û(t) =

{
a (t/t∗)2 exp 2 (1 − t/t∗) , for 0 6 t 6 t∗,
a, for t∗ < t < ∞, (3)

where a is the amplitude parameter, t∗ is the duration of the string excitation. In our case t∗ = 2, i.e., the excitation
prolongs for two periods P. It can be shown that plucking condition (3) corresponds to a bell-shaped initial force
cf. [18]. The string displacement time series u(l, t) that is used below is ”recorded” at the plucking coordinate x = l.

ESTIMATION OF FUNDAMENTAL FREQUENCY

The pitch glide is numerically estimated using a method introduced by Peterson et al. in [19], where it is also shown
that this approach is more accurate and faster compared to other methods that are based on the autocorrelation function
(ACF) or the fast Fourier transform algorithm (FFT). Following is a short overview of the method.
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The fundamental period P0 is assumed to correspond to the shift that leads to the smallest difference, i.e., largest
similarity, of the examined time series and its shifted copy. We define a functional that measures similarity of a given
function and its shifted counterpart. This functional is used as an objective function to a minimization problem which
solution corresponds to the fundamental period of the given function [19].

A similarity measure between the function u(t) = u(l, t) and its shifted counterpart u(t + τ) is selected as follows:

U[u](τ) =

∫
[u(t + τ) − u(t)]2 dt =

∫
u2(t + τ)dt +

∫
u2(t)dt − 2 · ACF[u](τ), (4)

where ACF[u](τ) =
∫

u(t)u(t + τ)dt is ACF of u(t), and u2(ξ) ≡ [u(ξ)]2. In (4) the integration interval depends on the
type of functions: for periodic functions the integration is carried out over an interval with the length of a period and
for functions on a finite interval over a subinterval where u(t + τ) and u(t) are defined simultaneously. The functional
U is an unbiased measure both for periodic and for functions on finite interval. Clearly, the measure U has a local
minimum at the fundamental period and we can use it as objective function for finding the fundamental period estimate
of a quasiperiodic function u = u(t): P0,est[u] = argminτ>0U[u](τ), where P0 = argminτ>0U(τ) means that P0 is a
positive minimum point of a function U(τ) [19]. In current work, the time series u(t), to be evaluated, is broken up
into short windows (frames) of finite size, which overlap each other. The fundamental period P0 is estimated for each
of them. Fundamental frequency f is found as f = 1/P0.

In general, the computational complexity of finding the fundamental period of a signal is O[(n−bP0c)bP0c], where
n and P0 are the length and the fundamental period of the signal, respectively. Compare this to the computational
complexity O(n log n) of the FFT [19]. A C library libfperiod and Python package iocbio.fperiod based on the
aforementioned similarity measure for estimating the fundamental period are made publicly available1.

RESULTS

Figures 2 a and 2 b show the results. The results are calculated for window size t = 4P and for overlap value of 3P.
The estimation of fundamental frequency starts after the force stops acting on a string, i.e., for t > t∗ = 2P.
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FIGURE 2. (a) Pitch as a function of dimensionless time, shown for four amplitude parameter a values, and for barrier radius
R = 0.7. (b) Pitch as a function of dimensionless time, shown for four values of barrier radius R, and for amplitude parameter
a = 0.03 (A ≈ 2 · 10−3).

Figure 2 a shows the barrier induced pitch glide for four values of the amplitude parameters a and for the resulting
initial string displacement amplitudes A. A typical pitch gliding behaviour is recognizable, where with the passage of
time the pitch value asymptotically approaches the nominal frequency f = 1. One can see that for greater amplitude
the pitch difference from the nominal value is greater, especially at the beginning of the string vibration. More intensive
pitch glide happens during the first 120 periods, approximately. After 120 periods have elapsed, the pitch differs from
the nominal value by less than 0.1%.

Figure 2 b shows the pitch glide for four values of the parabolic barrier’s apex radius R. A qualitatively similar
result is seen here, with exception of shorter period of the intense pitch gliding, which prolongs for 100 periods,

1https://code.google.com/p/iocbio/
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approximately. The effect is greater for barriers with greater value of radius R. In both presented cases, a closer
inspection of the results reveals that the function describing the pitch glide varies in a highly non-trivial manner –
indeed, it can not be described by a simple smooth exponentially decaying function. Additionally, the effect of the
plucking coordinate x on the pitch was investigated. No significant effect was found.

The simplest physical time domain explanation for the presented results is the following. The pitch is higher at
the beginning of the vibration, because of the effective shortening of the speaking length of the string due to the spatial
extent of the barrier, and the interaction of the string with the barrier. The section of the string that ”binds” or ”clings”
to the barrier, as it collides with it, is temporarily forced not to participate in the vibration process. This makes the
actively moving part of the string slightly shorter, for a small fraction of the duration of the period, and thus raising
the value of the fundamental frequency slightly higher.

CONCLUSIONS

The physical effect of the string–barrier interaction on the initial pitch glide, apart from the interfering effects of
dissipation and dispersion, was investigated by means of a numerical method based on the d’Alembert solution to
the wave equation [17, 18]. It was found that, indeed, the rigid barrier induces a short-lasting initial fundamental
frequency glide especially for bulky barriers and larger string vibration amplitudes. The presented results allow to
estimate the exact proportion of the pitch glide phenomenon that is caused solely by the string–barrier interaction and
the barrier geometry, apart from other factors, such as stiffness of the string.
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