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ABSTRACT

This paper presents a kinematic time-stepping modeling approach

of the ideal string vibration against a rigid obstacle. The prob-

lem is solved in a single vibration polarisation setting, where the

string’s displacement is unilaterally constrained. The proposed nu-

merically accurate approach is based on the d’Alembert formula.

It is shown that in the presence of the obstacle the lossless string

vibrates in two distinct vibration regimes. In the beginning of the

nonlinear kinematic interaction between the vibrating string and

the obstacle the string motion is aperiodic with constantly evolv-

ing spectrum. The duration of the aperiodic regime depends on the

obstacle proximity, position, and geometry. During the aperiodic

regime the fractional subharmonics related to the obstacle position

may be generated. After relatively short-lasting aperiodic vibra-

tion the string vibration settles in the periodic regime. The main

general effect of the obstacle on the string vibration manifests in

the widening of the vibration spectra caused by transfer of funda-

mental mode energy to upper modes. The results presented in this

paper can expand our understanding of timbre evolution of numer-

ous stringed instruments, such as, the guitar, bray harp, tambura,

veena, sitar, etc. The possible applications include, e.g., real-time

sound synthesis of these instruments.

1. INTRODUCTION

Interaction and collision of a vibrating string with spatially dis-

tributed obstacles, such as fretboard or bridge, plays a signifi-

cant role in the mechanics of numerous stringed musical instru-

ments. One elegant example is the Medieval and Renaissance bray

harp which has small bray-pins which provide a metal surface for

the vibrating string to impact, increasing the upper partial content

in the tone and providing a means for the harp to be audible in

larger spaces and in ensemble with other instruments [1]. It is

evident that for realistic physics-informed modeling of this instru-

ment such nonlinearity inducing interactions need to be properly

examined and understood.

The string–obstacle interaction modeling is a long-standing

problem in musical acoustics. In the early twentieth century, Ra-

man was first to study the problem and identify the veena bridge as

the main reason for distinctive sounding of the tambura and veena.

He noted that all string frequencies in these instruments are ex-

cited irrespective of the location of the excitation thereby violat-

ing the Young-Helmholtz law which states that the vibrations of a

string do not contain the natural modes which have a node at the

point of excitation. He notes that this is caused by the geometry

of the bridge but did not explain the reason behind the inapplica-

bility of the Young-Helmholtz law [2]. Since then, much effort

has been devoted to modeling the collision dynamics of a vibrat-

ing string with various obstacles or boundary barriers. Over the

years many authors have solved this problem using different ap-

proaches. The problem was considered by Schatzman [3] and Ca-

bannes [4], who used the method of characteristics and assumed

that the string does not lose energy when it hits an obstacle. Bur-

ridge et al. [5] assumed an inelastic constraint where the string

is losing kinetic energy during contact. Ducceschi et al. [6], Kr-

ishnaswamy and Smith [7], Han and Grosenbaugh [8], Bilbao et

al. [9], Bilbao [10], Chatziioannou and Walstijn [11], and Taguti

[12] used a finite difference method to study the string interaction

with the obstacle. Issanchou et al. [13], van Walstijn and Bridges

[14], and van Walstijn et al. [15] used a modal analysis approach.

Vyasarayani et al. [1], Mandal and Wahi [16], and Singh and Wahi

[17] described the movement of the sitar string with partial differ-

ential equations or sets of partial differential equations. Rank and

Kubin [18], Evangelista and Eckerholm [19], and Siddiq [20] used

a waveguide modelling approach to study the plucked string vibra-

tion with nonlinear limitation effects.

This paper proposes an idealised approach for modeling the

nonlinear string–obstacle interaction. We consider lossless ideal

string vibration and assume that the obstacle is absolutely rigid.

The interaction between the vibrating string and the obstacle is

modeled in terms of kinematics, i.e., we study the string motion

without considering its mass nor the possible inertial and reac-

tional forces acting between the string and the obstacle during the

collisions. The heuristics of our approach is directly determined

by the d’Alembert formula (travelling wave solution). The results

presented here are a continuation of the work published in [21].

The organisation of the paper is as follows. In Sec. 2, the string

vibration modeling is explained. In Sec. 3 the problem description

and the kinematic numerical model of string–obstacle interaction

is presented and explained. Section 4 presents the results and anal-

ysis of three case studies, where the effects of the obstacle geome-

try, proximity, and position are considered. In Sec. 5 the presented

results and the accuracy and efficiency of the numerical model are

briefly commented on. Section 6 presents the main results and

conclusions.

2. MODELING STRING VIBRATION

Let us consider the vibration of lossless ideal string in a single

vibration polarisation setting. The one-dimensional equation of

motion, called the wave equation, is in the following form:

∂2u

∂t2
= c2

∂2u

∂x2
, (1)

where u(x, t) is the transverse displacement of the string, c =
√

T/µ is the speed of the waves travelling on the string, where

T is the tension and µ is the linear mass density of the string,

having the dimension [kg/m]. In the context of a real string Eq. (1)
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can be used as an approximation of thin homogeneous elastic (and

lossless) string vibration under a small amplitude restriction. In

this case wave speed c =
√

T/(ρA◦), where ρ is the volumetric

density, A◦ = πr2 is the cross-section area of a cylindrical string,

and T is the tension. Equation (1) is studied, here, in a normalised

and dimensionless form for increased clarity. We normalise the

fundamental frequency f0 by setting c = 1 and by introducing the

following dimensionless variables:

t =
T

P
, x =

X

λ
, u =

U

λ
, (2)

where P is the fundamental period and λ is the corresponding

wavelength. The dimensional quantities T , X , and U are the

time, space, and string displacement, respectively. Additionally,

the speaking length L of the string is chosen to be a half of the

wavelength, i.e., L = 1/2 [d. u.] (dimensionless units). This en-

sures that the fundamental frequency f0 = 1 because for Eq. (1) it

holds that

f0 =
c

2L
=

c

λ
. (3)

In order to further simplify the frequency domain analysis pre-

sented in Sec. 4 the following initial condition is selected: at t = 0
the string is freely released and the initial displacement is selected

to be equal to the shape of the fundamental mode

u0(x) = u(x, 0) = A sin 2πx, x ∈ [0, L], (4)

∂

∂t
u(x, 0) = 0, x ∈ [0, L], (5)

where A = 1 is the amplitude. This selection results in a sinu-

soidal (standing wave) vibration of all string points with funda-

mental frequency f0 = 1 determined by the normalised Eq. (1).

Figure 1 shows the initial condition (4).

It is well known that the Eq. 1 has an analytical solution known

as the d’Alembert formula. For infinite string (ignoring boundary

conditions for now) and for initial conditions (4), (5) the solution

takes the following form:

u(x, t) =
1

2
(u0(x− ct) + u0(x+ ct)) . (6)

This solution represents a superposition of two travelling waves:

u0(x−ct)/2 moving to the right (positive direction of the x-axis),

and u0(x+ct)/2 moving to the left. The function u0/2 describing

the shape of these waves stays constant with respect to x-axis, as

they are translated in opposite directions at speed c = 1.

In the general case and under our assumptions a wave on any

arbitrary segment of the string can be understood as a sum of two

travelling waves that do not need to be equal. This means that one

can write

u(x, t) = r(x− ct) + l(x+ ct), (7)

where r(x − ct) is the travelling wave moving to the right and

l(x + ct) is the travelling wave moving to the left. Conveniently,

one-dimensional advection equations

∂r

∂t
+ c

∂r

∂x
= 0, (8)

∂l

∂t
− c

∂l

∂x
= 0, (9)

have similar general solutions. The travelling wave r(x−ct), on its

own, is also a solution to Eq. (8) and the travelling wave l(x+ ct)

is a solution to Eq. (9). This result is not surprising because Eq. (1)

can be factored into
[

∂

∂t
− c

∂

∂x

] [

∂

∂t
+ c

∂

∂x

]

u = 0. (10)

Advection Eqs (8) and (9) are used below to numerically model

the propagation of travelling waves. The finite difference method

is used to approximate the solutions of these equations.

We discretise xt-plane into n × m discrete samples using a

grid with equal step sizes in x and t directions. We discretise the x-

axis with grid spacing ∆x = L/n and the t-axis with grid spacing

∆t = ∆x = tmax/m, where m = 2n. We let xi = i∆x, where

0 ≤ i ≤ n and tj = j∆t, where 0 ≤ j ≤ m. From here it

follows that uj
i = u(xi, t

j), rji = r(xi, t
j), and lji = l(xi, t

j). A

combination of step forward finite difference (FD) approximations

of first order derivatives

∂u

∂t
≈

uj+1

i − uj
i

∆t
,

∂u

∂x
≈

uj
i+1 − uj

i

∆x
, (11)

and step backwards FD approximations

∂u

∂t
≈

uj
i − uj−1

i

∆t
,

∂u

∂x
≈

uj
i − uj

i−1

∆x
, (12)

are used to approximate Eqs (8) and (9). Resulting FD approxima-

tions are in the following form:

rj+1

i − rji + c
∆t

∆x
(rji − rji−1) = 0, (13)

lj+1

i − lji − c
∆t

∆x
(lji+1 − lji ) = 0. (14)

Because c = 1 and ∆x = ∆t, in our case, the Courant number

c∆t/∆x = 1 and the above expressions are simplified

rj+1

i = rji−1, (15)

lj+1

i = lji+1. (16)

By applying these rules for all grid points i and j one gets a simple

translation of numerical values rji and lji propagating in opposite

directions with respect to the x-axis (i-axis). This result agrees

with the d’Alembert formula (7) and can be understood as a digi-

tal waveguide based on travelling wave decomposition and use of

delay lines. The equivalence between FD approximation used here

and digital waveguide modeling is shown in [22].

So far we have not addressed the boundary conditions of Eq. (1).

We assume that the string is fixed at both ends. The following

boundary conditions apply:

u(0, t) = u(L, t) = 0, t ∈ [0, tmax], (17)

where tmax = 10P is the maximum integration time (size of the

temporal domain). By applying boundary conditions (17) to the

general solution (7) of the initial equation one finds for x = 0 the

reflected travelling wave in the following form:

u(0, t) = r(−ct) + l(ct) = 0 ⇒ r(−ct) = −l(ct), (18)

and similarly for x = L:

u(L, t) = r(L− ct) + l(L+ ct) = 0 ⇒

⇒ l(L+ ct) = −r(L− ct). (19)
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These results are discretised according to the FD discretisation

scheme discussed above. The travelling wave (18) reflected from

the left boundary at x = 0 is thus

rj0 = −lj0, j ∈ [0,m], (20)

and the travelling wave (19) reflected from the right boundary at

x = L is

ljn = −rjn, j ∈ [0,m]. (21)

In order to obtain the resulting string displacement uj
i , for the se-

lected initial and boundary conditions, a superposition of travel-

ling waves (15), (16), (20), and (21) is found in accordance with

general solution (7)

uj
i = rji + lji , {i, j} ∈ [0, n]× [0,m]. (22)
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Figure 1: Top: Schematic of the problem studied. The initial con-

dition (4) and the corresponding travelling waves are presented.

The obstacle is shown with the grey formation at x = b. The rest-

ing position of the string is shown with the horizontal dash-dotted

line. Bottom: The cross-section profile B(x) of the rigid parabolic

obstacle and its discrete samples Bi, where Bβ = Bβ+1 = −D.

3. STRING–OBSTACLE INTERACTION KINEMATICS

Let us consider a smooth and absolutely rigid impenetrable obsta-

cle. The obstacle is placed near the vibrating string so that it is

able to obscure string’s displacement u(x, t). We select an obsta-

cle with parabolic cross-section profile

B(x) = −

[

(x− b)2

2R
+D

]

, (23)

where x = b is the position of the obstacle along the string, D is

the vertical proximity of the obstacle to the string at its rest posi-

tion, and R is the curvature radius of parabola at its apex. The

function B(x) is discretised according to the FD discretisation

scheme presented in the previous Section. We let Bi = B(xi).
Figure 1 shows the schematic drawing of the problem studied, the

cross-section profile function B(x) of the obstacle, and its discre-

tised samples Bi.

The kinematic modeling of the string–obstacle interaction is

a twofold problem. First, one needs to consider travelling wave

r(x− ct) approaching the obstacle form the left side. Second, one

considers the travelling wave l(x + ct) approaching the obstacle

from the right side.

3.1. Reflection of travelling wave r(x− ct)

The heuristics of the following approach is strictly determined by

the d’Alembert formula (6) or (7). Any change in string displace-

ment u(x, t) imposed by the obstacle must involve both travelling

waves. The reflection of the travelling wave r(x−ct) approaching

the obstacle from the left is determined by a change in the travel-

ling wave l(x+ ct). We assume that the travelling wave l(x+ ct)
resulting from the interaction first appears, or already existing one

is modified, only at the point x = x∗ ≤ b, where the amplitude of

string displacement u(x∗, t) < B(x∗), i.e., the string attempts to

penetrate the obstacle. The position of this point x∗ is determined

by the obstacle profile geometry B(x). Because, the obstacle is in

fact impenetrable we must have u(x∗, t) = B(x∗) at the moment

of collision. This condition determines the shape of a reflected

travelling wave

l̂(x∗, t) = B(x∗)− u(x∗, t). (24)

Once one has determined the shape of the reflected travelling wave

(24) for given time moment. It is used inside the same time mo-

ment as a travelling wave l(x+ct) or to modify the already existing

travelling wave moving to the left in the following manner:

l(x∗, t) = l(x∗, t) + l̂(x∗, t). (25)

The above modification of the travelling wave l(x+ct) simply en-

sures that the resulting string displacement u(x∗, t) = r(x∗, t) +
l(x∗, t) does not geometrically penetrate the obstacle during the

collision.

In determining the points x∗ one does not need to consider

points x > b. In the absence of any waves approaching from

the right and for x∗ = b the string displacement u(b, t) = −D
(caused by the reflection process explained in the next Subsection).

This means that the string displacement u(x, t) becomes truncated

and equal to the maximum value of the obstacle as the propagating

wave passes over its apex. This phenomenon is shown in Fig. 2

in the case of a short wavelength bell-shaped pulse reflecting from

the obstacle during the first period of string vibration. Because the

obstacle profile is an inverted parabola with its maximum at x = b
then for x > b it holds that u(x, t) > B(x) ⇒ x 6= x∗.

Numerical implementation of the procedure is straightforward.

We let xβ = β∆x = b (see Fig. 1) and xi∗ = i∗∆x = x∗. Using

this notation the reflected travelling wave (24) takes the following

form:

l̂ji∗ = Bi∗ − uj
i∗, i ∈ [0, β]. (26)

The resulting reflection and consequent string shape according to

(22) and (25) for grid points i∗ becomes

uj
i∗ = rji∗ + lji∗, i ∈ [0, β], (27)

where

lji∗ = lji∗ + l̂ji∗, i ∈ [0, β]. (28)
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Figure 2: Reflection of travelling wave r(x − ct), shown with the

thin green line, from the obstacle that is shown with the grey for-

mation. The reflected travelling wave l̂(x + ct) is shown with the

thin blue line. Arrows indicate the directions of wave propagation.

Bell-shaped initial condition is shown with the dashed line.

3.2. Reflection of travelling wave l(x+ ct)

The determination of the reflection of travelling wave l(x + ct)
approaching the obstacle from the right side is similar to the pre-

vious case. In fact, it is a mirror image of that problem with sym-

metry axis at x = b. However, there is a slight difference in the

region where it is necessary to evaluate and determine the points

x = x∗. This difference stems from the selection and mathemat-

ical definition of the obstacle cross-section profile (23), namely,

the function B(x), being a unimodal function, has one maximum

maxB(x) = −D at x = b. The problem arises from the fact

that one has already evaluated this point inside the same time mo-

ment t and used it to calculate the reflection of travelling wave

r(x − ct). By using this point again one would introduce a dis-

continuity in the string displacement u(x, t). In principle it is not

possible to use some other closely located neighbouring point, e.g.,

x = b′ = b+∆x (see Fig. 1). This selection, too, would introduce

a small discontinuity due to B(b) 6= B(b′), and more importantly,

in a continuous domain of real numbers there is no such thing as

a neighbouring number (point) because one can always find in-

finitely many numbers between any two real numbers. One way

of resolving this problem is to slightly modify the discretised ap-

proximation of the obstacle profile Bi as shown in Fig. 1. One

simply squeezes in a second maximum point Bβ+1 = −D after

grid point i = β corresponding to xβ = β∆x = b. Because

∆x ≪ 1 the overall change introduced in Bi compared to B(x)
remains negligibly small.

Let us formalised the result. Similarly to the previous case

only at the points x = x∗ ≥ b′ ≃ b, where by definition and

during the collision u(x∗, t) < B(x∗), a reflected travelling wave

moving to the right is introduced or existing one is modified

r(x∗, t) = r(x∗, t) + r̂(x∗, t), (29)

where

r̂(x∗, t) = B(x∗)− u(x∗, t). (30)

Numerical implementation, using the notation proposed in the

previous Subsection, takes the following form: the resulting reflec-

tion and consequent string shape according to (22), (29), and (30)

for grid points i∗ is

uj
i∗ = rji∗ + lji∗, i ∈ (β, n], (31)

where

rji∗ = rji∗ + r̂ji∗ and r̂ji∗ = Bi∗ − uj
i∗, if i ∈ (β, n], (32)

4. RESULTS

Next, three case studies are considered. The effects of varying the

values of the obstacle radius R (Sec. 4.1), obstacle proximity D
(Sec. 4.2), and position b (Sec. 4.3), while keeping other system

parameters constant, on the string vibration are analysed. Table 1

displays the values of parameters used in the case studies.

Table 1: Values of the parameters used in the case studies. The pa-

rameter that is being varied is indicated with the grey background.

Sec.
Radius R

[d. u.]
Proximity D [d. u.]

Position b
[d. u.]

4.1
1 · 10−5

6 · 10−3 0.5u0(b) = 0.29 L/5 = 1/10

4.2 3 · 10−3 0.3u0(b) = 0.26
0.1u0(b) = 0.09

L/3 = 1/6

4.3 4 · 10−3 0.35u0(b) = 0.30
0.35u0(b) = 0.21

L/3 = 1/6
L/5 = 1/10

The proximity D of the obstacle to the string at its rest posi-

tion is expressed in terms of the initial condition (4). Namely, the

string displacement u0(x) = u(x, 0) at obstacle location x = b
(see Fig. 1). This is done in order to make the results compa-

rable to each other. All frequency domain result are calculated

using time series of the string displacement u(x, t) recorded at

x = xr = 0.47L = 0.235. This point is close to a node at

x = L/2 shared by all even numbered modes (harmonics or over-

tones). The reader must keep in mind that this selection results

in relatively small amplitude values of even numbered modes in

the spectra presented below. On the other hand, this selection en-

sures that the amplitude of fundamental mode is nearly unity for

the linear case where the obstacle is absent. This, in turn, will aid

in drawing the conclusions. The spectrograms of power spectra,

amplitude spectra, spectral centroid 〈f〉, and instantaneous spec-

tral centroid 〈f ′〉(t) are calculated using fast Fourier transform al-

gorithm which is based on the Fourier transform. In calculating

spectrograms a sliding window approach, in combination with the

Hanning window function, is used. Here, window size t = 3P and

window overlap value is 50% of the window size. Instantaneous

spectral centroid 〈f ′〉(t) is also calculated using the windowing

approach with window size t = P and with window overlap value

70% of the window size. Video animations of the string vibrations

for all case studies presented below can be downloaded at the ac-

companying web-page of this paper1. The web-page also includes

an additional example of a symmetric case where the obstacle is

positioned at the midpoint of the string at b = L/2.

4.1. Effect of the obstacle radius

Figure 3 shows the influence of varying the value of obstacle ra-

dius R on the string shape u(x, t) for the duration of the first period

1http://www.ioc.ee/~dima/dafx17.html
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Figure 3: Stroboscopic plot of the string displacement during the

first period of vibration where t ∈ [0, P ]. Showing 68 time steps.

The thickness of the lines is proportional to the direction of time

flow. The obstacles with radius R = 1 · 10−5 (top) and R =
6 · 10−3 (bottom) are positioned at b = L/5 and D = u0(b)/2.

only. The results of frequency domain analysis of the resulting vi-

bration are shown in Fig. 4. Visual inspection of the time series

u(xr, t) reveals that the string vibrates in two distinct vibration

regimes (generally true for all presented case studies). The ini-

tial strong influence of the obstacle is manifested in the constantly

evolving spectrum that prolongs for t = tp. We call this regime

the aperiodic regime. After t = tp the string vibration settles in

the periodic regime, where the spectrum remains constant. Time

moment tp corresponds to the latest time instance where point x∗

is determined.

During the aperiodic regime the value of instantaneous spec-

tral centroid grows with the time (generally true for all presented

case studies) resulting in the value of spectral centroid that is one

octave (two times) greater compared to the linear case where the

obstacle is absent (in linear case 〈f ′〉(∞) = 〈f〉 = f0 = 1).

The growth of the value of spectral centroid is driven by nonlinear

widening of the spectrum caused by transfer of the fundamental

mode energy to higher modes. For both presented cases and ac-

cording to the amplitude spectra, shown in Fig. 4, approximately

65% of initial fundamental mode amplitude A = 1 is redistributed

to and between the higher modes. Mutual comparison of the cases

shows that the case with larger radius R results in approximately

one-third shorter-lasting aperiodic regime and slightly higher value

of spectral centroid. A relatively large change in the obstacle ra-

dius R has a moderate effect (compared to the other case studies)

on the final string vibration—at least for the given parameter val-

ues. This is best seen in roughly equal amplitude spectra.

4.2. Effect of the obstacle proximity

Figure 5 shows the influence of varying the value of the obstacle

proximity D on the string shape u(x, t) for the duration of the first

period only. The results of frequency domain analysis of the vi-

bration are shown in Fig. 6. Inspection of the aperiodic regime
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Figure 4: Top: Time series u(xr, t) shown for two values of the

obstacle radius R. Onset time tp of the periodic regime shown

with the colour-coded dashed line. Middle: Power spectrograms.

Instantaneous spectral centroid 〈f ′〉 is shown with the solid red

line marked with bullets. Onset time tp of the periodic regime is

shown with the dashed white line. Bottom: Amplitude spectra in

the periodic regimes where t ∈ [⌈tp⌉, tmax]. Spectral centroid 〈f〉
is shown with the colour-coded dash-dotted line.

of both cases shows that a short-lasting large amplitude fractional

subharmonic at f = 1.5 is generated. This partial does not sur-

vive the aperiodic regime. Based on the relationship (3) one can

conclude that this frequency is related to the fact that the obstacle

is promoting a node at b = L/3 by effectively dividing the string

into two vibrating segments with lengths L/3 and 2L/3.

Comparison of the periodic regime vibration to the linear case

shows that the resulting value of spectral centroid is increased

by almost four to five octaves depending on the case. As in the

previous case study the string–obstacle interaction has widened

the spectrum at the expense of the fundamental mode. The re-

sulting fundamental mode amplitude, for both cases, is approxi-

mately 0.02. This means that during the aperiodic regime more

than 97% of initial mode amplitude A = 1 is redistributed to

higher modes. The greatest relative and absolute change in mode

amplitude, caused by the reduction of the distance D between the

string and the obstacle, is seen for the third and tenth modes. The

amplitude of third mode is grown two times from approximately

0.02 to approximately 0.04. The amplification of the third mode is
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related to the obstacle position b discussed above. Mutual compar-

ison of the presented cases shows that the case where the obstacle

is closer to the string results in approximately three times longer-

lasting aperiodic regime and in the value of spectral centroid that

is greater by an octave.
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Figure 5: Stroboscopic plot of the string displacement during the

first period of vibration where t ∈ [0, P ]. Showing 68 time steps.

The thickness of the lines is proportional to the direction of time

flow. The obstacle with radius R = 3 · 10−3 is positioned at

b = L/3. The obstacle with proximity D = 0.3u0(b) (top) and

D = 0.1u0(b) (bottom) are presented.

4.3. Effect of the obstacle position along the string

Figure 7 shows the influence of varying the value of the obstacle

position b on the string shape u(x, t) for the duration of the first

period only. The results of frequency domain analysis of the vi-

bration are shown in Fig. 8. Inspection of the aperiodic regime

shows, similarly to the previous case study, that short-lasting sub-

harmonic at f = 1.5 and at f = 1.25 are generated for the cases

where b = L/3 and b = L/5, respectively. The cause for these

large amplitude partials is the same as discussed in the previous

case study.

Comparison of the periodic regime to the linear case shows

that the resulting value of spectral centroid has increased by ap-

proximately three octaves, in both cases. In contrast to the previ-

ous case study the inspection of the spectra in the periodic regime

shows no significant amplification of third and fifth modes related

to the obstacle positions b. In fact we see a significant reduction of

the fifth mode as we move the obstacle closer to the string edge

(x = 0). In addition to the nonlinearity, the absence of these

modes may be explained by obstacle’s ability (related to the pro-

file geometry) to elongate the segments of travelling waves that

kinematically reflect from it, see Fig. 2 [21]. If this is the case the

obstacle is redistributing the energy of these modes to neighbour-

ing lower modes. Also, the amplitudes of these expected modes

may be masked by a process of constant and progressive trimming

of the amplitudes of travelling waves during the aperiodic regime

discussed and shown in Sec. 3.1 and Fig. 2, respectively. This re-

sult is to demonstrate that, when dealing with nonlinear systems,
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Figure 6: Top: Time series u(xr, t) shown for two values of the

obstacle proximity D. Onset time tp of the periodic regime shown

with the colour-coded dashed line. Middle: Power spectrograms.

Instantaneous spectral centroid 〈f ′〉 is shown with the solid red

line marked with bullets. Onset time tp of the periodic regime

is shown with the dashed white line. Subharmonic at f = 1.5
is shown with the bold arrow. Bottom: Amplitude spectra in the

periodic regime where t ∈ [⌈tp⌉, tmax]. Spectral centroid 〈f〉 is

shown with the colour-coded dash-dotted line.

each problem needs to be studied on a case by case basis.

Mutual comparison of presented cases shows that the final

value of spectral centroid differs by half of an octave. The case

where the obstacle is positioned closer to the string edge results

in approximately two times longer-lasting aperiodic regime. The

resulting fundamental mode amplitude is approximately 0.05 for

b = L/3 and 0.1 for b = L/5 meaning that during the aperiodic

regime approximately 90 to 95% of initial mode amplitude A = 1
is redistributed between the higher modes.

5. DISCUSSION

The method of modeling the string–obstacle interaction presented

in this paper is probably the most simplified and idealised approach

that is still able to retain scientific relevance and provide a useful

insight into more realistic problems. The idealised nature of the

method guarantees numerical accuracy and allows for efficient and

simple implementation. This fact cannot be ignored when dealing
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Figure 7: Stroboscopic plot of the string displacement during the

first period of vibration where t ∈ [0, P ]. Showing 68 time steps.

The thickness of the lines is proportional to the direction of time

flow. The obstacle with radius R = 4 · 10−3 is positioned at

b = L/3 (top) and b = L/5 (bottom), and in both cases D =
0.35u0(b).

with nonlinear problems of this type. Physically more comprehen-

sive and thus more realistic mathematical descriptions of string–

obstacle collision problems often result in rather complicated non-

linear equations of motion or in systems of equations. Modeling of

these problems then rely on numerical integration of these equa-

tions. This in itself can pose a great technical challenge and the

obtained solutions may be contaminated by numerical dispersion

and other accumulative round-off or approximation errors inherent

in most iterative numerical methods. For example in [10, 14] the

iterative solvers are avoided altogether when solving the problem

of lossy stiff string vibration against an obstacle.

The numerical accuracy of the proposed approach is mainly

a result of an adept FD discretisation of the problem domain (xt-
plane), discussed in Sec. 2, which ensures that at no iteration step

does the method rely on multiplication or division of rounded-off

numerical values. This guarantees that the resulting numerical so-

lution lacks any accumulative approximation errors and the round-

off errors are minimal. Travelling waves are modeled as trans-

lations of numerical values along the iteration axes, according to

(15) and (16). The string interaction with the obstacle is calculated,

according to (24) and (30), using only subtraction or addition op-

erations. In fact, assuming perfect arithmetics, i.e., assuming no

round-off, one could predict the motion of a string, undergoing a

kinematic string–obstacle interaction, for infinite number of itera-

tions without losing any accuracy.

The proposed approach can be applied for estimating the ef-

fect that an obstacle with various cross-section profiles has on a

string vibration. In principle the function B(x) can be chosen ar-

bitrarily as long as one remembers to modify its FD discretisation

at maximum or local maxima (in the case of more general mul-

timodal and/or discontinuous functions) as explained in Sec. 3.2.

Additionally, the model can be use to study the effects of different

initial and plucking conditions (including dynamic ones) on the
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Figure 8: Top: Time series u(xr, t) shown for two values of ob-

stacle position b. Onset time tp of the periodic regime shown

with the colour-coded dashed line. Middle: Power spectrograms.

Instantaneous spectral centroid 〈f ′〉 is shown with the solid red

line marked with bullets. Onset time tp of the periodic regime

shown with the dashed white line. Subharmonics at f = 1.5 and

f = 1.25 are shown with the bold arrows. Bottom: Amplitude

spectra in the periodic regime where t ∈ [⌈tp⌉, tmax]. Spectral

centroid 〈f〉 is shown with the colour-coded dash-dotted line.

string–obstacle system. It is reasonable to assume that proposed

model can generate these results faster compared to more sophis-

ticated models, which is often desired in real-time simulation ap-

plications. In connection with other methods of signal processing

and sound synthesis the presented model can be used to synthesise

timbres of stringed instruments that are equipped with nonlinearity

inducing obstacles, such as, frets, bridges, and nuts.

6. CONCLUSIONS

In this paper the kinematics of ideal string vibration against an ab-

solutely rigid obstacle was modeled using the approach based on

the application of the d’Alembert formula as explained in Sec. 3.

The presented numerical method is accurate and efficient lacking

numerical dispersion caused by accumulative approximation er-

rors. The effect of the obstacle proximity D on the string vibration

and on the mean level of upper mode amplitudes was clearly evi-
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dent and this was to confirm that the problem is nonlinear.

It was shown that the ideal lossless string interacting with the

obstacle vibrates in two distinct vibration regimes. In the begin-

ning of the kinematic interaction between the vibrating string and

the obstacle the string motion is aperiodic with constantly evolv-

ing spectrum. After some time of aperiodic vibration the string

vibration settles in the periodic regime where the string motion is

repetitious in time. The duration of the aperiodic regime depends

on the obstacle proximity D, position b, and geometry (curvature

radius R). The comparison of the resulting spectra in the periodic

regime with the linear case where the obstacle was missing showed

that the general effect of the obstacle manifests in the widening of

the spectrum caused by transfer of fundamental mode energy to

upper modes. The analysis of the relatively short-lasting aperiodic

regime showed that the obstacle position b may generate tempo-

rary fractional subharmonics related to the node point at x = b. In

conclusion, the results presented in this paper can expand our un-

derstanding of timbre evolution of numerous stringed instruments,

such as, the guitar, bray harp, tambura, veena, sitar, etc. The possi-

ble applications include, e.g., sound synthesis of these instruments.
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