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The role of functional equations to describe the exact local structure of 
highly bifurcated attractors of x~+l = Af(xn) independent of a specific f 
is formally developed. A hierarchy of universal functions g~(x) exists, 
each descriptive of the same local structure but at levels of a cluster of 2 ~ 
points. The hierarchy obeys g,- l (x)  = -~gr(g~(x/~)), with g = l i m T ~  gT 
existing and obeying g ( x ) =  -~g(g(x/~)), an equation whose solution 
determines both g and ~. For  r asymptotic 

g, ~ g - ~-~h (*) 

where 3 > 1 and h are determined as the associated eigenvalue and eigen- 
vector of the operator  ~ :  

~4'[~] = --~z[~b(g(x/a)) + g'(g(x/a))~(-- x/a)] 

We conjecture that A '~ possesses a unique eigenvalue in excess of 1, and 
show that this 3 is the A-convergence rate. The form (*) is then continued 
to all A rather than just discrete A, and bifurcation values A, and dynamics 
at such A is determined. These results hold for the high bifurcations of 
any fundamental  cycle. We proceed to analyze the approach to the asymp- 
totic regime and show, granted ~ ' s  spectral conjecture, the stability of the 
g, limit of highly iterated Af's, thus establishing our theory in a local 
sense. We show in the course of this that highly iterated Af's are conjugate 
to g,'s, thereby providing some elementary approximation schemes for 
obtaining h, for a chosen f 
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1. I N T R O D U C T I O N  

In a previous paper ~1) (hereafter referred to as I), a viewpoint was advanced 
that detailed information about large stability sets of a recursion relation 

x,~+l = )f(x,)  (1) 

is available independent of the exact form of f for a wide class of functions. 
A heuristic argument (corroborated by computer computation) was offered 
to the effect that appropriate functional equations, free of reference to the 
recursion equation, furnish all this detailed quantitative information. 
Specifically, the exact distribution of points of large limit cycles of the re- 
cursion equation within local clusters is determined by a certain universal 
function g*(x) obeying a functional equation we conjectured to exist, but 
only approximately could specify. A parameter ~ implicated in that equation, 
and presumably determined by it collaterally with g*(x), plays the role of a 
fundamental scale factor: upon bifurcation of a high-order cycle, the points 
of the bifurcated cycle are identically distributed, save for a reduction in 
scale by the factor ~. Another fundamental parameter 3, the convergence 
rate of a variety of universal details, was crudely determined from g*(x). 

In the present paper we shall vindicate these conjectures in exhibiting 
an exact equation determining a and a universal function g closely related 
to g* of  I. Indeed, two functions g*(x) and -~g*(g*(x/~)) were discussed 
in I; these are the first two (gl and go, respectively) of an infinite sequence 
of functions g,(x) linked by the shift operation 

g,-  l(x) = -~gr(g~(x/eO) (2) 

The equation 

g ( x )  = - ~ , g ( g ( x / , ~ ) )  (3) 

is obeyed by g(x) = limr.  | gr(x), a function determining the local distribu- 
tion of infinite clusters of elements of a / / t he  infinite attractors of (1). We 
then proceed to determine gr(x) for large r in terms of an auxiliary function 
h(x) obeying a functional equation implicating 3 and determining both h(x) 
and 3. Utilizing (2), one can then step down to determine from a gr for 
r >> 1 the g* of I. Thus, as conjectured in I, the entire local structure of 
high-order stability sets of (1) is determined in a framework liberated from 
(1). 

With the structure of the infinite limiting attractors laid out in Sections 
2 and 3, we investigate in Section 4 the asymptotic approach to this struc- 
ture. The equation obeyed by h is a linear functional eigenvalue equation, 
whose eigenvalues in excess of 1 lead to convergence of gr to g, the eigen- 
values bounded by 1 in absolute value represent potential instabilities. 
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However, in analyzing the large-n approach to a gr, we discover that exactly 
these eigenvalues lead to convergence, so that in the infinite-n limit, g, 
possesses no unstable components. In this fashion, though, the large eigen- 
values destroy convergence to g~. We discover, however, that the choice of 
the A~ dictated by the recursion equation exactly suppresses this instability 
providing there is a unique eigenvalue in excess of 1. This eigenvalue is 3 
and we conjecture its uniqueness. Proof of this conjecture would constitute 
a local proof of universality. (At present we have only computer corrobora- 
tion.) 

Finally, in Section 5 we discuss techniques for the solution of the funda- 
mental functional equations and various approximation schemes. 

. THE S E Q U E N C E  {g~} OF U N I V E R S A L  F U N C T I O N S  A N D  THE 
BASIC F U N C T I O N A L  E Q U A T I O N  

As heuristically argued in I, defining 

gO, x) =- af(x) 

wherefpossesses a differentiable zth-order maximum at x = O, 

f(O) - f ( x ) o c  Ix[ ~ z > 1 for Ix I small 
we have 

( -  a)"g(~")(A, +a, x/a") ~ tzg*(x/lz) (4) 

for large n, where g(~)(x) is the nth iterate of g: 

g(2)(x) =- g(g(x)); g("+ 1)(x) =_ g(g(")(x)) 

and/~ depends upon the specific form o f f  Rescaling g* on both height and 
width by tz removes all vestige of the specific form off ,  and is accomplished 
through the definition of an absolute scale: 

g*(0) = 1 

We understand this absolute rescaling implicitly, and simply write (4) as 

( -  ~,)~g~")(a. +1, x/,~") ~ g*(x)  (5) 

The value of A, A~ + 1 is determined by the condition 

g(2")(A,, 0) = 0, g(2~')(h,, 0) r 0 for n' < n 

g* accordingly describes a two-point cycle near x = 0, since g*(0) = 1 and 
g*(1) = 0 (see Fig. 1). With g* the limit of (5) as n --+ 0% and universal for 
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I 

/ 
gl  / 

/ 

/ Xl 
Fig. 1. T h e  func t ion  g~ no rma l i zed  to gl(0) = I ;  

the  2-cycle xo ---> x l  --+ xo , ~  x,  etc.,  is indicated.  

a l l f o f  fixed z, g*(g*(x)) is itself universal, possessing 0 and 1 as fixed points. 
g*(g*) is also a limit of highly iterated g's: 

g * ( g * ( x ) )  ~ ( -  ,~)~g~"~(~. +1, g~"~(~. +1, x / ~ . ) )  

Of', 

go - - ~g* (g* (xh , ) )  ~ ( -  ~,)" + lg(2. + ~(~ .  +1, x / s "  + 1) 
(-a)"g~2")()t,, x[~ n) (6) 

Thus, g*(x) is obtained from go(x) by increasing A into the next bifurcation; 
conversely, go describes a one-cycle near x = 0 (Fig. 2). Both go and g* = gl 
describe the identical local structure of  the elements of a large 2"-cycle near 
x = 0, but at different "magnifications." Generalizing, 

gr(x) =- lim (-~),g~2-~(~,, +r, x/e~'~) (7) 

again describes the identical local structure, but now at a level of magnifi- 
cation such that 2 ~ elements of  the cycle are clustered about the central 
bump (Fig. 3). From the definition (7), 

gr_ ~ ( x )  = - ~ , g ~ ( g , ( x / , ~ ) )  (8) 

--1l  9 

/ 
/ 

go, / 

, x 

Fig. 2. The  func t ion  go co r r e spond ing  to g l  no rma l i zed  as in Fig. 1; the  locat ions  o f  
xo and  x l  are  magnif ied  by - ~ .  
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Fig. 3. The function g2; the 4-cycle Xo -+  x3 
x ~ - + x 2  ~ xo, etc., is indicated, xo and xa are 
as in Figs. I and 2, but  now reduced f rom Fig. 
1 by  -c~ .  

g2 Xq 
xl f ~  r 

/ '  X 

/ 
/ 

/ 

(Universality implies that all gr are symmetric functions.) Given any gr, 
simply iterating produces all other gm for m < n, and each contains the 
identical information. 

When r is so large that n can become large and yet much smaller than r, 
then 

since Am--> A~ and A~+~+ 1 ~ A~+~: n must be of the order of r before any 
error in A~+~ can become significant. Alternatively, the central bump suffers 
very slight distortion to accommodate the infinite attractor when it already 
accommodates a very large attractor. That  is, we intuitively conjecture that 
the limit 

lim g,(x) = g(x) 
f ~ o  

exists. This granted, (8) implies that g satisfies 

g(x) = -,~g(g(x/~)) (9) 

Qualitatively, g(x) looks like the curve of Fig. 3. Yet, g(x) contains different 
information from gr(x) for any finite r: quite simply, any two stability points 
located by gr possess a minimum separation, which is not true for g. Rather, 
g represents a different level of universal distribution of stability points: 
the entirety of gl(x) is collapsed to a point at the level o fg .  (This is again a 
reflection of the Cantor set-like nature of highly bifurcated stability sets-- 
indeed, infinitely bifurcated.) 

An alternate definition of g in the n-limit sense is 

g(x) = lim ( -  ~)"g(~")(A~, x/~ '~) (10) 

since A~ is a finite, perfectly definite value of A. It is clear from (10) why we 
succeeded in obtaining an exact equation for g: the h-shifting which frustrated 
our attempt at an exact equation for g* in 1 is here absent. There is, however, 
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a strong price to be exacted for this grace: unlike the hoped-for equation 
in I, (9) must be recursively unstable. To understand this, let us rederive 
(9) from (10). Define 

o r  

Then 

or, 

g.(x) = ( -  1)"fl.g~2")(),~0, x/B. )  

(1/fl.)o~.(fl.x) = ( -  1)"gr x) 

( -  1)"g (2"+ ~)()~| x) = ( -  1)"g(2")(Ao~, ( -  1)"g(2")()~o, x)) 

1 " l~n~ "~o~ = 8--. g " ( ( -  J P ~ ( , X)) 

1 = ~ g.(g.(~.x))  

(11) 

1 1 
8.  +1 g" + 1(~. + ix) = y .  &(g.(t~.x)) 

or, with fl~+z//3. = ~., 

~,.  + l ( x )  = - ~ . & ( g . ( x / ~ . ) )  (12) 

Setting an absolute scale 

g.(0) = 1 for all n 

(12) implies that g,~(x) determines ~.: 

g.+l(0) = -a .&(g.(0))  

o r  

1 = - ~ . g . ( 1 )  (13) 

Accordingly, choosing a go(X) satisfying go(0)= 1 and possessing a zth 
order maximum at x = 0, we can use (12) and (13) to recursively generate 
g,(x). Should g,:(x) -+ g(x), then 

g ( x )  = - ~ g ( g ( x / ~ ) )  

with ~ = lim~.~o ~.. 
Apart from manipulations, the regimen of (12) and (13) is simply a 

machine to perform the (attempted) limit of (10) starting with a go that is 
essentially hoof(x), or more exactly 

go(X) = f()~oox) (14) 
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[So that g0(0) = 1, we have rescaled on height and width by 2t~o : (9) is 
invariant to such rescaling.] Since Aoo depends u p o n f  

go(X) = f ( A |  (15) 

Indeed, for any f of our class, go as given by (15) must result in g . - +  g. 
However, for 

go(X) = f ( a x ) ,  a 

it must be impossible for g.  to converge: unless a = ~ for some harmonic 
sequence, there is no infinite attractor and no sequence of gr's converging 
to g. For example, if we choose 

go(X)= 1 - ax  2 

then unless a is chosen at special isolated values, the g,  will not converge. 
Rather, a could in general be a value A m; after a number of iterations, g,  
would, by definition, be a gr [Eq. (7)] approximately. Since (12) is (8) (with 
some rescaling), successive iterations would move toward go rather than g 
and then divergently away. Figure 4 represents a suggestive picture of the 
situation. That is, the fixed point g is repellent, and unless go is correctly 
chosen so that the g,  will " a i m "  into g, they will at first approach g(Ar ~-- A~o 
SO far as g~2,~ is concerned until n ~ r), but then diverge away from it along 
the " p a t h "  of decreasing g,'s. That is, (9) in general defines a recursively 
unstable problem. 

This instability can, however, be turned to excellent advantage. Since an 
arbitrary go will lead to divergence, a " g o o d "  go must already be a good 
approximation to g, With g(0) = 1, (9) implies that 

g ( 1 )  = - 

By (14) one should then estimate 

f(Aoo(f))  = go(I) ~ - l / a  (16) 

?2 
\ ~ 

gr g5 g2 gl go 
Fig. 4. The sequence of g,'s is indicated as points along the x axis. The iterates of  ~o 
are shown at first approaching g, the trajectory spending many iterations in the vicinity 
of g (or gr for large r), but ultimately diverging away near low-lying gr's. 
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that is, the instability of (9) provides an estimation of , ~ ( f )  for any suitable 
f The closer a n f i s  to g (in some sense), the better the estimate. For example, 
consider 

o r  

and 

x ,+ l  = ~,(1 - 2x, 2) 

f = 1 - 2 x  2 

f ( h ~ x )  = 1 - 2 2 t ~ 2 x  2 

With c~ = 2.5029..- for z -- 2, we obtain from 1 - 2),~ 2 ~_ - 1/~ a value of 
Am ~- 0.8365, to be compared to h~ = 0.8370 for the limit of 2"-cycles. In 
Section 5 we shall pursue this idea to obtain a technique for solving (9). 

3. THE INF IN ITESIMAL Z SHIFT A N D  C O N V E R G E N C E  

Increasing ,~ from h~ to '~+1 maps gr into gr+ 1 for all r. Calling this 
operation R, the h shift, we write 

R ( g O  = g~+~ (17) 

In I, R was applied to go to produce g~. Equation (8), written as 

g r -  ~ = - -  c~g~(gT(x/eO) - -  L ( g T )  

accomplishes the operation inverse to R. The combined operation 

B - L . R  

is the bifurcation transformation of I, which serves as an identity on the 
sequence {g~}: 

B ( g ~ )  = g r ,  r = O, 1,... (18) 

or, each g~ is a fixed point of  the transformation B. We select g~ by imposing 
the conditions 

g~(0) = 1, g~(1) = 0 (19) 

and our universality conjecture is phrased in this language by saying the 
fixed point gl of  B is s t a b l e ,  so that if any go satisfying (19) with a zth-order 
maximum is chosen, 

will result in 
~, --+g: 
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for the zth-order maximum universal gl- The empirical computer evidence 
for universality, together with the instability of  (12), means that R stabilizes 
B, as R reduces trivially to the identity only for the fixed-point g. Indeed, 
our approximate modelings of R in I resulted in recursively stable functional 
equations. We now determine R restricted to operation on g{s in the limit 
of infinite r. The interchangeability of r and n in (7) 

( - -  ~ +r ,  Xl~ "" ( - -  ix) n - Sg (2n - s)('~'n + (r - s), X / a n  - s), 11 - -  S >> l 

together with the shifting operators implies that our study shall provide 
information about large-n convergence properties, and so determine 8 as 
well. 

We want to compute 

8g<2"~(A,, +,, x) --= g<2-~(),. +, + 1, x) - g~2.)(,~ +., x) (20) 

Defining 

(20) becomes 

ag~(x) - ( - ~ ) "  ag(2.~(:~. + .  x/o,") 

8gr(X ) = g r + z ( X )  - -  gr(X) = (R  --  1)(gr) 

Substituting (22) in (8), 

gr (x)  ---- - - a ( g r  "+- 8 g r ) [ g r ( x / a )  q" e3gr(X/a)]  
= - ~&(g,(x / ,~))  - ag, ' (g , (x / ,~))  8g,(x/,~) 

--  a 3gr(gr(x/oO) + O((Sg,) 2) 
= g r - 1 ( x )  - -  Og[agr(gr(x/fz)) 2r- g / ( g , ( x / a ) )  ag, (x l ,~)]  + O((Sgr)  2) 

(21) 

(22) 

(23) 

(24) 

or~ 

3 g r _  z ( x )  = - - a [ 3 g r ( g r ( X / a ) )  + g r ' ( g r ( X / a ) )  8 g r ( x / o : ) ]  + O ( ( 3 g r )  z )  

Since gr ---> g, 3g, --, 0, and in the limit of  infinite r 

8g,_  l ( x )  N - a[Sg , (gr (x /a) )  + gr ' (gr (x /a) )  ag,(x/,~)] 
--C~[~g,(g(x/a)) + g ' (g (X /a ) )  ~g~(x/a)] (25) 

Separating 3&(x) as 

8g , (x )  = ,~,h(x) (26) 
with ~, --+ 0 as r --+ m, we obtained a closed equation for h(x)-- the generator 
of  infinitesimal A shifts--and an equation for ~ :  

~,-~ = &/r (27) 
and 

h ( x )  = - ( a / 3 ) [ h ( g ( x / a ) )  + g ' (g(x/ ,~))h(x/cO] (28) 
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In fact, (28) represents a rederivation of (28) of I, where (28) of I was 
an approximate realization of R applied to go, the approximation consisting 
of " m i l d "  ~ shifting, which becomes rigorous in the present context, and 
in this context, involving g and not gl .  Given g(x) and ~ obeying (9), (28) 
determines both h(x) and 3 and defines a recursively stable equation. We 
return to this in the last section. 

Equation (27) is trivially solved: 

so that 

or ,  

(29) 

(30) 

(31) 

or, 

or  

8g(~"- ' , (~ . ,  0)  = - ( ~ / , )  8 g ( ~ " - " - ' , 0 . ,  0)  

3g(2'~(A., 0) = - (a /a )  3g (2.+ 1~(~., 0) for 1 << s << n 

Thus, for n very large, the change in g(2,) is the constant multiple - 3/~ of the 
change in gO2, - 1) induced by increasing ~. to h. + 1 for all r except for the very 
small (initial transient) and very large (the bottom of the g, sequence). 
Accordingly, 

( -  1)" 8g(~",O., 0)  ~ (~/~)" ~g(1 , (~ . ,  0)  = (~ .  +1 - ~.)(~/~)" 
in the sense of logarithms. Since 

( -  a)" 3g(2")(~., 0) = ( -  a)ng(2-)(,~. +1, 0) - ( -  a)"g(2"'(,~n, 0) 
= g d O )  - go(O) ~ 1 

we have 
'~.+1 - ~ ~ 8-" 

gr + l(x)  - gr(x) = ~ -  ~h(x), r >> 1 

Summing (31) from r = ro to 0% we obtain 

g,o(X) = g(x) 1 - 3-1 h(x), ro >> 1 (32) 

so that g~ -+ g (asymptotically) geometrically at the rate 3. 
We now show that the 3 determined by (28) and (9) is the 3 of I: the 

argument is that of I resulting in (13) made exact. By (30), 

8gdx) = ~-1 ~g,_ dx) 
which, by (21) reads for x = 0 

( -  ~)" 8g(2"~(~. +r,  0)  = 8 - 1( _ ~ ) .  +1 ~g~2. + 1~(~. + , ,  0)  
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logarithmically, or (h,+l - A,)/(h,+2 - A,+I)-+ 3 as n - +  ~ ,  which is the 
original definition of 3 in I. 

Combining (9) and (28), we can obtain g(x), h(x), c~, and 3. By (32) we 
next obtain g~ for large r, and then by repeated application of (8) obtain 
low-lying gr's. We have thus succeeded in determining all local quantitative 
properties of all highly bifurcated (and infinite) attractors of (1) in a frame- 
work independent of (1), and its unspecified f ( x ) .  The theory o f  high-order 
attractors is fully posed in a functional equation framework, and represents 
the common residue of all specifically posed recursion equations x~+l = 
Af(x,). 

It is important to make two observations pertaining to Eq. (28) at this 
point: one concerning the uniqueness of 3 and the other concerning the 
linearity of (28) to any scaling of h. 

Equation (32) can be derived by setting 

gT(x) = g(x) + ,7~(x) 

substituting in (8), and expanding to first order in V: we are simply analyzing 
the manner of approach of gr to g. The separation of (26), namely, 

demonstrates that 

~r(x) = ~rh(x) = ~ - ' h ( x )  

lim g, = g 
T.-+ co 

provided the eigenvalue $ of (28) is strictly greater than 1. In fact, it is easy 
to see that ~ = 1 with h(x) = g(x) - xg'(x) exactly satisfies (28). To see 
the significance of this solution, observe that 

g(x) - xg'(x) = (1 - x d]dx)g(x) 

is exactly the generator of infinitesimal magnifications: 

(1 + tz)g(x]l + ~) = (1 + tz)g(x - xlz) + O(tz 2) 
= g(x )  + t~(g(x) - xg ' (x ) )  + o ( ~  2) 

However, the magnifications comprise a degeneracy group of (9): if g(x) 
obeys (9), then so too does izg(x/t~) =-- g~(x): 

x x 1 x - :  g.(x) 

Thus, the r-independent piece of ~r corresponding to the eigenvalue + 1 
simply represents a convergence of gr to a suitably magnified g; by choosing 
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g(0) = 1, this freedom is eliminated, and the r-independent piece of ~ set 
to 0. 

We shall see in the next section that a spectrum of eigenvalues bounded 
by 1 in absolute value also exists. Anticipating some of that discussion, it 
turns out that g~ is orthogonal to the span of this part of the spectrum, so 
that only the large (convergence-producing) eigenvalues matter here. 

Observe that (28) is linear in h, so that if h(x) is a solution, so too is 
t~h(x) for any/L. That is, h(0), say, is free. By (32), with g(0) = 1 by con- 
vention, this leaves g~(0) free in the asymptotic-r regime. However, a definite 
choice of h(0) is necessary to ensure that g0(0) = 0. A different choice of 
h(0) would, for no number of iterations of (8), result in a g~ satisfying 
gr(O) = 0. 

It  is easy to comprehend the meaning of other choices of h(0). Since 

gr(X) = g(x) -- ~-rh(x) 

if/~(x) [for a definite h(O)] guarantees that go(O) = O, then 

~ ( x )  -- ~ ( x )  

produces a g~(x) such that g~(O) = O: that is, by increasing h(O) we need 
perform fewer iterations to obtain a g~ satisfying g~(O)= O. Differently 
put, the absolute size of h(x) is logarithmically periodic with period log 3: 
if 

~(x) ~ go(O) = o 

then 

~-~(x) * g . ( 0 )  = 0 

All this means is that as log h(0) is increased by log 3, one has moved through 
an entire bifurcation. Choices of h(0) ~ 3"h(0) determine a sequence of 
g~'s whose h's are chosen not at ?,n's, but rather at intermediate values of 2, 
between A, and 2,~+~. In particular, there is choice of h(0) = H(0) such that 
the h's are the bifurcation values A~. That is, our results determine the 
behavior of stability points not just at those values of An such that ~ is an 
element, but indeed the entire behavior as h is continually increased to 1oo. 
The reason is simple: since ~ ~ A~ - ~-~, ~-~ ~ Zoo - ~ ,  and gr(X) is 

and so, 

g ~ ( x )  = g ( x )  - ( ~  - a . ) h ( x )  

g ~ ( x )  - g ( x )  - ( ~  - a ) h ( x )  

is the continuation from discrete ?, to continuous ;~. Deviations of ?, from 
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h~ are most naturally measured logarithmically to the base 8: the bifurca- 
tion values An obey 

Zoo - A n  ~ 8 -n 
as do the a widths of  a given harmonic 

A n + z -  A n ~  8 -n 

A given " k i n d "  of cycle recurs in the next harmonic periodic logarithmically. 
Moreover, had we started with, say, a stable three-cycle, bifurcated to the 
six-cycle, and considered /~n -= A such that the 3 • 2 n cycle is stable and 
includes 2, then gm~(k, x)  about  2 describes a two-cycle and 

g~(x) = ( -  ~)ng~ ~(a~ +~, x/(-,~)n) 
more generally are of  the same character as the &'s obtained from the har- 
monics of the two-cycle. Clearly (8) is again obeyed, leading to (9). With 
c~ and g unique solutions to (9) for a fixed z, we now realize that the entirety 
of  the above treatment carries over unchanged in every way to the structure 
of  every  highly bifurcated cycle of  (1) no matter from which fundamental 
the bifurcations are obtained. That  is, the local description of stability 
points at both the isolated-point and infinite-cluster level as well as ~ and 3 
are unique for every highly bifurcated cycle of (1) independent o f f  for any 
fixed z. Thus, in the so-called "chao t i c"  regime of  (1) where most values 
of  a correspond to high bifurcation of a high-order fundamental, the local 
description of the attractor is essentially that of  the g's. 

We mention in passing that once & has been continued to a continuous 
index, Eq. (8) in the form 

g~_~(x) : (-~)~g~)(xlo~9 
defines the notion of a continuous interaction, since every ingredient of  the 
equation has received a natural continuation, save for the 2 ~ iterations. 

4. THE A P P R O A C H  TO THE {gr} FIXED POINT 

At this point we return to the fundamental question of  the large-n 
limit of  (7). In general f is not symmetric about  2 (although universality 
implies that even for an asymmetric f the gr's must be symmetric) and the 
correct form of (7) is 

gT(x) = l i m ( -  ~)ng(2'~)(~ n +T, x / (  - cO n) (33) 
Defining 

gr,~(x) -= ( -  a)ng(Z~)(A, +~, x / (  - -  cO n) (34) 

we can immediately verify that 

gr - 1,,~ + z(x) = - agr,n(gw~ ( -  X/~)) (35) 
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Viewing (8) as a fixed point (in n) of (35), we could establish our theory in 
at least a local sense by ascertaining the stability of (8). Thus, we are led to 
consider 

gr,~,(x) = gr(x)  + 7r.,~(X) (36) 
and attempt to show that 

lira 7r,.(X) = 0 
n ~ c o  

Substituting (36) in (35), with (8) valid at the fixed point, we have in 
linear approximation (in 7) 

7T - 1,,~ + j.(x) = - a[7r,.(gr(X/CO) + g/ (gr(X/a))7 , , , ,  ( -  X/a)] (37) 

[Neglecting the n index, and replacing gr--+ g, we find that (37) reduces to 
(25): we shall have more to say about the eigenvalues of  (28).] Since the 
& ( x )  have been normalized to g(0) = 1, in general 

lim g,,. r g, 
~--+ oo 

but rather gr,~ will approach a suitably magnified gr. [We could alternatively 
have defined 7r,,, = g r , , , -  I~r+.&(x/t*r+,,) with limt_.| t.t = t*  r 1.] We 
shall account for this with 7 * .  N >(g ,  _ x & ' )  a piece of 7r,. to be determined 
from (37). Also, by defining 

7.,. -- ~b~,.+.; n + r -= t 

we find that (37) becomes 

r = - ,~[r  + g / (g r (X /a ) )~ , . t ( - -  x /a)]  

SO that (37) itself is insufficient to determine any n + r dependence; rather, 

7r,o = gr,o -- gr = "~rf--  gr (38) 
shall serve as initial data to fix 7r,~ uniquely. 

We proceed to solve (37) by an artificial quadrature. Setting 

7r,~ -- 7.*,~ + 7~,- (39) 
we find that (37) becomes 

1 X 7,.-1,,~+1( ) + c~[7~,,~(gr(X/a)) + g / ( g r ( x / a ) ) 7 } , . ( - - x / a )  + 7~,,~(gr(x/a))] 
= -- {7~- 1,,~ + l (x )  + ag/ (g~(x /a) )7~ , ,~( -  x /a )}  - 0 

thereby defining 72 . That  is (38) is replaced with the pair of equations 
1 7r -  1,,, + ~(x) = - ~[71r,,,(&(X/CO) + g/(g,(x/cO)7~,,~(--  X/O0 + 7~,,~(&(x/a))] 

(40) 
and 

7~- 1,,~ + l ( x )  = - o:&'(gr(x/a))7~,~,(-  x / a )  (41) 
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However,  by (8) 

so that  (41) becomes 

Since gr(x)  is symmetric, 

so that  

Defining 

we find that  (39) reads 

with solution 

! 
gr  - 1  (X)  = - -  gr ' (g~(x[a))gr ' (X/CO 

,L~,.+I(X) =~n~..(--X/~) 
g;_l(x) g / ( x / ~ )  

g / ( - - X / ~ )  = - - g / ( x / ~ )  

~2r- ~. .  + d X )  = __ a ~2r" ' ~ ( -  x[cO (42) 
g;_l(X) g , ' ( - -  X/,~) 

f i . ,~(X) =-- ~7~..(X) (43) g / ( X )  

f , - 1 . .  + l ( x )  = --~' fr , . (--  X/~') 

f~..(x) = (-~)%+.,0(x/(-~)")  - ( -~)"F,+.(x/(-~)")  

so that  we have for  ~72 

,~..(x) = ( - a)'~r~ +,~(x / ( -  a )" )g . ' ( x )  (44)  

With (44), (40) now reads 

"qlr- z,n +1 = - ={@.n(gr'(X/a)) Jr gr(gr'(X/O:)) 
X [~7~,-( -- X/a) + ( -- c~)'~r, +,~(gr(x/a)/( -- a)")]} (45) 

Setting 
,~ . . ( x )  - , 8 . d x )  - ( -  ~ ) . r ;  + d g . ( x ) / ( -  ~,)") 

we can immediately verify f rom (45) that  
0 "~r - 1,. + I(X) = -- '~[~~ + g,(g, '(X/~')) ,~ X/~,)] 

that  is, i f  7/~ obeys (37), then for any Fr+. ,  so too does 

~/r,.(X) = ,O,.(X) + [( -- a)'~r~ + ,~(x/(-- a)'~)g.'(x) -- ( -- ~)'~Fr + . ( g . ( x ) / ( - -  ~)")] 
(46) 

so that  we have obtained a particular solution of  (37). We now regard 
~r~ to be a homogeneous  transient to the F solution which we utilize to 
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meet initial data. Specifically, we absorb all antisymmetric parts of f ( x )  
into F, leaving "/~ ) and hence all ' / ~  symmetric, and so obeying the 
"intrinsic" equation 

"/% 1,n + l (x )  = -- a['/~ + g, '(&(x/~)) ' /~ (47) 

'/o is viewed as built exclusively ofg, 's  with minimal dependence on the initial 
f ( x ) .  lit will be seen that the decomposition of (39)-(41) is determined and 
not at all artificial if '/1 and .12 are respectively taken to be the symmetric 
and antisymmetric parts of ' / .]  

We now utilize the initial data (38): 

,,~rf(X) -- gr(X) = '/r,o(X) = '/Or,o(X ) "[- F ~ ( x ) g / ( x )  -- F~(&(x))  (48) 

With an overbar denoting symmetry and a circumflex denoting antisymmetry, 
(48) reads 

2t~f(x) = F , ( x ) & ' ( x )  (49) 

and 
a~f(x) - g , ( x )  = '/~ + g ( x ) g / ( x )  - g ( g , ( x ) )  - g ( g , ( x ) )  (50) 

By (49), g (x )  is nonvanishing only when f is asymmetric, in which case it 
can absorb all the antisymmetry. 

Let us specialize to the case f d= 0. We then have from (49) 

g ( x )  = a,  - x & - ~ f (  ) 

and so, by (46), a piece of %~ of the form 

 9 x '/"~( ) = 1 2 -  " g-2UC- ~)~) g,'(x) - ( -  ~)" g ~  j)).)j 

_ r ,  , ~  \ 
, ~  ~ \  t - a )  g , ( x / ( _ a ) . )  gr ' (x) - -- ~ j  

With 1 - f ( x )  oc Ixl ~, f ( x )  oc Ixp +E sgn x (~ > o: otherwise f not extreme 
at x = 0), and g ' ( x )  oc Ixl ~-1 sgn x,  

( f / g ' ) ( x )  oc I x l  1+" 
and so 

'/*.(x) .~o~ ( -  l)'~-"~(Ixl~+~g,'(x) - I g , ( x ) P + 9  - +  0 

Thus, the g, fixed point is stable against antisymmetric perturbations. As 
an example, if 

f ( x )  = 1 - a x  2 -  b x  a 
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then E = 1 and ~/,,. converge to zero geometrically at the rate - a  -1, in 
perfect agreement  with the computer  data for t h i s f  since the *Tr.. convergence 
rate is exactly the an convergence rate:  

g(~n) (~+ , ,0 )  g, ,~(0) 
a~r) -- g(2 n + a)(A. + ~,, + o) - a gr,n + 1(0) 

{ , ) z a 1 + ~ [~,,n(o) - ~r. .+l(o)]  

Accordingly,  we consider now only s y m m e t r i c f ' s  so that  

r , ( x )  = L ( x )  

and 

h,f(x) - g , ( x )  = , f l .o(X)  + F , ( x ) g / ( x )  - F , ( g , ( x ) )  (51) 

As a first observation, following the parenthetic remark below Eq. (37), 

~ r ( x )  - P , ( x ) g ' ( x )  - P , ( g ( x ) )  

with 

must  obey 

L(X) = a-rff'o(arx) 

,7,- l (x)  = - <~, (g(x /a) )  + g'(g(x/~,))~,(x/a)] 

For  monomials ,  

Fo(x) = Ix[ z sgn x, L - ~ ( x )  = a -z+ 1L(x) 

and so 

with 

--,~W~>(g(X/a)) + g'(g(x/a))h(~)(x/a)] = a- :+ lh<: , (x)  

h(~>(x) = Ig(x)l ~ sgn(g(x)) - g ' ( x ) l x [  ~ sgn x 

That  is, the eigenvalue o f  (28) can assume any positive value less than or 
equal to 1 in addit ion to the value ~ > 1. These eigenvalues represent poten- 
tial instabilities o f  the convergence o f  gr to g. However,  they are unexcited 
in every g, exactly because they provide stable convergence o f  gr,~ to g, :  
The g, meet no initial condit ions save for their convergence to g. The poten- 
tially hazardous  parts h (~) o f  a g, are all shed in the approach  of  g , . .  (for 
any suitable f )  to g,.  That  is, 

g = lim g, 
~'-* oO 
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must exist since all unstable eigenvalues are exactly those that vanish in 
the formation of  gr from gr,.. 

We return to (51) and now ask whether the F 's  can span the initial 
data, in which case ~7 ~ = 0 and our theory is complete. In fact, an ~,n built 
wholly from P must produce convergence at a rate (-cr 1 -~ for 

F r ( x )  = p, r x  -t- ar  x z  -t- "" higher order 

For example, if f - -  1 - z x  2 + . . . ,  the smallest value of z would be 3, pro- 
viding a convergence rate c~ -2, However, ~ ) - -+  ~ at the rate 3 -1 in this 
case. Since 3 < a2, only the 3 rate survives asymptotically, and leaves the 
question as to how it enters ~Tr,,. This suggests that n ~ might not vanish in 
general, and so we examine the situation more carefully. 

Returning to (35), define 

r -t- n -= t, gr .n  --" ~br+n,n -= ~ t ,n  

SO that 

~ , , .  + l ( x )  = - ~r162 x/~,)) (52) 
We next expand r about g: 

~bt.. --- g + cot.. (53) 

so that 

c o t , . + l ( x )  = - r  + g ' ( g ( x / ~ ) ) c o t , . ( - x / ~ ) ]  =- 2a[cot,~] (54) 

in linear approximation. Equation (54) is our familiar shift equation written 
in the form of (12). We already know a variety of eigenvalues of ~ :  

r  - g o ( x )  _ x . g ' ( x )  ~ ~ e [ r  = ( - ~ ) ~ - ~ o  

and 

h(x): ~e[h] = 3h 

Expanding cot,~ along these eigenvectors, we have 

cot,. = ~ ,  ~ . (_~, ) .~l -o , (go  _ xog') + ~, ~ h  + ~o (55) 
.o 

Observe at this point a strong similarity to (46), and yet with the difference 
that (55) possesses an isolated h piece plus 

~ ,  ctO( _ ~),~(1 - p)(gO _ xOg  ,) = ( _ c O , F t ( g / ( _  ~),~) _ ( _ a ) , ~ r t ( x / (  _ cO,~)g, 
o 

This is the same form of particular solution as in (46) but constructed from 
g rather than g,. Now, if ct3  '~ = c~+,~ ~ ~ 3 -*, then the piece c t3nh  is a fixed 
(in n) perturbation about g. Now, ~ accounts for only first-order perturba- 
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tire effects. One would obtain a second-order correction by expanding about 
g + et3'~h. However, this is the form of expansion about g~ that would 
modify the ~bp(x) to be 

4,,,---, g o  _ x " g / =  (go _ xOg') - ~ - ~ ( ; g o - ~ h  - xOh') 

Thus, assuming ct3 '~ ~ 8-r, the correct form of (55) including all first-order 
ct ~ dependence is 

cot," = ~ ,  ctO(_a),~(~-,)(gO _ xOg ,) 
P 

p 

which possesses extra h dependence beyond the Ft(gr) terms than does (46): 
even with w~ = 0, (56) has already included a transient piece ~o, which is 
still constructed from the span of h @ {~b}. We now pose the (strong) 
conjecture that o)~ = 0: 

Conjecture. The spectrum of the operator A ~ is 3 and ( - c0  ~-p, p <~ 1, 
and, moreover, the spectrum is complete. 

(We possess computational evidence for this conjecture at least for z = 2 
and 4, which we discuss in Section 5.) Accordingly, we have 

= ~ ,  ct ' (-~) '~(~-~ p - xOg') + ct8 ~ (h + ~ c t ~  "(~-~ oAt .a 

p \ o 

(pg~ - xPh')~ (57) X 
] 

o r  

g , , .  = g + ~ ,  c t + . ( - ~ ) " " - ' > ( g  ~ - x ' s ' )  
P 

p 

in linear approximation. 
It is easy to extend (58) to an exact solution of (35), since the first- 

order terms are exactly the generators of conjugacy transformations con- 
nected to the identity. Defining 

p 

we find that (58) becomes 

- ( -cx)"(g  + er+,~3'~h)'Fr+.(x/(-.) ") (59) 
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Defining 
& ~ ( x )  = x + ( - ~ ) n F ~ ( x / ( - ~ ) n )  

we have that  (59) constitutes the leading approximat ion  to 

gT.n = S~+,~,n o (g  + Cr+nSnh) o Sy+~n,n (60) 

However ,  defining c~ = 3-tdt,  we have 

g + cT+n~"h = g + d~+n~-~h = ~,~,~+. + 0 ( ~  -2~) 

which obeys 

g'r-l.~(X) = - -  ~ , , ( ~ r . , ( X / ~ ) )  

to first order  for  any choice of  dr, converging to g as r - +  ~ for t fixed. 
Tha t  is, (58) is the leading approx imat ion  to 

g~,n = S~+n,n ~ g~,~+n o S;-+~.,n (61) 

which is easily seen to exactly satisfy (35). However ,  while (58) is compat ib l e  
with the solution (61), (61) is not  the genera l  solution to (35) containing 
(58) as its linear approximat ion .  Tha t  is, if (35) is stable abou t  the ~ , t  fixed 
point,  the linear approx imat ion  becomes a conjugacy t ransformat ion  upon  
gr,t, deviations f rom conjugacy vanishing in the higher order transient.  

According to the discussion on p. 680, the functions ~r,t all converge 
to g as r ~ ~ ,  but  differ in the small-r regime: only dt = - 1  (for the 
proper ly  normal ized h) will lead to ~o,~(0) = 0. Equat ion (61) is correct for  
large n; setting r = 0, it reads 

go, .(x)  = & , n o  go,~ o s~,~ 

Since St,n is connected to the identity, 

go,.(0) = 0 ~ go,.(0) = 0 

However ,  go,.(0) m u s t  vanish for  all n: 

go.n(0)  = ( - ~ ) - g , ~ " ~ ( a . ,  o)  -- 0 

by the recursion-equat ion definition of  An. But, if ~o,t(0) = 0 for all t, then 
dt = - 1  for  all t. Thus,  the recursion-defined values of  A~ determine ct = 
8- td t  = _ ~ - t ,  which, when entered in (58), yields 

~" c ~ ( _  a~n<l - ou _ xPg ,) g~,~ = g + ~ ,  ~+~ J ~6 
p 

- 3 -r  h + /~ ~+n~ ~ t r6  
o 
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so that the potentially divergent 8 ~ terms have been stabilized. Moreover, 
for n large, all terms decay with powers of  - ~ save for p = 1 : 

1 g,,n ~ g + c~+,~(g - x g ' )  - 8 -~(h  + c,+,,(h - xh ' ) )  

or, with/~t -= 1 + ct i, 

o r  

g~,. ~ ~ ( ~  - ~ - r h ) ( x l ~ 3  

g~,~ ~ m + . g r ( x l ~ . . )  (63) 

a magnification of g~. Thus, our conjecture implies the local stability of  the 
g~ fixed point of  (35). [Conversely, the one parameter A could be adjusted 
to cancel the potentially growing 8 mode; had ~ possessed several growing 
eigenvalues, it is difficult to see how this cancellation could be arranged. 
Also, although the conjugacy generators produce convergence at rates 
( - c @ - p ,  we can see from (63) how/xt -+ tx~  can produce a different con- 
vergence scheme for a, .]  We have not investigated any higher order stability 
questions, and apart  from some approximation schemes and computational 
methods which we shall discuss in the next section, have nothing further to 
say about  the ingredients of  a nonlocal proof. 

5. A P P R O X I M A T I O N S  A N D  M E T H O D S  OF SOLUTION 

All infinite attracters are locally determined by the hierarchy (8), 

g , -  i(x) = - 'xg~(gr(x/a)) 

As previously described, (8) is solved by first computing g and c~ through 
(9), 

g(x )  = - a g ( g ( x / ~ ) )  

with gr for asymptotic r given by (32), 

gT ~ g -- 3 - r h  

where h and 8 are obtained through (28), 

- a [ h ( g ( x / a ) )  + g ' ( g ( x /a ) )h ( x /a ) ]  = 8h(x) ,  8 > 1 

To any desired accuracy, an ro is chosen such that (32) provides g~ for all 
r /> r0, and g~ for r < ro determined from g~o through (8). In particular 
h(0) is fixed through the requirement that go(0) = 0. 

We now seek an approximate equation for gr for a fixed r that bypasses 
the above asymptotic ansatz. The virtue of  such an equation is that it must 
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define a recursively stable scheme for obtaining gr. As we shall see, the 
approx imate  formula  of  I shall appear  to linear approximat ion .  

By (8), 
g l ( x )  = - aga(g2(x/~)) (64) 

Relat ion (32) provides gr up to first order  in 3 -T. Since 3 ~ oo as z--~ 0% 
for  large enough z 

gl  ~- g - 3-1h and g2 --- g - 3-2h (65) 

will be arbi trar i ly accurate.  Accordingly,  

g 2 -  gi  ~- 3- i (1  - ~ - i )h  

o r  

g 2  z g l  + 3-1(1 - 3 - ~ ) h  (66) 

Substi tuting (66) in (64), we find 

g l ( x )  = - cz{gl(gl(x/~)) + (1 - 3 -1)3-  l[h(gl(x/oO) 
+ g~'(gl(x/cO)h(x/cO] + 0(3-2)} 

or, by (65), 

g l ( x )  = -- (zgl(g~(x/a)) + (1 -- 3 - 1 ) ( _  cr ~)[h(g(x/a)) 
+ g ' (g(x /~) )h(x /a)]  + 0 ( 3  -2) 

which, by (28), is 

gl(x)  = -c~g~(gl(x/cO) + (1 - 3 - t ) h ( x )  + 0(3 -2) (67) 

Thus,  to leading order  in ~-1, 

go(X) = -c~g~(g~(x/~)) ~_ g l ( x )  - (1 - 3-Z)h(x) = g(x )  - h(x)  (68) 

Tha t  is, as z - +  o% the asymptot ic  fo rm (32) becomes arbitrari ly accurate  
for  all r >/ 0. Since g0(0) = 0, (68) produces  

h(O) ~_ g(O) = 1 

in this limit, a 
g~(0) _~ 1 - ~ - i  (69) 

[To appreciate  this estimate, for  z = 2, g1(0) _-" 0.733, in compar i son  with 
1 - ~-1 - 0.786.] Defining 

g*(x )  = (1 -- 3-~)-~g1((1 -- 3-~)x) 

and  

h * ( x )  - h ( ( 1  - a~l)x) 
we can write (67) as 

g*(x)  = -c~g*(g*(x /~))  + h*(x)  + 0(3  -2) (70) 
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Since 
- a [ h ( g l ( x / a ) )  + gl ' (g l (x /a))h(x /a)]  = 3h(x) + 0(3 -1) 

we also have 

h*(x)  = - (a /3 ) [h*(g*(x /a ) )  + g*'(g*(x/a))h*(x/a)]  + 0(3 -2) (71) 

Equations (70) and (71) are exactly the approximate equations of I, since 

h*(0) = I =~ g*(0) = 1 by (70) 

while the definition of gl implies that 

g*(1)  = 0 

Since (70) and (71) constitute equations for g l ,  their natural recursion forms 
(g*, h* -+ g,~*, h,~* on the right-hand sides and g*+ 1, h*+ 1 on the left-hand 
sides) accomplish the recursion 

gl,~ + 1 = f(gl,,~) 
which is stable. 

We now exhibit a computational technique for solving (9) based on the 
observation about Eq. (16). The recursion form of (9) given by (12), 

+ = 

~,(0) = 1 for all n :~ a,  = - [~,(1)]-1 

must be convergent to g if ~o is appropriately chosen. Thus, if f is any func- 
tion of  our class, there is a value A~ such that 

xn+ l = . ~ f ( x , )  

will determine the infinite attractor bifurcated from the 2-cycle, in which 
case Eq. (15), 

Yo(X) = f (a~x)  

will lead to convergence. However, the strong instability of (12) requires 
that ,~  be known to very high precision in order that its high iterates will 
be accurate approximates ofg. As a rough estimate, ~o(X) should approximate 
g, and so (16), 

f(,~| = ~o(1) --~ g(1) = --a -1 

provides an estimate for , ~ .  It is elementary to obtain better estimates. 
Clearly, 

ao = -- [go(l)]-1 = _ [f() ,~)]-i  
and so 

gl (x )  : [f()t~o)]- l f{ ,~f() t~xf() t~o))}  (72) 
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But now, ff~(x) is a better estimate o f  g and so 

~(1)  ~_ - ~ - ~  

will provide a better estimate o f  ~ .  Accordingly,  with a known accurately, 
we could, for a n y f o f  our class, determine high-accuracy estimates o f  1~(f ) .  
Wi th  a unknown,  we could seek to collaterally determine it with ~ by 
setting 

~ ( 1 )  ~ ~o(1) (73) 

which by (16) and (72) provides an equation purely for ~| Evidently, by 
successively setting ~,+~(l) ___ ~ ( 1 )  more  accurate estimations are obtained. 
We now show that  this can be turned into a highly convergent  scheme for 
,~| I t  is immediate to see that  (12) can be " s o l v e d "  as 

~ , . ( x )  = ( - 1 ) % , . _ ~ . _ ~  ... ,~og(g"~(x /~ ._~  ... % )  

so that  

~,(0) = ( -  1)%~,_~ ... %#(oz"~(O) (74) 

Since a ,  -+  a if ~o(x) = f ( , ~ x )  for the exact ~o,  

Also, by (74) 

so that,  with the definition 

~(o2")(0) ~ ( - ~ ) - "  (75) 

= -g (g~>(o ) /g~g"  + f r o )  

~n ------ ~(2t~-  1)(O)~(2rt + 1)(0 ) __ [~(2n)(0)12 

one has 

~:n+l  - -  1 a.+ 1 - ~ _  

with O. the ~ convergence rate. With  

~o(x) = f(ax)  

(76) 

(77) 

and a chosen exactly at / ~ ( f ) ,  a~--~ a and so o~ < 1. Since a > 1 for all 
z > 1 (~ -+  oe as z --+ 1 and c~ -+ 1 as z -+  oe), ~:, converges to zero ~2 times 
faster than a m -+ c,. Accordingly,  if one sets ~:, = 0 for each n, an equation 
for a results (whose solution is a ~ o f f )  that  is exact to linear order in the 
error of  the estimation. (For  f = 1 - 2x 2, ~:, = 0 yields ~ for the 2-cycle 
fundamental  to 2n significant figures and a,  to n significant figures.) Had we 
wanted Z~o for a 3-cycle, ~ 0 ( x ) =  f(3~(1~x) provides the starting ~, and 
similarly all ~ of  a chosen f are rapidly determined (with o f  course the 
same a resulting). Once Zoo is determined, the iterates offQto~X) converge 

(79) 

1 
- -  o .  ( 7 8 )  
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toward g until the error in ,~  is sufficiently magnified to cause divergence. 
(A 25-significant-figure estimate of ,~  provides a g obeying (9) to one part 
in 10 14 on [0, 1]. As shall follow, one can do significantly better far more 
quickly.) 

We now consider a Newton's-method scheme of solution of (9) which 
shall lead into deeper considerations of the spectral problem o f ~ ,  and simple 
hand computations of Ar's to several significant figures. 

Regarding g(x) on a compact interval--say [0, 1]--as a matrix of its 
values at N points x1 together with an interpolation scheme (of at least zth 
order to protect a zth-order g), (9) evaluated at the N points x~ becomes a 
set of  N coupled nonlinear equations for the N quantities g(x~). Accordingly, 
one can perform an N-dimensional Newton's-method recursion to obtain 
the g(x~) from an initial estimate. However, high-precision estimates of g 
require a high-order interpolation scheme upon a large-N matrix, leading 
to an inaccurate inversion. Schematically, one writes 

~,(x) = g ( x )  + ~g(x ) ,  ~ = ~, + ~ ,  (8o) 

where oa and a satisfy (9) and g and a serve as an approximate solution. We 
insert (80) in (9) and expand about the approximate values to first order in 
Sg and ~a. By setting 

g(O) _= ~ ( o )  = 1 

in the approximate solution, we have 3g(0) = 0, which determines Sc~ in 
terms of the ~g(x)'s, so that we have a linear equation for 3g(x) alone. Ex- 
pressions like 6g(g(x/a)) appear: the equation is evaluated at each x1 and 
~3g(g(xJ~)) is expressed through the interpolation procedure in terms of 
linear combinations of Sg(x~). The equations are then inverted to obtain 
3g(xi) and the procedure iterated. Convergence is slow and precision-limited. 

However, the matrix ofg(x~) and interpolation scheme simply constitute 
a certain parametrization of g(x). Accordingly, one can perform the method 
with far simpler parametrizations. In particular, setting 

N N 

gN(X) = 1 + if, G~x ~i, SgN(x) = if, 3G, x ~' 
i-1 i = 1  

and evaluating the linear approximate equation at N points (say xm = m/N) 
produces an N-dimensional linear system again to be inverted. {In fact, for 
z = 2, precision limitations occurred for N = 14, determining ~ and g con- 
sistent with (9) to within 10 -20 on [0, 1] in 10 sec of CDC 6600 time.} The 
solution obtained (the GO of course provides a very rapidly computable g 
for any further usage. 
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With  ~ and g determined,  we now face the determinat ion o f  3 and  h 
f rom the solution of  (28), 

50[~,b] = -o~[~b(g(x/,~)) + g'(g(x/~)C(-x/c,)l = ~t,p(x) 
In  light o f  the previous discussion, this is an infinite-dimensional l inear 
eigenvalue problem,  which we shall study in a f inite-dimensional approx ima-  
tion. Tha t  is, set 

N - 1  

~b(x) = ~ ~b,x ~ (~bo ~ 1) (81) 
r ~ = 0  

so that  (28) evaluated at  N points  x~ becomes  
N - J -  

{axe. + + = 0 (82)  
n = 0  

o r  

(AXe, - L~,)r = 0 ( summat ion  convent ion)  (83) 

with (83) defining f rom (82) the N • N matr ices X and L. The  matr ix  X 
is invertible, and  so 

(X-1L),,~b, - L,,~b, = A~b, (84) 

Accordingly,  the eigenvalues ;~ are determined f rom 

det(,~X - K) = 0 (85) 

producing  N eigenvalues in the N-dimensional  approx imat ing  space. 
The  computa t iona l  results are highly interesting. Starting with N = 1 

and  x~ = 0 there s imply results 

A =  - c ~ -  ~g'(1) = a ~ -  a 

which is an approx imate  fo rmula  for 3 with h(1) = h(0) = 1, asymptot ical ly  
accurate  as z - +  oe. Setting N = 2 with xl  = 0 and  x2 = 1 results in a 
larger eigenvalue more  nearly 3 and  a smaller one quite close to A = 1, 
with corresponding eigenvectors approx imat ing  h and ~bl = g -  xg'. In-  
creasing N and evaluating at  equally spaced points in [0, 1] produces more  
accurate  determinat ions  of  ~ and various (_~ )~ -o ,  p = 1, 2 .... : 3 is the 
solitary eigenvalue of  L greater than 1, at  least in the two cases we studied, 
z = 2 and z = 4. {At N = 14 we obtain 3 and  h to 20 places consistent with 
(28) on [0, 1] and agreeing to the 14 places of  our  best recursion data.} 
Tha t  is, the spectrum of  5 ~ restricted to these discrete linear systems is com- 
prised of  the conjugacy eigenvalues smaller than  or equal  to 1 in absolute 
value, plus a solitary larger one equal to 3. The  eigenvalues are always 
nondegenerate, so that  L is complete despite its nonsymmet r ic  form. Tha t  is, 
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defining L*, the adjoint of  L (the transpose in the present context), and 
adjoint eigenvectors 

L*~ba* -= ~ba*L = A~ba* (86) 
normalized to 

(~ba., ~ba) ~- ~ ~ba,..~ba,. = 3~a. (87) 
n 

L can be spectraIly decomposed: 

Lmn 

or symbolically, 

so that 

= ~ ~,=~. .  (88) 
h 

L = ~ A ~ , ~ *  

h 
The condition to be met for L~162 to not contain any eigenvector ~ is then 

(~*,  r = 0 (89)  

We now consider universality in the light of  this framework. With 
go(X) = f(A ~ x), 

o r  

O j y " ~ ( x )  = ;~og~o"~(x/;~) (90)  

which is simply a magnification by A~ of g~on>(x). Defining the recursion 

g,~ + l (x )  = - ag,~(~,.(x/a)), go(x)  = Aoof(x) (9 I) 

will cause g~ ---> g, where 

g.(x)  = (-~,)"g~o2"~(x/,~ ") 
Defining % = g. - g, then 

 9 ~.+1 = s e [ n . ]  

in linear approximation. Expanding ~. along eigenvectors of ~ ,  we have 
by the orthogonality (77) 

~7.(x) = ~ h"(~ba*, r/0)~ba(x) (92) 
k 

Since . / . -+  0, the solitary growing mode corresponding to a = 8 must be 
unexcited. Calling h* the adjoint eigenvector of  eigenvalue 3, this means 

(h*, no) = 0 (93) 



696 Mitchell J. Feigenbaum 

However, 
~/o = g o - g =  A ~ f - - g  

so that (93) becomes 
A| = (h*, g) / (h* , f )  (94) 

That is, the A| of the 2-cycle receives the interpretation as the unique value 
of A to extinguish the diverging mode of 5r [For a fundamental cycle of 
order s, g0 must be (A~f) (~), so that 2~o is no longer multiplicative, although 
(93) will still provide an equation to determine A~ .] For example, for z = 2 
and N = 2 

g ~- 1 + glx  2, h* ~ 1 -4- hl*x 2, f ~ 1 + f l x  2 
and (94) becomes 

A~o(f) - (1 + glhl*)/(1 + f lh l* )  (95) 
To be a good estimate, ~70 must be in the linear domain, so that f should be 
"nice." Thus f =  2x 2 determines through (95) a 0.1% estimate of A| 
Provided f is nice, once g,  and h,* are determined, (95) allows for 5-see 
estimates of ;~( f ) .  

In view of the computer spectral evidence, h* is the unique eigenvector 
to all conjugacy-generator eigenvectors. This is important in the application 
of (94): iterates of A~f converge not to g, but to txg(x/lx). In writing r/0 = 
~ o f -  g, we never specified the normalization of g. Indeed, it is irrelevant: 
h* is computed from the g normalized to g(0) = 1. Since h* is orthogonal 
to all conjugacy generators of g, 

(h*, ~g(x/~)) = (h*, g) 
for all tz (in linear approximation) and so (94) is correct for g with fixed 
normalization. Moreover, the conjugacy problem of g is solved: if 

f = ~ o g o ~ b  -1 

for some ~b connected to the identity, then it must follow that 

( h* , f )  = (h*, g) 
and conversely. (Clearly our spectral conjecture is quite strong.) This leads 
to another method of estimating A~ : 

(hoof-  g, h*) = 0 =~ ,X~f ~ g (conjugacy) 

Thus, should )t~ satisfy a necessary condition for conjugacy, ,~of must be 
conjugate to g. The condition is elementary: if 

g(x*) = x* and Af(~A*) = ~* 
then 

g ~ Ao~f~  g'(x*) = A| ) 
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But g ' (x*)  is a fixed value for fixed z, and so upon calculation of the fixed 
point of  Afan estimate of  A| is had: 

) ~ ( f )  = g ' ( x * ) / f ' ( ~ *  ) 

Again for f = 1 - 2x 2, f =  sin ~rx, f =  x - x 3, and other "n i ce"  f ' s ,  a 
0.1 7o estimate is obtained for A~. " N i c e "  here means that f is "c lose"  to 
conjugate to g. 

We now extend these ideas to the gr,, recursion to provide another 
proof  that 

with tz now determined by the same simple kind of estimates (and to equal 
precision) as was A~. Moreover, we shall demonstrate how the convergence 
rate of  an is computable and equal to 3..Repeating Eq. (62), 

~" c o (_(x~n(1-o)(,,o _ xOg ') gr,~ = g + / .  r + n~. I \,5 D 
( "~' . p  ( o~,n(1-D)(nerD-1 h __ xOh')) 

p 

it is clear that the g~.~ for large n are fixed by determining the ct ~ from initial 
data. Thus, for n = 0 

/ k 

g~.o 
o \ p / 

(96) 
Recall that 

4'o - gO _ x~g, 

is the eigenvector of  ~ corresponding to A = ( - ~ ) ~ - P  and so orthogonal 
to h*. Defining 

pgP-Zh - x~  ' - h o (97) 

and projecting (96) on h*, we have 

AT(h*, f )  = ( h * , g )  - 8 - ~ ( 1  + ~ c ~ ( h * , h a ) )  (98) 

o r  

Thus, 

as before and 

(h*, g) 
( h * , f )  

1 + ~ cTO(h *, ho) 3_ r ~ /~oo - -  /s 3 - r  
(h* , f )  

A| = (h*, g ) / ( h * , f )  

0 
(99) 
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Projecting next upon  ~ * ,  we have 

Ar(~n*,f) = (~* ,  g) + Cr n -- 8-r  E CrO(~P*' h~ 
o 

I n  p a r t i c u l a r ,  a s  r - - - ~ o o ,  

A~(~o*,f) = (~r + c~0 

so that  

lim cr ~ = co~ ~ = )~o~(~bo*,f) - (~b~*, g )  
~ o o  

Mitchell  J. Feigenbaum 

exists and is finite to meet  initial data. Accordingly,  for large r we have 

~r ~ ~o - tL3 -r 

tz = 1 + ~o Coon( h* , hn) 
ao~ (h*, g) 

1 - Ep (~bo*, g)(h*, hp) + 2,| Y.o (~bo*,f)(h*, ho) 
(h*, g) 

(lOO) 

with 

(101) 

by (103), 

Since 

which as r --. oo becomes 

?too = 1 + ~ c~o ~ (104) 
P 

~_~ pCr n < oo 
p 

c, ~ < l ip z+~ 

for  large p. Accordingly,  t runcat ion o f  the p sum allows high-accuracy 
estimates. Setting N = 2 so that  only A = 3 and • = 1 contribute,  one has 
the rough  result 

)~o ~ 1 + co~ 1 (105) 

P 

Accordingly,/z/)~| is also available and easily computed  for small N quite 
accurately. 

We next obtain a sum rule for cr p. Setting x = 0 in (96), we have 

(lO2) 
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By (62), 

or, 

gr,n ~" g -Jr- clr+n(g - -  x g ' )  - -  a - r ( h  --}- Clr+n(h - x h t ) )  
n - - .  o9 

_ (1 -t- c~+,~)(g - 8-~h)(x/1 + c~+,,) (106) 

&,n ~+-2g>~ (1 + c~l)&(x/1 + e~ ~) (107) 

With the rough estimate (105), this reads 

gr,. ~ ~g~(x/a~) ~ , - +  co 

Also, assuming a rapid n approach, and setting r -+ 0% we have 

g~,.  ~_ a ~ g ( x / ~ )  

so that g ~ , ,  ~_ g| is the estimate 

o r  

g(x) ~_ f (a~x)  

Thus we realize that all our approximation schemes produce estimates of  
the same accuracy. Next, Eqs. (98) and (100) for N = 2 are 

a~(h*,f) ~_ (h*, g) - a-~(1 + c?(h*, hi)) 
and 

Ar@l*,f) - (~b~*, g) + cr~(1 - 8-'(~b1", h~)) 

The ratio of  these equations produces 

cr 1 - c~ 1 oc 8 -~ (108) 

Together with (106), we then have 

g~,~ - &,~ ,,~ 8-~ 

in fixed r, providing the mechanism for ~, --> c~ at the rate 8. We are unsure 
as to why % -+ ~ at a rate 8' :~ 8 for z > 2, especially since the spectrum 
of  L for z = 4 possesses 8 as the unique growing eigenvalue. Presumably, 
higher order transients can here decay at a rate below that of  the " a y m p -  
tot ic"  features discussed here. But for this one defect, the above techniques 
explain to good accuracy every detail of  all our recursion data. 

6. A F T E R W O R D  

The preceding parts of  this paper were contained in a preprint first 
circulated in November 1976. This paper is incomplete insofar as the unique- 
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hess of  an appropriate solution to (9) as well as the basic spectral conjecture 
remain unproven. Failing to publish it immediately (because it was not 
self-contained), I allowed it to hover in a limbo while I anticipated some 
measure of  success at a proof, foreshadowing its content in the final section 
of its predecessorJ 1~ 

Early in 1979, I was informed that an effort by Collet et al. (2~'~ has 
succeeded in this task. These authors have proven existence and uniqueness 
of  the appropriate solution to the fundamental equation (9) and verified the 
spectral conjectt-re of  5q. (This demonstration is, so far, restricted to z = 
1 + e with E small.) Accordingly, the theory presented here is now well- 
founded, although no extension beyond the local stability of  the fixed point 
is expected in the immediate future. 

At this time, I should like to mention another effort. In the special case 
z = 1 + E, E small, it is easy to approximately solve (9) and the spectral 
problem of 5e since c~- 1 is perturbatively small. This result first appeared in 
a work by Derrida et al. ~ (DGP). In this and another interesting paper by 
these authors, ~5~ the work of Metropolis et al. ~ (MSS) has been significantly 
elaborated upon through the discovery of an "internal  symmetry"  of  the 
MSS sequences which allows organizations of  these sequences in manners 
approaching ,~  from above rather than from below along the harmonics. 
I will here briefly explore the connection of one aspect of their work with 
the present work. 

There exists a unique fundamental 4-cycle above the Am of the 2-cycle. 
Related to the pattern of  this 4-cycle by the operation of DGP is a funda- 
mental 8-cycle, below the 4-cycle and closest to 2,~. Similarly, for each n 
there is a fundamental 2"-cycle below the 2~-Z-cycle and closest to and 
above ~,~. Denoting the parameter value of these cycles that are superstable 
by ~ ,  we have 

~2 > ~3 > "'" > ~i~ > ... > )t~ ( 1 0 9 )  

D G P  observe that 

~ - -  A~o oc 3 - n  

with the same 3 as for the harmonics of  the 2-cycle. It is easy to see why 
this can be so. For the harmonics, the functions g~ were constructed, with 

gr ~ g - ~-Th 

In this form, the coefficient of  h is negative. Indeed, this is required for the 
harmonics to guarantee that go(0) = 0. However, the term in h is perturbative 
about  the fixed point g, so that nothing in the local analysis requires this 
negative coefficient. Indeed, for an appropriate positive coefficient the 
2 See Ref. 3 for a preview. 
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phenomena described above are explained, with the g 's  constructed deter- 
mining the elements of  these cycles. 

To see how these phenomena are described, write 

Af = A~of + (A - A~o)f- Go + (A - A~)Ho (110) 

Iterating 2 ~ times, and keeping terms to order A - A~o, we obtain 

(Af) 2" = a= + (A - )t~)H. + O((A - Ao~) 2) (111) 

where 

G. = (A=f) =" 
Defining 

we can write (111) as 

( -  ~)=(Af)2"(x/(- ~)~) - f .  
( -  ~)'~G.(x/( - cO ~) = g= 
( -  ~,)"H~(x/(- ~)") - h. 

where 

and 

A ( x )  = g~(x) + (x - a~)h.(x)  

h .  + l ( x )  = - ~ [ h . ( g ~ ( -  x/s))  + g=' (g . ( -  x / @ h . ( -  x/~) ]  

- ~ . [ h . ( x ) ]  

h. = ~ ~  5eof 

By the definition of  ;~oo and g, 

g .  -+ g, 

Accordingly, (114) becomes 

and (113) reads 
h,~ ,~ c ( f )8"h  

(112) 

(113) 

(114) 

f .  ~ g + c ( f ) (a  - a~)a.h (115)  

Equation (115) is approximately correct so long as (A - ,~ )"  is small, which 
is the case when 

[A - ~,~ [ 3~ ~< small constant 

With A. chosen as usual to determine the superstable 2"-cycle harmonic 
of  the 2-cycle, 

f .  "+ go 
Since go(O) = 0 and g(O), h(O) # 0 evidently 

( a . -  a~)8. ~ 1 
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again establishing 3 as the ;~ convergence rate. If  an n-independent finite 
condition on the f~ can more generally be maintained, 3 will again be the 
convergence rate and the corresponding limit of t h e f .  will be given by (115). 

Accordingly, consider determining A. by the condition that 

D()t.t)2"(~:. ) = t~ (independent of n) 

where ~:. is the fixed point closest to x = 0. By (112) these conditions 
transcribe to 

A ( x . )  = x . ,  A ' ( x . )  = ~, x .  = ( - ~ ) " r  

As n --+ ~ , f ~  --+f., x,~ --+ x. ,  by (115) 

x .  ,.~ g(x.)  + c(f)(A,~ - A| (116) 
tz ~ g'(x.)  + c(f)(A~ - 1| (117) 

Denoting the fixed point of g by ~, and the slope of g at 2 by/2, then from 
(116) and (117) we immediately obtain the approximation 

A. ~ A~ + 8 - " @  - t , ) /c lh'(~)[  (118) 
for ~ _~ t~. 

Thus, so long as t~ r t2, the corresponding ~. converge to h= at the 
rate 8. (At t~ =/2,  ~ . -+  A| faster than geometric at the rate 3.) Also by 
(118), the coefficient of h i n f , ,  by (115), changes sign at/z = t~: for [t~] < [t2[, 
f .  is a gT or its continuous analog (for example, at bifurcation values) as 
described at the end of Section 3 ; for ]t~ I > It2[, h. -+ Am from above, and 
evidently the harmonics are not under consideration. For example, with 
~,~ of (109) 

fn = ( -  e~)"(~, + l f )2"(X/ ( -  cO" ) 

corresponds to a limiting value of It~l > I/2[ and 7t.--+ ~ from above at 
rate 3, as was to be demonstrated. Accordingly, the fixed point g is the 
"organizing center" for all attractors with ;~ ~ A| whether from above or 
below A~. 

As a final comment, it is perhaps worthy to point out the resemblance 
of the theory presented to the renormalization-group notions of Wilson. C7) 
Essentially, the function gT determine elements of infinitely bifurcated at- 
tractors at various levels of magnification, belying a self-similarity of their 
distribution; this structure is precisely reproduced through the operations 
of composition and rescaling ~,, resulting in the next lower g,. The function 
g itself is the fixed point of ~,, while the g~ lie on the one-dimensional unstable 
manifold through g along h; 3 and h indeed were determined by linearizing 
J"  about g. More generally, applied to any f,  J"  can be viewed as a re- 
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normal izat ion-group t ransformat ion with self-similarity (critical behavior) 
determined by the fixed point  g. Viewing the parameter  ;~ as temperature,  
~o is the critical point  and 8 emerges as a critical exponent. More  intuitively, 
an analog of  Kadanof f ' s  block-spin not ion is also available. Thus, consider 
the superstable 24. cycles starting at n = 0, for  which there is a single point  
at x = 0. For  n = 1, this point  is split into one at x = 0 again, and another  
point  xl  to the right. For  n = 2, x = 0 again splits, with x2 nearest to x = 0 
and to the left, while xl  splits into a more closely spaced pair with centroid 
roughly  at x l .  By the definition o f  a, xl  - - ~x2. As n increases, each point  
splits into a pair  with the element nearest t o  x = 0 located -c~ times nearer 
to x = 0 than its predecessor. It  is thus clear that  if each closely spaced pair 
is replaced by a point  at its centroid (viewing at lower resolution), then the 
same set o f  points about  x = 0 is reproduced,  but with all distances - 
times larger. Accordingly,  spin-blocking has here the analog of  functional 
composit ion,  while the following volume rescaling is here, rather than a 
geometrical factor  o f  2, now a dynamically determined factor o f  ~. In this 
way, the theory presented in this work may be viewed as an instance arising 
mathematical ly o f  the renormalizat ion-group notions o f  statistical mechanics. 

A P P E N D I X  

We include here some numerical results, useful for normal  ( z - - - 2 )  
recursive calculations. 

A1. g(x)  = 1 + ~ =  1 g~x 2~, determining g to ten significant figures as 
[0, 1]: 

g l  = 1.527632997 
g2 = 1.048151943 x 10 -1 
g 3 =  2.670567349 x 10 -2 
g4 = -3 .527413864 x 10 -3 
g0 = 8.158191343 x 10 -5 
g6 = 2.536842339 x 10 -5 
g7 = -2 .687772769 x 10 -6 

- g ' ( 1 )  = c~ = 2.502907876 

A2. F rom the above, g(x*)  = x*  for x* = 0.5493052461 and g'(x*)  = 
-1.601191328,  which is required for the estimate 

A,~(f) ,~ g ' ( x* ) / f ' (~* )  

where ~* satisfies 
,Xoof({:*) = ~* 
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For  example, w i t h f  = x(l  - x), 

s e* = 1 - Ag 1 and ),| = - )~o + 2 

so that  
- ) t~  + 2 ~- g'(x*) 

or 2,o - 3.60119, to be compared with the correct result 5~ = 3.56995. 

A3. In  order for gr to be computed,  one needs h(x) normalized to 
h(0) = 1 together with the correct h(0) to ensure that g0(0) = 0. Regarding 
r = 6 as asymptotic,  we have 

h ( 0 ) - -  1.318707 

and  a parametr izat ion of similar accuracy to Section A1 is 

h ( x ) =  h ( O ) ( l +  ~ h~x z~) 
i = l  

with 

hi = -3 .256513712 • 10 -1 

h2 = -5 .055393508 x lO -2 
ha = 1.455982806 • lO -2 

h~ = -8 .810422078 x lO -~ 
h5 = - 1.062170276 x 10 -4 
h6 = 1.983988805 • 10 -5 

I terat ing (8), gl  or go is obtained for estimates of the locations of elements 
of a highly bifurcated cycle near x = O. Observe that  since 

gr- s(x) = ( -  ~)sg~2S~(xf(_ ,~)s) 

w i t h s =  r = 6, 

go(x) = ( - ~ ) ~ g ~ ( x / ~  ~) ~- ( -  ,~)~(g - a -  %)~2~>(x/,~ ~) 

so that  g and h restricted to [0, 1 ] provide go or [0, ~6], thereby determining 
m a n y  elements near x = 0. 

A4. Solving the eigenvalue problem of L for N = 2, we have 

8 _ 4.6736, )'1 - 0.9880 

to be compared with 

8 = 4.6692, al = 1.0000 
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The corresponding eigenvectors and adjoint eigenvectors (unnormalized) 

1 
h =  ( - 0 . 3 6 4 4 ) '  

1 
h * =  ( _ 0 . 9 0 2 4 ) '  

Writing g as 

~bl = 1.1082 

~bl* = 2.7444 

1 1 

it is trivial to estimate ;~o~ -~ (h*, g) / (h* , f ) .  For example, withf(x) = 1 - 2x 2, 

l') ( ' I  f =  2 and , ~ ( f )  ___ 0.8368. Also, hi = 0.3644 and (h*, hi) -- 0.5051 

(properly normalized), so that by (102) 

~ 1 -- (~1", g) (h*,  ~/1) -~- ~m(~bl*,f)(  h*, h i )  ~_ 0 .6851 
,~oo - (h* ,  g )  

or /x  _~ 0.5733, to be compared with /z(f) = 0.5981. While it is true that 
N = 3 significantly improves this result, this is already quite accurate and 
trivial to obtain. 
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