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UNIVERSAL BEHAVIOR IN N O N L I N E A R  SYSTEMS* 

Mitchell J. F E I G E N B A U M  
Center ,for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 

A semipopular account of the universal scaling theory for the period doubling route to chaos is presented. 

I. Introduction 

There exist in nature processes that can be 
described as complex or chaotic and processes that 
are simple or orderly. Technology attempts to 
create devices of  the simple variety: an idea is to be 
implemented, and various parts executing orderly 
motions are assembled. For example, cars, air- 
planes, radios, and clocks are all constructed from 
a variety of  elementary parts each of which, ideally, 
implements one ordered aspect of  the device, Tech- 
nology also tries to control or minimize the impact 

of seemingly disordered processes, such as the 
complex weather patterns of  the atmosphere, the 
myriad whorls of turmoil in a turbulent fluid, the 
erratic noise in an electronic signal, and other such 
phenomena. It is the complex that interest us here. 

When a signal is noisy, its behavior from mo- 
ment to moment  is irregular and has no simple 
pattern of  prediction. However, if we analyze a 
sufficiently long record of the signal, we may find 
that signal amplitudes occur within narrow ranges 
a definite fraction of the time. Analysis of  another 
record of the signal may reveal the same fraction. 
In this case, the noise can be given a statistical 

description. This means that while it is impossible 
to say what amplitude will appear next in succes- 

* Reprinted with minor additions and with permission from 
Los Alamos Science, Vol. I, No. 1, p. 4-27 (1980). 

sion, it is possible to estimate the probability or 
likelihood that the signal will attain some specified 
range of values. Indeed, for the last hundred years 
disorderly processes have been taken to be statisti- 
cal (one has given up asking for a precise causal 
prediction), so that the goal of a description is to 
determine what the probabilities are, and from this 
information to determine various behaviors of  
interest-  for example, how air turbulence modifies 
the drag on an airplane. 

We know that perfectly definite causal and s im-  

ple rules can have statistical (or random) behav- 
iors. Thus, modern computers possess " random 
number generators" that provide the statistical 
ingredient in a simulation of an erratic process. 
However, this generator does nothing more than 
shift the decimal point in a rational number whose 
repeating block is suitably long. Accordingly, it is 
possible to predict what the n th generator number 
will be. Yet, in a list of  successive generated 
numbers there is such a seeming lack of order that 
all statistical tests will confer upon the numbers a 
pedigree of randomness. Technically, the term 
"pseudorandom" is used to indicate this nature. 
One now may ask whether the various complex 
processes of nature themselves might not be merely 
pseudorandom, with the full import of  random- 
ness, which is untestable, a historic but misleading 
concept. Indeed our purpose here is to explore this 
possibility. What will prove altogether remarkable 
is that some very simple schemes to produce erratic 
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numbers behave identically to some of the erratic 
aspects of natural phenomena. More specifically, 
there is now cogent evidence that the problem of 
how a fluid changes over from smooth to turbulent 
flow can be solved through its relation to the 
simple scheme described in this article. Other nat- 
ural problems that can be treated in the same way 
are the behavior of a population from generation 
to generation and the noisiness of a large variety 
of mechanical, electrical, and chemical oscillators. 
Also, there is now evidence that various Ham- 
iltonian systems-those  subscribing to classical 
mechanics, such as the solar sys tem-can  come 
under this discipline. 

The feature common to these phenomena is that, 
as some external parameter (temperature, for ex- 
ample) is varied, the behavior of  the system 
changes from simple to erratic. More precisely, for 
some range of parameter values, the system ex- 
hibits an orderly periodic behavior; t h a t  is, the 
system's behavior reproduces itself every period of 
time T. Beyond this range, the behavior fails to 
reproduce itself after T seconds; it almost does so, 
but in fact it requires two intervals of T to repeat 
itself. That is, the period has doubled to 2T. This 
new periodicity remains over some range of  param- 
eter values until another critical parameter value is 
reached after which the behavior almost re- 
produces itself after 2T, but in fact, it now requires 
4T for reproduction. This process of successive 
period doubling recurs continually (with the range 
of parameter values for which the period is 2"T 
becoming successively smaller as n increases) until, 
at a certain value of the parameter, it has doubled 
ad infinitum, so that the behavior is no longer 
periodic. Period doubling is then a characteristic 
route for a system to follow as it changes over from 
simple periodic to complex aperiodic motion. All 
the phenomena mentioned above exhibit period 
doubling. In the limit of  aperiodic behavior, there 
is a unique and hence universal solution common 
to all systems undergoing period doubling. This 
fact implies remarkable consequences. For  a given 
system, if we denote by A, the value of the 
parameter at which its period doubles for the nth 

time, we find that the values A, converge to A~ (at 
which the motion is aperiodic) geometrically for 
large n. This means that 

A ~ -  A, oc 6 " (1) 

for a fixed value of  6 (the rate of onset of complex 
behavior) as n becomes large. Put differently, if we 
define 

An + l - An 

6 , = A , + 2 _ A , +  I, (2) 

3, (quickly) approaches the constant value 3. (Typ- 
ically, 3, will agree with 6 to several significant 
figures after just a few period doublings.) What is 
quite remarkable (beyond the fact that there is 
always a geometric convergence) is that, for all 
systems undergoing this period doubling, the 
value of 6 is predetermined at the universal 
value [1, 2] 

6 = 4.6692016 . . . .  (3) 

Thus, this definite number must appear as a natu- 
ral rate in oscillators, populations, fluids, and all 
systems exhibiting a period-doubling route to tur- 
bulence! In fact, most measurable properties of any 
such system in this aperiodic limit now can be 
determined, in a way that essentially bypasses the 
details of the equations governing each specific 
system because the theory of this behavior is 
universal over such details. That is, so long as a 
system possesses certain qualitative properties that 
enable-it to undergo this route to complexity, its 
quantitative properties are determined. (This result 
is analogous to the results of  the modern theory of  
critical phenomena, where a few qualitative prop- 
erties of the system undergoing a phase transition, 
notably the dimensionality, determine universal 
critical exponents. Indeed at a formal level the two 
theories are identical in that they are fixed-point 
theories, and the number 6, for example, can be 
viewed as a critical exponent.) Accordingly, it is 
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sufficient to study the simplest system exhibiting It is also useful to have a symbol, o, for functional 

this phenomenon to comprehend the general case. iteration (or composition), so that 

2. Functional iteration 

A random number generator is an example of  a 
simple iteration scheme that has complex behavior. 
Such a scheme generates the next pseudorandom 
number by a definite transformation upon the 
present pseudorandom number. In other words, a 
certain function is reevaluated successively to pro- 

duce a sequence of such numbers. Thus, i f f  is the 
function and x0 is a starting number (or "seed"), 

then x0, xl, • • •, x , , . . . ,  where 

xl =f(xo), 

x2 =f(x0,  

f .  of, ,  = f m  of" = fm+, .  (8) 

N o w  f"  in eq. (5) is itself a definite and computable 
function, so that x. as a function of  x0 is known in 
principle. 

If the function f is l i near  as, for example, 

f ( x )  = a x  (9) 

for some constant a, it is easy to see that 

f " ( x )  = a~x ,  ( !  O) 

so that, for this f ,  

x ,  = a"Xo (11) 

x .  +, = f ( x ° ) ,  (4) 
is the solution of the r e c u r r e n c e  r e l a t i o n  defined in 
eq. (4), 

is the sequence of generated pseudorandom num- 
bers. That  is, they are generated by f u n c t i o n a l  

i t e r a t i o n .  The n th element in the sequence is 

x, = f ( f ( . .  f ( f ( x o ) ) .  . .)) - f " ( x o ) ,  (5) 

where n is the total number of applications of f.  
[ f ' ( x )  is not the nth power o f f ( x ) ;  it is the nth 
i t e r a t e  of f ]  A property of iterates worthy of 
mention is 

f " ( f  "(x)) -- f "( f "(x)) = f m + "(X), (6) 

since each expression is simply m + n applications 
of./. It is understood that 

f ° ( x )  = x .  (7) 

x , +  1 = axn. (12) 

Should ]a I <  1, then x, geometrically converges to 
zero at the rate I /a .  This example is special in that 
the linearity of  f allows for the explicit com- 
putation o f f  n. 

We must choose a n o n l i n e a r  f to generate a 
pseudorandom sequence of numbers. I f  we choose 
for our nonlinear f 

f ( x )  = a - x 2, (13) 

then it turns out that f "  is a polynomial in x of  
order 2". This polynomial rapidly becomes un- 
manageably large; moreover,  its coefficients are 
polynomials in a of order up to 2 n- 1 and become 
equally difficult to compute. Thus even if x0 = 0, xn 
is a polynomial in a of  order 2"-1. These poly- 
nomials are nontrivial as can be surmised from the 
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fact that for certain values of  a, the sequence of 
numbers generated for almost all starting points in 
the range (a - a 2, a) possess all the mathematical 
properties of  a random sequence. 

Put differently, applying the simplest of  non- 

linear iteration schemes to itself sufficiently many 
times can create vastly complex behavior. Yet, 
precisely because the same operation is reapplied, 
it is conceivable that only a select few self- 
consistent patterns might emerge where the consis- 
tency is determined by the key notion of  iteration 
and not by the particular function performing the 
iterates. 

3. The fixed-point behavior of functional iterations 

Let us now make a direct onslaught against eq. 
(13) to see what it possesses. We want to know the 
behavior of  the system after many iterations. As we 
already know, high iterates of  f rapidly become 
very complicated. One way this growth can be 
prevented is to have the first iterate of  x0 be 
precisely x0 itself. Generally, this is impossible. 
Rather this condition determines possible x0's. 
Such a self-reproducing point is called a f i x ed  point 

of f .  The sequence of iterates is then x0, x0, x0 . . . .  
so that the behavior is static, or if viewed as 
periodic, it has period 1. 

It is elementary to determine the fixed points of  
eq. (13). For future convenience we shall use a 
modified form ofeq.  (13) obtained by a translation 
in x and some redefinitions: 

f i x )  = 42x(1 -- x), (15) 

so that as 2 varied, x = 0 is always a fixed point. 
Indeed, the fixed-point condition for eq. (15), 

x* = f i x * )  = 42x*(1 -- x*), (16) 

gives as the two fixed points 

x * = O ,  x * =  1--1/42.  (17) 

The maximum value o f f ( x )  in eq. (15) is at- 
tained at x = ½ and is equal to 2. Also, for 2 > 0 
and x in the interval (0, l ) , f ( x )  is always positive. 
Thus, if 2 is anywhere in the range [0, 1], then any 
iterate of  any x in (0, 1) is also always in (0, 1). 
Accordingly, in all that follows we shall consider 
only values of  x and 2 lying between 0 and 1. By 
eq. (16) for 0 ~ 2 < ~, only x* = 0 is within range, 

whereas for ¼ ~< 2 ~< 1, both fixed points are within 
the range. For example, if we set 2 = ½ and we start 
at the fixed point x* = 1 (that is, we set x0 = ½), 
then xj =x2 . . . . .  ½; similarly if x 0 = 0 ,  

x~ = x2 . . . . .  0, and the problem of computing 
the n th iterate is obviously trivial. 

What if we choose an Xo not at a fixed point? The 
easiest way to see what happens is to perform a 

graphical analysis. We graph y = f ( x )  together 
with y = x. Where the lines intersect we have 
x = y = f ( x ) ,  so that the intersections are precisely 
the fixed points. Now, if we choose an x 0 and plot 
it on the x-axis, the ordinate o f f ( x )  at x0 is x~. To 
obtain x> we must transfer x~ to the x-axis before 
reapplying f.  Reflection through the straight line 
y = x accomplishes precisely this operation. Alto- 
gether, to iterate an initial x0 successively, 

1) move vertically to the graph o f f ( x ) ,  
2) move horizontally to the graph of y = x, and 
3) repeat steps 1, 2, etc. 

Fig. 1 depicts this process for 2 = ½. The two fixed 
points are circled, and the first several iterates of  
an arbitrarily chosen point x0 are shown. What  
should be obvious is that if we start from any x0 
in (0,1) ( x = 0  and x = l  excluded), upon con- 
tinued iteration x, will converge to the fixed point 
at x = ½. No matter how close x0 is to the fixed 
point at x = 0, the iterates diverge away from it. 
Such a fixed point is termed unstable. Alternatively, 
for almost all x0 near enough to x = ½ [in this case, 
all x0 in (0, 1)], the iterates converge towards x = ½. 
Such a fixed point is termed stable or is referred to 
as an attractor of  period 1. 

Now, if we don' t  care about  the transient behav- 
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Fig. 1. Iterates of x 0 at 2 = 0.5. 
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= 4 2 ( 1 -  2x) so that  

f ' ( 0 )  --- 42 (! 8) 

and 

f ' (x*)  = 2 - 4)~. (19) 

For  0 < 2 < 1 ,  only x * = 0  is stable. At 2 = ~ ,  
3 , x* = 0 a n d f ' ( x * )  = 1. For  ¼ < 2 < ~, x is unstable 

3 r and x* is stable, while at  2 = ~, f (x 0 ) = - 1 and 
x* also has become unstable. Thus,  for 0 < 2 < 3, 

the eventual behavior  is known.  

4. Period 2 from the fixed point 

ior o f  the iterates of  x0, but only abou t  some 
regular behavior  that  will emerge eventually, then 
knowledge of  the stable fixed point  at x = ½ satisfies 
our  concern for the eventual behavior  of  the iter- 
ates. In this restricted sense of  eventual behavior ,  
the existence of  an a t t rac tor  determines the solu- 
tion independently of  the initial condit ion x0 pro-  

vided that  x0 is within the basin of attraction of  the 
at tractor;  that  is, that  it is attracted.  The a t t rac tor  
satisfies eq. (16), which is explicitly independent  o f  
x0. This condit ion is the basic theme of  universal 
behavior:  if an a t t rac tor  exists, the eventual behav-  
ior is independent  o f  the start ing point.  

W h a t  makes  x = 0 unstable, but  x = ½ stable? 
The reader should be able to convince himself  that  
x = 0 is unstable because the slope o f f ( x )  at x = 0 
is greater than 1. Indeed, if x* is a fixed point  o f  
/ a n d  the derivative o f f  at x*, f ' (x*) ,  is smaller 
than 1 in absolute value, then x*  is stable. I f  
If'(x*)l is greater than 1, then x* is unstable. Also, 
only stable fixed points can account  for the even- 
tual behavior  of  the iterates of  an arbi t rary  point.  

We now must  ask, " F o r  what  values of  2 are the 
fixed points at t ract ing?" By eq. (15) f ' ( x )  

Wha t  happens  to the system when )~ is in the 
range 3 < 2 < 1, where there are no at t ract ing fixed 
points? We will see that  as 2 increases slightly 
beyond 2 = 3 , fundergoes  period doubling. Tha t  is, 
instead of  having a stable cycle of  period 1 corre- 
sponding to one fixed point,  the system has a stable 
cycle of  period 2; that  is, the cycle contains two 
points. Since these two points are fixed points  of  
the function f 2 0 c applied twice) and since stability 

is determined by the slope of  a function at itsfixed 
points,  we must  now focus o n f  2. First, we examine 
a graph o f f  2 at 2 jus t  below 3. Figs. 2a and 2b show 

f and f2 ,  respectively, at )~ = 0.7. 
To  unders tand fig. 2b, observe first that,  since 

f is symmetr ic  abou t  its m a x i m u m  at x = ½, f2  is 
also symmetr ic  abou t  x = ½. Also, f2  must  have a 
fixed point  whenever f does because the second 
iterate of  a fixed point  is still that  same point.  The 
main  ingredient that  determines the period- 
doubling behavior  of  f as )~ increases is the re- 
lationship of  the slope o f f  2 to the slope o f f .  This 
relationship is a consequence of  the chain rule. By 

definition 

x2 =f2(x0), 
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Fig. 2. 2 = 0.7. x*  is the stable fixed point. The extrema o f f  2 
are located in (a) by constructing the inverse iterates o f x  = 0.5. 

where 

xl = f(xo), x2 = f ( x , ) .  

We leave it to the reader to verify by the chain rule 
that 

f 2'(Xo) = f ' ( x o ) f ' ( x , )  (20) 

and 

f " ' ( xo )  = f ' ( x o ) f ' ( x , )  . . . f ' ( x .  _ ,), (21) 

and elementary result that determines period 
doubling. If we start at a fixed point o f  f and apply 
eq. (20) to x0 = x*, so that x2 = x~ = x*, then 

f 2 '(x*) = f ' ( x * ) f ' ( x * )  = [f ' (x*)]2.  (22) 

Since at 2 = 0.7, ]f'(x*)] < 1, it follows from eq. 
(22) that 

0 <f2 ' (x*)  < 1. 

Also, if we start at the extremum of f ,  so that x0 = ½ 
and f ' (x0 ) - -0 ,  it follows from eq. (21) that 

f"'(½) = 0 (23) 

for all n. In particular, f2  is extreme (and a 
minimum) at ½. Also, by eq. ( 20 ) , f  2 will be extreme 
(and a maximum) at the x0 that will iterate under 
f to x = ½, since then xl = ½ and f'(x 0 = 0. These 
points, the inverses of  x = ½, are found by going 
vertically down along x =½ to y = x and then 
horizontally to y = f ( x ) .  (Reverse the arrows in fig. 
1, and see fig. 2a.) Since f has a maximum, there 
are two horizontal intersections and, hence, the two 
maxima o f  fig. 2b. The abi l i ty  o f f  to have complex  

behaviors is prec ise ly  the consequence o f  its double- 
valued inverse, which is in turn a reflection o f  its 
possession of  an extremum. A monotone  f ,  one 
that always increases, always has simple behaviors, 
whether or not the behaviors are easy to compute. 
A linear f is always monotone.  The f ' s  we care 
about always fold over and so are strongly non- 
linear. This folding nonlinearity gives rise to uni- 
versality. Just as linearity in any system implies a 
definite method of  solution, folding nonlinearity in 
any system also implies a definite method of  solu- 
tion. In fact folding nonlinearity in the aperiodic 
limit o f  period doubling in any system is solvable, 
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and many systems, such as various coupled non- 
linear differential equations, possess this non- 
linearity. 

To return to fig. 2b, as 2 - .3  and the maximum 
value of f increases to 3, f ' ( x * ) ~ - I  and 
f2'(x*)--* + 1. As 2 increases beyond ¼, [f'(x*)[ > 1 
and f2'(x*) > 1, so that f2 must develop two new 
fixed points beyond those o f f ;  that is, f2 will cross 
y = x at two more points. This transition is de- 
picted in figs. 3a and 3b for f'and f2, respectively, 
at 2 = 0.75, and similarly in fig. 4a and 4b at 
2 = 0.785. (Observe the exceptionally slow con- 
vergence to x* at 2 =0 .75 ,  where iterates ap- 
proach the fixed point not geometrically, but 
rather with deviations from x* inversely propor- 
tional to the square root of the number of 
iterations.) Since x* and x*, the new fixed points 
o f f  2, are not fixed points o f f ,  it must be that f 
sends one into the other: 

x~' =fix*) 

and 

x* =fix*). 

Such a pair of points, termed a 2-cycle, is depicted 
by the limiting unwinding circulating square in fig. 
4a. Observe in fig. 4b that the slope of f2  is in 
excess of 1 at the fixed point of f and so is an 
unstable fixed point o f f  2, while the two new fixed 
points have slopes smaller than 1, and so are 
stable; that is, every two iterates o f f  will have a 
point attracted toward x* if it is sufficiently close 
to x* or toward x* if it is sufficiently close to x~'. 
This means that the sequence under f ,  
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Fig. 3. 2 = 0.75. (a) depicts the slow convergence to the fixed 
point, p osculates about the fixed point. 

X O, X l ,  X2~ X3~ . , . , 

eventually becomes arbitrarily close to the sequence 

x* ,  x* ,  * * X l ~ X 2 , . - . ,  

so that this is a stable 2-cycle, or an attractor of 

period 2. Thus, we have observed for eq. (15) the 
first period doubling as the parameter 2 has in- 
creased. 

There is a point of paramount importance to be 
observed; namely, f2  has the same slope at x* and 
at x*. This point is a direct consequence ofeq. (20), 
since if x0 = x~', then xl = x*, and vice versa, so 
that the product of the slopes is the same. More 
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Fig. 4. 2 = 0.785. (a) shows the outward spiralling to a stable 
2-cycle. The elements of the 2-cycle, x* and x~', are located as 
fixed points in (b). 

generally, if x*, x*  . . . . .  x*  is an n-cycle so that 

Xr*+, = f ( x * ) ,  

and 

x? =f(x*), 

r = l , 2 , . . . , n - l ,  

(24) 

and 

t f"'(x*) =f'(x*)...f (x.). (26) 

From this observation will follow period doubling 

ad infinitum. 

As 2 is increased further, the minimum at x = ½ 
will drop as the slope o f f  2 through the fixed point 
o f f  increases. At some value of 2, denoted by 21, 
x = ½ will become a fixed point of f2. Simulta- 
neously, the right-hand maximum will also become 
a fixed point o f f  2. [By eq. (26), both elements of 
the 2-cycle have slope 0.] Figs. 5a and 5b depict the 
situation that occurs at 2 = 21 [3]. 

5. Period doubling ad infinitum 

We are now close to the end of this story. As we 
increase 2 further, the minimum drops still lower, 
so that both x* and x* have negative slopes. At 
some parameter value, denoted by A2, the slope at 
both x* and x* becomes equal to - 1. Thus at A2 
the same situation has developed for f2 as devel- 
oped for f at A 1 =3.  This transitional case is 
depicted in figs. 6a and 6b. Accordingly, just as 
the fixed point of  f a t  Al issued into being a 2-cycle, 
so too does each fixed point o f f  2 at A 2 create a 
2-cycle, which in turn is a 4-cycle of f .  That is, we 
have now encountered the second period doubling. 

The manner in which we were able to follow the 
creation of  the 2-cycle at A1 was to anticipate the 
presence of  period 2, and so to consider f2, which 
would resolve the cycle into a pair of  fixed points. 
Similarly, to resolve period 4 into fixed points we 
now should consider f4. Beyond being the fourth 
iterate off ,  eq. (8) tells us that fa  can be computed 
from f2: 

then each is a fixed point off" with identical slopes: f4  = f 2  o f  2. 

x* =f"(x*) ,  r = 1,2 . . . . .  n, (25) From this point, we can abandonfitself ,  and take 



24 M.J. Feigenbaum / Universal behavior in nonlinear O,stems 

a 

f 

/ 
/ 

/ 
/. 

/ / 
i ̧  J / 

/ 
/ / 

/ 
/ 

/,' / 
/" / 

/ / 
/ / 

/ / 

/ 
I' / 

i" / / 
i: / 
i' / / 

/ /  

/ /  

/ /  

/ 

j J J7 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ T 
/ 

2 
/ /  /Y 

/ /  
d- 

\ 

% \ 

/ / / / / ]  

Fig. 5. 2 = 2 I. A superstable 2-cycle. x? and x~' are at extrema 
ofF. 

f2 as the "fundamental" function. Then, just a s f  2 
was constructed by iterating f with itself we now 
iterate f2  with itself. The manner in which f 2  
reveals itself as being an iterate o f  f is the slope 
equality at the fixed points o f f  2, which we saw 
imposed by the chain rule. Since the operation of  
the chain rule is "automatic", we actually needed 
to consider only the fixed point o f  f2  nearest to 
x = ~; the behavior of  the other fixed point is slaved 
to it. Thus, at the level o f f  4, we again need to focus 
on only the fixed point o f f  4 nearest to x = ½: the 
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Fig. 6. 2 = A 2. x* and x~ in (b) have the same slow con- 
vergence as the fixed point in fig. 3a. 

other th ree  fixed points are similarly slaved to it. 
Thus, a recursive scheme has been unearthed. We 
now increase 2 to 22, so that the fixed point o f f  4 
nearest to x = ½ is again at x = i with slope 0. Figs. 
7a and 7b depict this situation for f z  and f4 ,  
respectively. When 2 increases further, the max- 
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imum o f f  4 at x = ½ now moves up, developing a 
fixed point with negative slope. Finally, at A3 when 
the slope of this fixed point (as well as the other 
three) is again - 1, each fixed point will split into 
a pair giving rise to an 8-cycle, which is now stable. 
Again, f8  = f 4  o f  4, and f4  can be viewed as funda- 
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Fig. 7. 2 = 2 2. A superstable 4-cycle. The region within the 
dashed square in (a) should be compared  with all o f  fig. 5a. 

mental. We define 23 so that x = ½ again is a fixed 
point, this time o f f  8. Then at A4 the slopes are - 1, 
and another period doubling occurs. Always, 

f2,+, = f2 .  o f  2.. (27) 

Provided that a constraint on the range of  2 does 
not prevent it from decreasing the slope at the 
appropriate fixed point past - I ,  this doubling 
must recur ad infinitum. 

Basically, the mechanism that f2.  uses to period 
double at A,+~ is the same mechanism that f v + ,  
will use to double at A,+2. The function f 2 . + l  is 

• / , 2 n  + 2 constructed from f : "  by eq. (27), and s imi lanyj  
will be constructed from f2"+L Thus, there is a 
definite operation that, by acting on functions, 
creates functions; in particular, the operation act- 
ing on f2, at A,+~, (or better, f2° at 2,) will 
de te rminef  2"+ ' at )~, + 1. Also, since we need to keep 
track o f f  2" only in the interval including the fixed 
point o f f  2" closest to x = ½ and since this interval 
becomes increasingly small as 2 increases, the part 
o f f  that generates this region is also the restriction 
o f f  to an increasingly small interval about x = ½. 
(Actually, slopes o f f  at points farther away also 
matter, but these merely set a "scale", which will 
be eliminated by a rescaling.) The behavior of J 
away from x =½ is immaterial to the period- 
doubling behavior, and in the limit of  large n only 
the nature o f f ' s  maximum can matter. This means 
that in the infinite period-doubling limit, all func- 
tions with a quadratic extremum will have identical 
behavior. [f"(½)¢ 0 is the generic circumstance.] 
Therefore, the operation on functions will have a 
stable fixed point in the space of functions, which 
will be the common universal limit [2] of high 
iterates of any specific function. To determine this 
universal limit we must enlarge our scope vastly, so 
that the role of the starting point, x0, will be played 
by an arbitrary function; the attracting fixed point 
will become a universal function obeying an equa- 
tion implicating only itself. The role of  the function 
in the equation x0 =f(x0) now must be played by 
an operation that yields a new function when it is 
performed upon a function. In fact, the heart of 
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this operation is the functional composition of  eq. 

(27). If  we can determine the exact operator and 
actually can solve its fixed-point problem, we shall 
understand why a special number, such as 6 of  eq. 
(3), has emerged independently of  the specific 
system (the starting function) we have considered. 

6. The  universal  l imit  o f  high iterates 

In this section we sketch the solution to the 
fixed-point problem. In fig. 7a, a dashed square 
encloses the part  o f f  2 that we must focus on for 
all further period doublings. This square should be 
compared with the unit square that comprises all 
of fig. 5a. I f  the fig. 7a square is reflected through 

x = ½, y = ½ and then magnified so that the circu- 
lation squares of  figs. 4a and 5a are of  equal size, 
we will have in each square a piece of  a function 
that has the same kind of maximum at x = ½ and 
falls to zero at the right-hand lower corner of  the 
circulation square. Just as f produced this second 
curve o f f  2 in the square as ). increased from 2~ to 
22, so too wi l l f  2 produce another curve, which will 
be similar to the other two when it has been 

magnified suitably and reflected twice. Fig. 8 shows 
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Fig. 8. The superposition of the suitably magnified dotted 
squares o f f  2" ' at 2, (as in figs. 5a, 7a . . . .  ). 

this superposition for the first five such functions; 
at the resolution of the figure, observe that the last 

three curves are coincident. Moreover, the scale 
reduction that f2 will determine for f 4  is based 

solely on the functional composition, so that if 
these curves for f2°, f2,+., converge (as they obvi- 
ously do in fig. 8), the scale reduction from level 

to level will converge to a definite constant. But the 
width of each circulation square is just the distance 
between x = i when it is a fixed point o f f  2" and the 

fixed point o f f  2" next nearest to x = ½ (figs. 7a and 
7b). That  is, asymptotically, the separation of  adja- 

cent elements of  period-doubled attractors is' re- 

duced by a constant value from one doubling to the 
next. Also from one doubling to the next, this next 

nearest element alternates from one side of  x = ½ to 
the other. Let d, denote the algebraic distance from 
x = ~ to the nearest element of the attractor cycle 
of  period 2", in the 2"-cycle at 2,. A positive number 

scales this distance down in the 2" + 1-cycle at 2, + 
[1, 2] 

d. 
~. (28) 

d,+l 

But since rescaling is determined only by func- 
tional composition, there is some function that 
composed with itself will reproduce itself reduced in 
scale by - ~ .  The function has a quadratic max- 
imum at x = l, is symmetric about  x = ½, and can 
be scaled by hand to equal 1 at x =½. Shifting 
coordinates so that x = ½--*x = 0, we have 

--~g(g(x/ot)) = g(x).  (29) 

Substituting g(0) = 1, we have 

1 
- - .  (30) gO)  = 

Accordingly, eq. (29) is a definite equation for a 
function g depending on x through x 2 and having 
a maximum of 1 at x = 0 .  There is a unique 
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smooth solution to eq. (29), which determines 

= 2.502907875 . . . .  (31) 

For future work it is expedient to perform a 
coordinate translation that moves x = ½ to x = 0. 
Thus, eq. (32) becomes 

Knowing • we can predict through eq. (28) a 
definite scaling law binding on the iterates of any 
scheme possessing period doubling. The law has, 
indeed, been amply verified experimentally. By eq. 
(29), we see that the relevant operation upon 
functions that underlies period doubling is func- 
tional composition followed by magnification, 
where the magnification is determined by the 
fixed-point condition of eq. (29) with the function 
g the fixed point in this space of  functions. How- 
ever, eq. (29) does not describe a stable fixed point 
because we have not incorporated in it the param- 
eter increase from 2, to 2,+ 1. Thus, g is not the 
limiting function of the curves in the circulation 
squares, although it is intimately related to that 
function. The full theory is described in the next 
section. Here we merely state that we can deter- 
mine the limiting function and thereby can deter- 
mine the location of  the actual elements of  limiting 
2"-cycles. We also have established that g is an 
unstable fixed point of  functional composition, 
where the rate of divergence away from g is 
precisely 6 ofeq.  (3) and so is computable. Accord- 
ingly, there is a full theory that determines, in a 
precise quantitative way, the aperiodic limit of 
functional iterations with an unspecified func t ion f  
[4]. 

7. Some details of the full theory 

Returning to eq. (28), we are in a position to 
describe theoretically the universal scaling of high- 
order cycles and the convergence to a universal 
limit. Since d, is the distance between x = ½ and the 
element of the 2" cycle at 2, nearest to x = ½ and 
since this nearest element is the 2"-~ iterate o f x  = ½ 
(which is true because these two points were coin- 
cident before the n th period doubling began to 
split them apart), we have 

d, =f2,- ' (2, ,  ½) - ½. (32) 

d, = f2 ,  1(~., 0). (33) 

Eq. (28) now determines that the rescaled dis- 
tances, 

r.-(-~)"do+~ 

will converge to a definite finite value as n ~ .  
That is, 

lim ( - ~)"f2n(~. +1, 0) (34) 
n~oo 

must exist if eq. (28) holds. 
However, from fig. 8 we know something stron- 

ger than eq. (34). When the nth iterated function 
is magnified by (-ct)" ,  it converges to a definite 
function. Eq. (34) is the value of this function at 
x = 0. After the magnification, the convergent 
functions are given by 

( -  ~)"f2"0.. + ,, x / ( -  ~)"). 

Thus, 

gt(x) --- l i m ( -  ct)"f2"(2, + ~, x / ( -  ct)") (35) 

is the limiting function inscribed in the square of 
fig. 8. The function gl(x) is, by the argument of the 
restriction o f f  to increasingly small intervals about 
its maximum, the universal limit of  all iterates of all 
f ' s  with a quadratic extremum. Indeed, it is numer- 
ically easy to ascertain that gl of eq. (35) is always 
the same function independent of  the f i n  eq. (32). 

What is this universal function good for? Fig. 5a 
shows a crude approximation of  gt[n = 0 in the 
limit of eq. (35)], while fig. 7a shows a better 
approximation (n = 1). In fact, the extrema of g~ 
near the fixed points of g~ support circulation 
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squares each of which contains two points of  the 
cycle. (The two squares shown in fig. 7a locate the 
four elements of  the cycle.) That  is, gL determines 
the location of elements of  high-order 2n-cycles 

near x = 0. Since g~ is universal, we now have the 
amazing result that the location of the actual 
elements of highly doubled cycles is universal! The 
reader might guess this is a very powerful result. 
Fig. 9 shows g~ out to x sufficiently large to have 
8 circulation squares, and hence locates the 15 

elements of a 2"-cycle nearest to x = 0. Also, the 
universal value of the scaling parameter  ~, ob- 
tained numerically, is 

0c = 2.502907875 . . . .  (36) 

[through an experiment that observes the d,, of eq. 

(28)] in any phenomenon exhibiting period 
doubling. 

Ifg~ is universal, then of course its iterate g~ also 
is universal. Fig. 7b depicts an early approximation 
to this iterate. In fact, let us define a new universal 
function go, obtained by scaling g~: 

g0(x) - - ~ g ~ ( -  x / ~ ) .  (37) 

(Because g~ is universal and the iterates of  our 

quadratic function are all symmetric in x, both gl 
and go are symmetric functions. Accordingly, the 
minus sign within g~ can be dropped with im- 
punity.) From eq. (35), we now can write 

Like 6, ~ is a number that can be measured n ~n go(x) = lim ( -  o~).f" (,~,, x/( - ~)"). (38) 
n ~ ,Z 
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Fig. 9. The function g~. The squares locate cycle elements. 
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[We introduced the scaling of eq. (37) to provide 
one power of ~ per period doubling, since each 
successive iterate of fZn reduces the scale by ~.] 

In fact, we can generalize eqs. (35) and (38) to 

a fami ly  of  universal functions gr: 

under a magnification of  g. Thus, the theory has 
nothing to say about absolute scales. Accordingly, 
we must fix this by hand by setting 

g(0) = 1. (44) 

gr(x) = lim ( -  ct)"f2"(2, + ,, x / ( -  ct)"). (39) 
n ~ , : ( ,  

To understand this, observe that go locates the 
cycle elements as the fixed points of go at extrema; 
g~ locates the same elements by determining two 
elements per extremum. Similarly, gr determines 2 ~ 
elements about each extremum near a fixed point 
o f  g r. Since each f2 ,  is always magnified by ( -c t )"  
for each r, the scales of  all gr are the same. Indeed, 
g~ for r > 1 looks like gl of  fig. 9, except that each 
extremum is slightly higher, to accommodate a 
2r-cycle. Since each extremum must grow by con- 
vergently small amounts to accommodate higher 
and higher 2r-cycles, we are led to conclude that 

g(x) = l i m  gr(X) (40)  
r ~  

must exist. By eq. (39), 

g ( x )  = l i m ( -  ~),f2,()o~, x / ( -  ~)"). (41) 
n ~  3c  

Unlike the functions gr, g ( x )  is obtained as a limit 
of f2"'s at a f i x e d  value of 2. Indeed, this is the 
special significance of 2~; it is an isolated value of 
2 at which repeated iteration and magnification 
lead to a convergent function. 

We now can write the equation that g satisfies. 
Analogously to eq. (37), it is easy to verify that all 
gr are related by 

gr -1 (x ) = - O~gr(gr( - -  X /0~ )). (42) 

By eq. (40), it follows that g satisfies 

g(x)= -~g(g(x/~)). (43) 

The reader can verify that eq. (43) is invariant 

Also, we must specify the nature of the maximum 
of g at x - - 0  ( f o r  example, quadratic). Finally, 
since g is to be built by iterating a - x 2, it must be 
both smooth and a function of x through x 2. With 
these specifications, eq. (43) has a unique solution. 
By eqs. (44) and (43), 

g(O) = 1 = -- ctg(g(O)) = -- ag(1), 

so that 

= - l/g(1). (45) 

Accordingly, eq. (43) determines ~ together with g. 
Let us comment on the nature of eq. (43), a 

so-called functional equation. Because g is smooth, 
if we know its value at a finite number of  points, 
we know its value to some approximation on the 
interval containing these points by any sufficiently 
smooth interpolation. Thus, to some degree of  
accuracy, eq. (43) can be replaced by a finite 
coupled system of  nonlinear equations, exactly 
then, eq. (43) is an infinite-dimensional, nonlinear 
vector equation. Accordingly, we have obtained 
the solution to one-dimensional period doubling 
through our infinite-dimensional, explicitly univer- 
sal problem. Eq. (43) must be infinite-dimensional 
because it must keep track of the infinite number 
of cycle elements demanded of any attempt to solve 
the period-doubling problem. Rigorous mathe- 
matics for equations like eq. (43) is just beyond the 
boundary of present mathematical knowledge. 

At this point, we must determine two items. 
First, where is 6? Second, how do we obtain g~, the 
real function of interest for locating cycle elements? 
The two problems are part of one question. Eq. 
(42) is itself an iteration scheme. However, unlike 
the elements in eq. (4), the elements acted on in eq. 
(42) are functions. The analogue of  the function of 
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f in eq. (4) is the operation in function space of 
functional composition followed by a 
magnification. If we call this operation T, and an 
element of the function space qJ, eq. (42) gives 

T[~, ] (x)  = - ~ , ~ ( -  x / a ) .  (46) 

which passes through g (at 2 - - 0 )  and deviates 
from g along the unique direction h. But J; is just 
one of our transformations [eq. (4)]? Thus, as we 
vary 2, f~ will undergo period doubling, doubling 
to a 2"-cycle at A,. By eq. (41), 2~ for the family 

of functions f~. in eq. (49) is 

In terms of T, eq. (42) now reads 

g~_, = TLg~], (47) 

and eq. (43) reads 

g = T[g]. (48) 

Thus, g is precisely the fixed point of T. Since g is 
the limit of the sequence gr, we can obtain gr for 
large r by linearizing T about its fixed point g. 
Once we have gr in the linear regime, the exact 
repeated application of T by eq. (47) will provide 
g~. Thus, we must investigate the stability of T at 
the fixed point g. However, it is obvious that T is 
unstable at g: for a large enough r, g~ is a point 
arbitrarily close to the fixed point g; by eq. (47), 
successive iterates of gr under T move away from 
g. How unstable is T? Consider a one-parameter 
family of functionsf~, which means a "line" in the 
function space. For each f,  there is an isolated 
parameter value ),~, for which repeated applica- 
tions of T lead to convergence towards g[eq. (41)]. 
Now, the function space can be "packed" with all 
the lines corresponding to the var ious f ' s .  The set 
of all the points on these lines specified by the 
respective 2~'s determines a "surface" having the 
property that repeated applications of T to any 
point on it will converge to g. This is the surface 
of stability of T (the "stable manifold" of T 
through g). But through each point of this surface 
issues out the corresponding line, which is one- 
dimensional since it is parametrized by a single 
parameter, 2. Accordingly, Tis unstable in only one 

direction in function space. Linearized about g, 
this line of instability can be written as the one- 
parameter family 

£ ( x )  = g ( x )  - ;~h(x), (49) 

; ~ - -  0. (50) 

Thus, by eq. (1) 

)~,~6 " (51) 

Since applications of T by eq. (47) iterate in the 
opposite direction (diverge away from g), it now 
follows that the rate of instability of T along h 
must be precisely ¢5. 

Accordingly, we find ~ and gL in the following 
way. First, we must linearize the operation T about 
its fixed point g. Next, we must determine the 
stability directions of the linearized operator. 
Moreover, we expect there to be precisely one 
direction of instability. Indeed, it turns out that 
infinitesimal deformations (conjugacies), of g de- 
termine stable directions, while a unique unstable 
direction, h, emerges with a stability rate (eigen- 
value) precisely the 6 of eq. (3). Eq. (49) at 2r is 
precisely g, for asymptotically large r. Thus gr is 
known asymptotically, so that we have entered the 
sequence gr and can now, by repeated use of eq. 
(47), step down to gl. All the ingredients of a full 
description of high-order 2"-cycles now are at hand 
and evidently are universal. 

Although we have said that the function gj 
universally locates cycle elements near x = 0, we 
must understand that it doesn't locate all cycle 
elements. This is possible because a finite distance 
of the scale of gl (for example, the location of the 
element nearest to x = 0) has been magnified by ~" 
for n diverging. Indeed, the distances from x = 0 of 
all elements of a 2"-cycle, "accurately" located by 
gl, are reduced by - ~  in the 2" + l-cycle. However, 
it is obvious that some elements have no such 
scaling: because f ( 0 ) = a  n in eq. (13), and a,~a-lj,  

which is a definite nonzero number, the distance 
from the origin of the element of the 2"-cycle 
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farthest to the right certainly has not been reduced 

by - ~ at each period doubling. This suggests that 
we must measure locations of  elements on the far 
right with respect to the farthest right point. I f  we 
do this, we can see that these distances scale by ~2, 
since they are the images through the quadractic 
maximum o f f  at x = 0 of  elements close to x = 0 
scaling with - ~. In fact, if we image g~ through the 
maximum of f (through a quadratic conjugacy), 
then we shall indeed obtain a new universal func- 
tion that locates cycle elements near the right-most 
element. The correct description of a highly dou- 
bled cycle now emerges as one of universal local 

clusters [2]. 
We can state the scope of  universality for the 

location of cycle elements precisely. Since f(2, ,  x) 
exactly locates the two elements of  the 2'-cycle, and 

since f ( 2 ,  x)  is an approximation to gl [n = 0 in eq. 
(35)], we evidently can locate both points exactly 
by appropriately sealing g~. Next, near x = 0, 
f2(~2, X) is a better approximation to g~ (suitably 

scaled). However, in general, the more accurately 
we scale gl to determine the smallest 2-cycle ele- 
ments, the greater is the error in its determination 
of  the right-most elements. Again, near x = 0, 
f4(23, x)  is a still better approximation to g~. In- 

deed, the suitably scaled g~ now can determine 
several points about  x = 0 accurately, but deter- 
mination of the right-most elements is still worse. 
In this fashion, it follows that gl, suitably scaled, 
can determine 2 r points of  the 2" cycle near x = 0 

for r ~ n. If  we focus on the neighborhood of one 
of these 2 r points at some definite distance from 
x = 0, then by eq. (35) the larger the n, the larger 
the s c a l e d  distance of this region from x = 0, and 
so, the poorer the approximation of  the location of 
fixed points in it by g~. However, just as we can 
construct the version of  g~ that applies at the 

right-most cycle element, we also can construct the 
version of g~ that applies at this chosen neigh- 
borhood. Accordingly, the universal description is 
set through an acceptable tolerance: if we "mea-  
sure" f2.  at some definite n, then we can use the 
actual location of  the elements as foci for 2" 
versions of  g~, each applicable at one such point. 

For all further period doubling, we determine the 
new cycle elements through the g~'s. In summary,  
the m o r e  a c c u r a t e l y  we care  to k n o w  the loca t ions  

of arbitrarily high-order cycle elements, the m o r e  

p a r a m e t e r s  we m u s t  m e a s u r e  (namely, the cycle 
elements at some chosen order of  period doubling). 
This is the sense in which the universality theory is 
asymptotic. Its ability to have serious predictive 
power is the fortunate consequence of the high 
convergence rate 6(~4.67) .  Thus, typically after 
the first two or three period doublings, this asymp- 
totic theory is already accurate to within several 
percent. If  a period-doubling system is m e a s u r e d  in 
its 4- or 8-cycle, its behavior throughout and 
symmetrically beyond the period-doubling regime 
also is determined to within a few percent. 

To make precise dynamical predictions, we do 

not have to construct all the local versions of  gl; all 
we really need to know is the local scal ing  every- 
where along the attractor. The scaling is - ~  at 
x = 0 and ~2 at the right-most element. But what 

is it at an arbitrary point? We can determine the 
scaling law if we order elements not by their 
location on the x-axis, but rather by their order as 
iterates of  x = 0. Because the time sequence in 
which a process evolves is precisely this ordering, 
the result will be of  immediate and powerful 
predictive value. It is precisely this scaling law that 
allows us to compute the spectrum of the onset of  
turbulence in period-doubling systems [5]. 

What  must we compute? First, just as the ele- 
ment in the 2n-cycle nearest to x = 0 is the element 

halfway around the cycle from x = 0, the element 
nearest to an arbitrarily chosen element is precisely 
the one halfway around the cycle from it. Let us 

denote by d , ( m )  the distance between the mth  cycle 
element (xm) and the element nearest to it in a 
2"-cycle. [The dn of eq. (28) is d,(0)]. As just 
explained, 

d , ( m )  = x m _ f 2 ,  l(i],., Xtrt). (52) 

However, xm is the mth  iterate of  x0 = 0. Recalling 
from eq. (6) that powers commute,  we find 

d , ( m )  = f " ( 2 , ,  0) - f " ( 2 , , f  2" 1(2,, 0)). (53) 
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Let us, for the moment ,  specialize to m of  the fo rm 
2" % in which case 

d,(2" r) = f 2 .  ,()~,, 0 ) - f 2 "  ,(2,,f2, '(2,, 0)) 

= f 2 .  - r(2(, _ ,~ + ,, 0) 

_ f 2 ,  r(2(,_ r)+,f2" '(Z,, 0)). (54) 

For  r ,~ n (which can still allow r >> l for n large), 
we have, by eq. (39), 

d,,(2" - ~) ,,~ ( - ~) - (" - ')[g~(O) 

- g ~ ( ( -  ~)" - 72" '(Z., 0))]  

o r  

d,,(2" r) ~ (__ ~) I" ~'[g~(O) 

- g r ( ( -  ~ ) -  '+ 'g,(O))].  (55) 

The object we want  to determine is the local 
scaling at the m th element, that  is, the ratio of  
nearest  separat ions at the ruth iterate of  x = 0, at 
successive values of  n. Tha t  is, if the scaling is 
called a, 

d , + , ( m )  
a . ( m  ) =-- - -  (56) 

d , ( m )  

[Observe by eq. (28), the definition of  ~, that  
a,(0) ~ ( -  ~ ) -  i.] Specializing again to m = 2" % 

where r '4 n, we have by eq. (55) 

gr + ,(O) - -  gr + , ( ( - -  ~ ) r g l ( O ) )  
a(2" ') ~ (57) 

& ( 0 )  - g r ( ( -  c~) ~+ ~g,(0))  

Finally, let us rescale the axis o f  iterates so that  all 
2" +~ iterates are within a unit interval. Labelling 
this axis by t, the value of  t o f  the m th element in 
a 2"-cycle is 

t , (m)  = m / Z ' .  (58) 

In particular,  we have 

t,(2"-r) = 2 '. (59) 

Defining a along the t-axis natural ly as 

a ( t , ( m ) ) . ~ a , ( m )  (as n--*oo), 

we have by eqs. (57) and (59), 

0-(2 .... ' )  = g~+ ,(0) - gr+ ~((-- ~) -~g~(0))  
gr(0) - -  g~((--  ~)  r+ 'g , (0) )  

(60) 

It is not much  more  difficult to obta in  a for all t. 
This is done first for rat ional  t by writing t in its 
binary expansion: 

l r v2r~ . . .  = 2 n + 2 ~2 + • • .. 

In the 2"-cycle approx imat ion  we require a,  at the 
2" r, + 2" r2 + • • • iterate o f  the origin. But, by eq. 

(8), 

f2 .  q+2. ' 2 + "  = f 2 ,  ,, o f  2, '2 o • . .. 

It follows by manipula t ions  identical to those that  
led f rom eq. (54) to eq. (60) that  a at such values 
of  t is obta ined by replacing the individual gr terms 
in eq. (60) by appropr ia te  iterates of  various gr's. 

There is one last ingredient to the compu ta t ion  
o f a .  W e k n o w t h a t a ( 0 ) = - ~  ~. We also know 
that  a , ( 1 ) ~  c~ 2. But, by eq. (59), 

t ,(l)  = 2 "--*0. 

Thus  a is discont inuous at t = 0 ,  with 
a ( 0 - ~ ) =  _ ~ - i  and a ( 0 + E ) = ~ - 2 ( E - - * 0 + ) .  In- 
deed, since x2, , is always very close to the origin, 
each of  these points is imaged quadratically.  Thus  
eq. (60) actually determines a(2  - r -~  - E ) ,  while 
a ( 2 - r  l + ~) is obta ined by replacing each numer-  
a tor  and denomina to r  gr by its square. The  same 
replacement  also is correct  for each multi-gr term 
that  figures into a at the binary expanded rat ionals  

[6]. 
Altogether,  we have the following results, a ( t )  

can be compu ted  for all t, and it is universal since 
its explicit computa t ion  depends only upon the 
universal functions gr. a is discontinuous at all the 
rationals.  However ,  it can be established that  the 
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Fig. 10. The trajectory 
~(x + ~) = - ~(x). 

o -~ (x) 

scaling function. Observe that 

larger the number of terms in the binary expansion 
of a rational t, the smaller the discontinuity of a. 
Lastly, as a finite number of iterates leaves t 
unchanged as n ~ ,  a must be continuous except 
at the rationals. Fig. 10 depicts 1/a(t). Despite the 
pathological nature of a, the reader will observe 
that basically it is constant half the time at ~ - ~ and 
half the time at c~ - 2 for 0 < t < ½. In a succeeding 
approximation, it can be decomposed in each half 
into two slightly different quarters, and so forth. [It 
is easy to verify from eq. (52) that a is periodic in 
t of  period 1, and has the symmetry 

. ( t  + ½) -- - . ( t ) .  

Accordingly, we have paid attention to its first half 
0 <  t <½.] With ~ we are at last finished with 
one-dimensional iterates per se. 

8. Universal behavior in higher dimensional systems 

So far we have discussed iteration in one vari- 
able; eq. (15) is the prototype. Eq. (14), an example 
of  iteration in two dimensions, has the special 
property of  preserving areas. A generalization of 
eq. (14), 

and 

Y,+l = a  +bx, ,  (61) 

with [b[ < I, contracts areas. Eq. (61) is interesting 
because it possesses a so-called strange attractor. 
This means an attractor (as before) constructed by 
folding a curve repeatedly upon itself (fig. 11) with 
the consequent property that two initial points 
very near to one another are, in fact, very far from 
each other when the distance is measured along the 
folded attractor, which is the path they follow 
upon iteration. This means that after some iter- 
ation, they will soon be far apart in actual distance 
as well as when measured along the attractor. This 
general mechanism gives a system highly sensitive 
dependence upon its initial conditions and a truly 
statistical character: since very small differences in 
initial conditions are magnified quickly, unless the 
initial conditions are known to infinite precision, all 
known knowledge is eroded rapidly to future igno- 
rance. Now, eq. (61) enters into the early stages of  
statistical behavior through period doubling. 
Moreover, 6 of eq. (3) is again the rate of onset of 
complexity, and ct of eq. (31) is again the rate at 
which the spacing of  adjacent attractor points is 
vanishing. Indeed, the one-dimensional theory de- 
termines all behavior of  eq. (61) in the onset 
regime. 

i! ..!i ..4 /~" . ~ - ~ ' ~ ~ : ~ - ~ . , ¢ '  ,:, !:, . .  ;,÷ .j>v¢ . . . . . . . .  

Fig. II. The plotted points lie on the "strange attractor" of 
2 

Xn + l = Yn - -  Xn  Duffing's equation. 
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In fact, dimensionality is irrelevant. The same 
theory, the same numbers, etc. also work for 
iterations in N dimensions, provided that the sys- 
tem goes through period doubling. The basic pro- 
cess, wherever period doubling occurs ad infinitum, 
is functional composition from one level to the 
next. Accordingly, a modification of eq. (29) is at 
the heart of the process, with composition on 
fulactions from N dimensions to N dimensions. 
Should the specific iteration function contract N-  
dimensional volumes (a dissipative process), then 
in general there is one direction of slowest con- 
traction, so that after a number of iterations the 
process is effectively one-dimensional. Put 
differently, the one-dimensional solution to eq. (29) 
is always a solution to its N-dimensional analogue. 
It is the relevant fixed point of the analogue if the 
iteration function is contractive [7]. 

9. Universal behavior in differential systems 

The next step of generalization is to include 
systems of differential equations. A prototypic 
equation is Duffing's oscillator, a driven damped 
anharmonic oscillator. 

5~ + kA + x  3 = b sin 2nt. (62) 

The periodic drive of period 1 determines a natural 
time step. Fig. 12a depicts a period 1 attractor, 
usually referred to as a limit cycle. It is an attractor 
because, for a range of initial conditions, the 
solution to eq. (62) settles down to the cycle. It is 
period 1 because it repeats the same curve in every 
period of the drive. Fig. 12b and 12c depict attrac- 
tors of periods 2 and 4 as the friction or damping 
constant k in eq. (62) is reduced systematically. The 
parameter values k = 20, 2~, 22 . . . . .  are the damp- 
ing constants corresponding to the most stable 
2"-cycle in analogy to the 2, of the one-dimensional 
functional iteration. Indeed, this oscillator's period 
doubles (at least numerically!) ad infinitum. In fact, 
by k = ~.5, the 63 of eq. (2) has converged to 4.69. 
Why is this? Instead of considering the entire 

X 
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, /  

! 

Fig. 12a. The most stable l-cycle of Duffing's equation in phase 
space (x, .f). 
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Fig. 12b. The most stable 2-cycle of Duffing's equation. Ob- 
serve that it is two displaced copies of fig. 12a. 

x . . . .  • 

. ~ 7  ~ • 

. . . . . . . . . . . . . . . .  x -  

Fig. 12c. The most stable 4-cycle of Duffing's equation. Ob- 
serve that the displaced copies of fig. 12b have either a broad 
or a narrow separation. 
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trajectories as shown in fig. 12, let us consider only 
where the trajectory point is located every 1 period 
of the drive. The 1-cycle then produces only one 
point, while the 2-cycle produces a pair of points, 
and so forth. This time-one map [if the trajectory 
point is (x, x) now, where is it one period later?] is 
by virtue of the differential equation a smooth and 
invertible function in two dimensions. Qual- 
itatively, it looks like the map of eq. (61). In the 
present state of  mathematics, little can be said 
about the analytic behavior of  time-one maps; 
however, since our theory is universal, it makes no 
difference that we don' t  know the explicit form. We 
still can determine the complete quantitative be- 
havior of  eq. (62) in the onset regime where the 
motion tends to aperiodicity. If we already know, 
by measurement, the precise form of the trajectory 
after a few period doublings, we can compute the 
form of the trajectory as the friction is reduced 
throughout the region of  onset of  complexity by 
carefully using the full power of  the universality 
theory to determine the spacings of  elements of  a 
cycle. 

Let us see how this works in some detail. Con- 
sider the time-one map of  the Duffing's oscillator 
in the superstable 2"-cycle. In particular, let us 
focus on an element at which the scaling function 

(fig. 10) has the value a0, and for which the next 
iterate of this element also has the scaling a0. (The 
element is not at a big discontinuity ofa . )  It is then 
intuitive that if we had taken our time-one exam- 
ination of  the trajectory at values of time displaced 
from our first choice, we would have seen the same 
scaling ~0 for this part of  the trajectory. That is, the 
differential equations will extend the map-scaling 
function continuously to a function along the 
entire trajectory so that, if two successive time-one 
elements have scaling a0, then the entire stretch of 
trajectory over this unit time 
a 0. In the last section, we 
construct ~ as a function of 
precisely towards this end. 

interval has scaling 
were motivated to 
t along an interval 

To implement this idea, the first step is to define 
the analogue of d,. We require the spacing between 
the trajectory at time t and at time T,/2 where the 

period of the system in the 2"-cycle is 

T, ~ 2"7o. (63) 

That is, we define 

d,(t) - x , ( t )  - x ,( t  + T,/2). (64) 

(There is a d for each of the N variables for a 
system of N differential equations.) Since a was 
defined as periodic of  period 1, we now have 

d.+ ,(t) .~ a(t  /T.+ Od.(t ). (65) 

The content of eq. (65), based on the n-dependence 
arising solely through the T, in a, and not on the 
detailed form of a, already implies a strong scaling 
prediction, in that the ratio 

d.+,(t) 
d . ( t )  ' 

when plotted with t scaled so that T, = 1, is a 
function independent of n. Thus if eq. (65) is true 
for some a, whatever it might be, then knowing 
x,(t),  we can compute d,(t) and from eq. (65) 
d,+l(t). As a consequence of periodicity, eq. (64) 
for n ~ n  + 1 can be solved for x,+l( t)  (through a 
Fourier transform). That is, if we have measured 
any chosen coordinate of  the system in its 2"-cycle, 
we can compute its time dependence in the 
2" + 1-cycle. Because this procedure is recursive, we 
can compute the coordinate's evolution for all 
higher cycles through the infinite period-doubling 
limit. If eq. (65) is true and ~ now known, then by 
measurement at a 2"-cycle and at a 2 "+l-cycle, a 
could be constructed from eq. (65), and hence all 
higher order doublings would again be determined. 
Accordingly, eq. (65) is a very powerful result. 
However, we know much more. The universality 
theory tells us that period doubling is universal and 
that there is a unique function tr which, indeed, we 
have computed in the previous section. Accord- 
ingly, by measuring x ( t )  in some chosen 2"-cycle 
(the higher the n, the more the number of  effective 
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parameters to be determined empirically, and the 
more precise are the predictions), we now can 
compute the entire evolution of the system on its 
route to turbulence. 

How well does this work? The empirically deter- 
mined a [for eq. (62)] of eq. (65) is shown for n = 3 
in fig. 13a and n = 4 in fig. 13b. The figures were 
constructed by plotting the ratios of d,+~ and dn 
scaled respective to T = 16 in fig. 13a and T = 32 
in fig. 13b. Evidently the scaling law eq. (65) is 
being obeyed. Moreover, on the same graph fig. 14 
shows the empirical a for n = 4 and the recursion 

i 
i 
I 

I ] I i bli 

(n = 3)/In = 4) 

Fig. 13a. The rat io o f  nearest copy separations in the 8-cycle 
and 16-cycle for Duffing's equation. 

Fig. 13b. The same quantity as in fig. 13a, but for the 16-cycle 
and 32-cycle. Here, the time axis is twice as compressed. 

theoretical a of fig. 10. The reader should observe 
the detail-by-detail agreement of the two. In fact, 
if we use eq. (65) and the theoretical a with n = 2 
as empirical input, the n = 5 frequency spectrum 
agrees with the empirical n = 5 spectrum to within 
10~o. (The n = 4 determines n = 5 to within l°/o.) 
Thus the asymptotic universality theory is correct 
and is already well obeyed, even by n = 2! [5]. 

Eqs. (64) and (65) are solved, as mentioned 
above, through Fourier transforming. The result is 
a recursive scheme that determines the Fourier 
coefficients of x~, ~(t) in terms of those of xn(t) and 
the Fourier transform of the (known) function 
a(t). To employ the formula accurately requires 
knowledge of the entire spectrum of x, (amplitude 
and phase) to determine each coefficient of xn+t. 
However, the formula enjoys an approximate local 
prediction, which roughly determines the ampli- 
tude of a coefficient of x, ,k in terms of the 
amplitudes (alone) of x~ near the desired frequency 

o f  )C. + 1' 

What does the spectrum of a period-doubling 
system look like? Each time the period doubles, the 
fundamental frequency halves; period doubling in 
the continuum version is termed half-subharmonic 
bifurcation, a typical behavior of coupled non- 
linear differential equations. Since the motion al- 
most reproduces itself every period of the drive, the 
amplitude at this original frequency is high. At the 
first subharmonic halving, spectral components of 
the odd halves of the drive frequency come in. On 
the route to aperiodicity they saturate at a certain 
amplitude. Since the motion more nearly re- 
produces itself every two periods of drive, the next 
saturated subharmonics, at the odd fourths of the 
original frequency, are smaller still than the first 
ones, and so on, as each set of odd 2"ths comes into 
being. A crude approximate prediction of the 
theory is that whatever the system, the saturated 
amplitudes of each set of successively lower half- 
frequencies define a smooth interpolation located 
8.2 dB below the smooth interpolation of the pre- 
vious half-frequencies. [This is shown in fig. 15 for 
eq. (62).] After subharmonic bifurcations ad 
infinitum, the system is now no longer periodic; it 
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Fig. 14. Figure 13b overlayed with fig. 10 compares the universal scaling function a with the empirically determined scaling of nearest 
copy separations from the 16-cycle to the 32-cycle for Duffing's equation. 

has developed a continuous broad spectrum down 
to zero frequency with a definite internal distribu- 
tion of the energy. That  is, the system emerges 
from this process having developed the beginnings 
of broad-band noise of  a determined nature. This 
process also occurs in the onset of  turbulence in a 
fluid. 

10. The onset of  turbulence 

The existing idea of the route to turbulence is 
Landau's 1941 theory. The idea is that a system 
becomes turbulent through a succession of  in- 
stabilities, where each instability creates a new 
degree of  freedom (through an indeterminate 
phase) of  a time-periodic nature with the fre- 

quencies successively higher and incommensurate 
(not harmonics); because the resulting motion is 
the superposition of these modes, it is quasi- 
periodic. 

In fact, it is experimentally clear that quasi- 
periodicity is incorrect. Rather, to produce the 
observed noise of  rapidly decaying correlation the 
spectrum must become continuous (broad-band 
noise) down to zero frequency. The defect can be 
eliminated through the production of  successive 
half-subharmonics, which then emerge as an allow- 
able route to turbulence. If  the general idea of  a 
succession of  instabilities is maintained, the new 
modes do not  have indeterminate phases. However, 
only a small number of  modes need be excited to 
produce the required spectrum. (The number of  
modes participating in the transition is, as of  now, 
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Fig. 15. The subharmonic spectrum of Duffing's equation in 
the 32-cycle. The dotted curve is an interpolation of the odd 
32nd subharmonics. The shorter dashed curve is constructed 
similarly for the odd 16th subharmonics, but lowered by 8.2 dB. 
The longer dashed curve of the 8th subharmonics has been 
dropped by 16.4dB, and the solid curve of the 4th sub- 
harmonics by 24.6 dB. 

an open experimental question.) Indeed, knowl- 
edge of the phases of a small number of amplitudes 
at an early stage of period doubling suffices to 
determine the phases of the transition spectrum. 
What is important is that a purely causal system 
can and does possess essentially statistical proper- 
ties. Invoking ad hoc statistics is unnecessary and 
generally incompatible with the true dynamics. 

A full theoretical computation of the onset 
demands the calculation of successive instabilities. 
The method used traditionally is perturbative. We 
start at the static solution and add a small time- 
dependent piece. The fluid equations are linearized 
about the static solution, and the stability of the 
perturbation is studied. To date, only the first 
instability has been computed analytically. Once 
we know the parameter value (for example, the 
Rayleigh number) for the onset of this first time- 
varying instability, we must determine the correct 
form of the solution after the perturbation has 
grown large beyond the linear regime. To this 
solution we add a new time-dependent per- 
turbative mode, again linearized (now about a 
time-varying, nonanalytically available solution) 
to discover the new instability. To date, the second 

step of the analysis has been performed only 
numerically. This process, in principle, can be 
repeated again and again until a suitably turbulent 
flow has been obtained. At each successive stage, 
the computation grows successively more intracta- 
ble. 

However, it is just at this point that the univer- 
sality theory solves the problem; it works only after 
enough instabilities have entered to reach the 
asymptotic regime. Since just two such instabilities 
already serve as a good approximate starting point, 
we need only a few parameters for each flow to 
empower the theory to complete the hard part of 
the infinite cascade of more complex instabilities. 

Why should the theory apply? The fluid equa- 
tions make up a set of coupled field equations. 
They can be spatially Fourier-decomposed to an 
infinite set of coupled ordinary differential equa- 
tions. Since a flow is viscous, there is some smallest 
spatial scale below which no significant excitation 
exists. Thus, the equations are effectively a finite 
coupled set of nonlinear differential equations. The 
number of equations in the set is completely irrel- 
evant. The universality theory is generic for such a 
dissipative system of equations. Thus it is possible 
that the flow exhibits period doubling. If it does, 
then our theory applies. However, to prove that a 
given flow (or any flow) actually should exhibit 
doubling is well beyond present understanding. All 
we can do is experiment. 

Fig. 16 depicts the experimentally measured 
spectrum of a convecting liquid helium cell at the 
onset of turbulence [8]. The system displays mea- 
surable period doubling through four or five levels; 
the spectral components at each set of odd half- 
subharmonics are labelled with the level. With 
n = 2 taken as asymptotic, the dotted lines show 
the crudest interpolations implied for the n = 3, 
n = 4 component. Given the small amount of 
amplitude data, the interpolations are perforce 
poor, while ignorance of higher odd multiples 
prevents construction of any significant inter- 
polation at the right-hand side. Accordingly, to do 
the crudest test, the farthest right-hand amplitude 
was dropped, and the oscillations were smoothed 



M.J. Feigenbaum / Universal behavior in nonlinear systems 39 

fl fl fl 3fl 
1T ¥ T T q 

- 5 0  

3 3 3 T 2 3 4  

' - 4 -  . . . .  ~ - - 

R / R  e = 4 3  

5 0 0  m 

Hz 

Fig. 16. The experimental spectrum (redrawn from Libchaber 
and Maurer) of a convecting fluid at its transition to turbulence. 
The dashed lines result from dropping a horizontal line down 
through the odd 4th subhannonics (labelled 2) by 8.2 and 
16.4dB. 

away by averaging [9]. The experimental results, 
- 8.3 dB and - 8.4 dB, are in surprisingly good 
agreement with the theoretical 8.2! 

From this good experimental agreement and the 
many period doublings as the clincher, we can be 
confident that the measured flow has made its 
transition according to our theory. A measurement 
of  6 from its fundamental definition would, of  
course, be altogether convincing. (Experimental 
resolution is insufficient at present [10].) However, 
if we work backwards, we find that the several 

percent agreement in 8.2dB is an experimental 

observation of ~ in the system to the same accuracy. 
Thus, the present method has provided a the- 
oretical calculation of the actual dynamics in a field 
where such a feat has been impossible since the 
construction of the Navier-Stokes equations. In 
fact, the scaling law eq. (65) transcends these 
equations, and applies to the true equations, what- 
ever they may be. 
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