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The paper describes a simple kinetic model of an open monosubstrate enzyme reaction with 
substrate inhibition and product activation. A comparison between the model and the phospho- 
fructokinase reaction shows a close resemblance between their dynamical properties. This makes 
it possible to  explain qualitatively most experimental data on single-frequency oscillations in 
glycolysis. A mathematical analysis of the model has shown the following. 

1.  I n  the model, a t  a definite relationship between the parameters, self-oscillations arise. 
2. The condition of self-excitation is satisfied more readily with a lower source rate, larger 

product sink rate constants, lower product-enzyme affinity and higher enzyme activity. 
3. Self-oscillations exist only in a certain range of values of the parameter determining the 

degree of substrate inhibition. This range increases with decreasing source rate. Too strong or, 
conversely, too weak substrate inhibition leads to damped oscillations. 

4. The period of self-oscillations depends on the degree of substrate inhibition, the source rate, 
the sink rate constant, the enzyme activity, the affinity of the substrate and the product for the 
enzyme; it decreases with an increase in these values. 

5. With an increase in the relative sink rate constant the steady state amplitude of self- 
oscillations initially increases until a definite maximuin is reached and then drops to zero. 

6. A self-oscillatory state in the phosphofructokinase reaction exists only when the maximum 
rate of this reaction is essentially higher than the source rate, and lower than the maximum rate 
of the reactions controlling the sink of the products. 

7. An experimental investigation of self-oscillations in the phosphofructokinase reaction may 
be considerably simplified by using a reconstituted system consisting of a small number of reac- 
tions with an irreversible sink of the products and artificial substrate supply. I n  this case the 
above relationship (section 6) should hold. 

Periodical oscillations in biochemical systems are 
receiving much attention nowadays. A review of 
studies dealing with this problem can be found in [I]. 
The interest in this phenomenon has developed 
rapidly since the existence of sustained oscillations 
in yeast cell extracts [l-91 and in the whole yeast 
cell [lo] as well as in heart muscle cell extracts [ll] 
has been proved experimentally. 

The phosphofructokinase reaction is commonly 
thought of as being a possible source of self-oscilla- 
tions in glycolysis. However, the conditions for the 
appearance of self-oscillations have not been ascer- 

Enzymes. Adenylate kinase or ATP: AMP-phosphotrans- 
ferase (EC 2.7.4.3) ; apyrase or ATP diphosphohydrolase 
(EC 3.6.1.5); a-glucanphosphorylase or cr-1,4-glucan: ortho- 
phosphate-glucosyltransferase (EC 2.4.1.1), hexckinase or 
ATP: D-hexose 6-phosphotransferase (EC 2.7.1.1), phospho- 
glycerate kinase or ATP: 3-phospho-~-glycerate-l-phospha- 
transferase (EC 2.7.2.3), phosphofructokinase or ATP: 
u-fructose-&phosphate 1-phosphotransferase (EC 2.7.1.11), 
pyruvato kinase or ATP: pyruvate phosphotransferase 
(EC 2.7.1.40). 

tained. There is a considerable number of scattered 
experimental facts which have not been united by a 
general scheme. 

Higgins [12,13] has presented a model to explain 
sustained oscillations in the yeast glycolytic system. 
His model, however, as will be shown later, has no 
limit cycle for those values of its parameters with 
which self-oscillations are observed experimentally. 

This paper describes a simple kinetic model which 
qualitatively explains most of the experimental facts 
concerning single-frequency oscillations in glycolysis. 
The model represents an enzyme reaction with sub- 
strate inhibition and product activation. These prop- 
erties are shown to be common for phosphofructo- 
kinase from different sources [14--231. 

THEORY 
Preliminary Considerations 

Starting from the fact that phosphofructokinase 
is an important control site in the glycolytic system 
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let us try to determine those properties of the phos- 
phofructokinase reaction which could account for the 
appearance of self-oscillations in this system. 

In spite of some differences, all the phospho- 
fructokinases obtaincd from various sources are 
known to be strongly inhibited by one of the sub- 
strates, ATP [14-231. Although direct evidence for 
the existence of such a,n inhibition in cell extracts or 
in the whole cells has not been obtained it can be 
assumed that it takes place there as well. 

Different phosphofructokinases also all show an 
activation by the products, ADP [15,17,20,21,23] 
and fructose-1,6-diphosphate [14-221. It is to be 
noted, however, that the level of fructose-l,6-di- 
phosphate in yeast cell extracts showing self-oscilla- 
tions [4-91 is very high, approaching 10 mM [9]. At 
such a concentration it is not activating [17,19,21] 
and therefore need not be considered. 

It has been shown [9] that in oscillating cell-free 
extracts of yeast Xaccharomyces carbbergensis the 
concentration of fructose-6-phosphate undergoes 
only slight changes, making it possible to assume 
that the concentration remains constant. 

And finally, in those cases where extracts or whole 
cells show a considerable adenylate kinase activity a 
very important factor determining properties of 
phosphofructokinase is the concentration of AMP. 
Different phosphofructokinases are known to be 
strongly activated by AMP[15--221 (with the ex- 
ception of that from Escherichia coli [23]). At high 
adenylate kinase activity the concentration of AMP 
must follow the changes in the concentration of 
ADP, and its activating effect onphosphofructokinase 
must be indistinguishable from that of ADP. There- 
fore, for the sake of simplicity, the total activating 
effect of ADP and AMP on phosphofructokinase may 
be attributed to the effect of ADP alone, and AMP 
need not be considered. 

The above considerations lead us to a very simple 
kinetic model of the phosphofructokinase reaction. 
This model should represent a monosubstrate and 
monoproduct reaction, the enzyme of which is in- 
hibited by the substrate and activated by the pro- 
duct. 

Simple Kinetic Model 
Consider a simple kinetic model of enzyme cata- 

lysis with product activation of the enzyme : 

J 
Here the substrate S, (ATP) supplied by a certain 
source at the rate v1 = constant is irreversibly con- 
verted to the product S2 (ADP). The product is 

removed by an irreversible sink at  the rate v2. The 
free enzyme E (phosphofructokinase) is inactive by 
itself but becomes active combining with y product 
molecules to form the complex ES;. Assume that 
reaction (I) proceeds in an ideally mixed medium. 

Let us introduce certain notations for future con- 
venience: s1 = [S,], s2 = [S,], e = [El, x1 = [ES;], 
x2 = [S,ES;]. 

Let in (I) the following three conditions be satis- 
fied : 

y > l ;  (1) 

( 3 )  

where e, = e + x1 + x2. The meaning of condition 
(1) will be made clear later. Condition (2) is common 
for most enzyme reactions. Condition (3) arises from 
the fact that the concentrations of the substrates and 
products in the phosphofructokinase reaction are of 
the order of I mM [9,24-261 whereas the enzyme 
concentration is far smaller, namely of the order of 
10 pM [27,28], 1 pM [29] and even less [29,30]. 

Assume, also, that the sink of the product is a 
first order reaction : 

212 = k2s2.  

This assumption is based on the fact that the rate 
of the glycolytic flux in a self-oscillatory state is 
considerably lower than the maximum rates of the 
reactions controlling the sink of the products of the 
phosphofructokinase reaction [6- 91. 

Mathematical Model 
According to the law of mass action and the law 

of mass conservation reaction (I) is described by the 
equation system 1 

- -  de  
d t  - 

. ~ . -  

where t is time. 
By substitution of the variables in accordance 

with conditions (2) and (3) [31,32] system (4) is 
reduced to the form in which the last three derivatives 
have a small factor E .  According to the Tikhonov's 
theorem [33,34] such a system can be replaced by 
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an asymptotical approximation resulting from the 
limit transition E --f 01: 

Here 0, and a, are relative concentrations of the sub- 
strate and product respectively, v1 is relative source 
rate, z2 is relative enzyme-product affinity and 8 is 
dimensionless time. The expression 

( 7 )  

is a relative quasi-steady state rate of the reaction. 
System (5 )  in a finite part of the phase plane has 

only one equilibrium state with the coordinates 

- 4 + 4 
cr1 = 

vy-l (1 - vl) ’ 

Since in the equilibrium state v = vl, equation (8) 
can be given as 

- x i  + v’ 
a, = 

vY-l(l - v) (9) 

As seen from equation (9), the function v = v(Ol) has 
two asymptotes, v = 0 and v = 1. The plot of the 
function constructed by equation (9) for y > 1 is 
shown in Fig.1. The bottom branch of the plot 
reflects the presence of substrate inhibition. 

At v < 1 and v < x2 the function v = v(Ol) can 
be approximated to the expression: 

Y 

~ 

7 p  

from which it is seen that the degree of substrate 
inhibition increases as y 3 1 on the right. As y 4 00 

the inhibition is negligible. 
1 It is not difficult to see that the conditions of the 

theorem [33,34] are satisfied in system (4). 
0 European J. Biochem., Vol. 4 

Thus, for kinetic (I) and mathematical (5 )  models 
to take account of both product activation and sub- 
strate inhibition it is necessary that y be greater 
than 1. However, the stoichiometry of product acti- 
vation of the phosphofructokinase reaction is known 
to correspond to the first order ( y  = 1).  So for mo- 
dels (I) and (5 )  to take into consideration the most 
important properties of the phosphofructokinase 
reaction it is necessary to give up a pure kinetic 

- 
0-1 

Fig. 1. The relative reaction rate., v, as a function of the relative 
steady state substrate concentration, a,, at constant y and x, 
and a, = v /x2 .  A davhed line shows the relationship betweenv 

and ir, in a substrate-inhibited reaction 

interpretation of y as a stoichiometric number of 
product activation and to consider it as a mathe- 
matical value determining both the degree of product 
activation and that of substrate inhibition. In  this 
case the parameter y can assume any value (in- 
cluding fractional) within the limits 1 < y < 00. 

The value of y can bo determined from experi- 
mental data in different ways depending on the para- 
meter a2, In  particular, if a2 > 1 then y is deter- 
mined by the steady state input characteristics “rate- 
substrate concentration”, obtained experimentally. 
At a2< 1, y is determined by the steady state 
output characteristics “rate-product concentration”. 
And finally, a t  a2 N I the simplest way is to calcu- 
late y by the equation given below which relates the 
period of oscillations to y ,  the former being found 
from experiment. 

Since self-oscillations in glycolysis are observed 
at  a very low rate of the glycolytic flux [6-91 it is 
quite reasonable to consider system ( 5 )  a t  v1 < 1. 
Under this condition expression ( 7 )  is simplified : 

v g qT;. 

Taking this into consideration, system (5) can be 
written as 
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where 
x E yY-l 1 x-Y 2 (T 1, y =Y113c2~22, 

a = c c , v ~ ~ x ; + l ,  z = y: %;ye. 

At y > 1 system (11) represents a mathematical 
model of a product-activated and substrate-inhibited 
reaction. Note that (11) is a generalization of the 
Lotka system [35] and coincides with it a t  y = I .  

03 

Y 

0, is a saddle-node with a parabolic sector in a positive 
quadrant ; the w-separatrix [37] of the saddle tends 
to  0, in the direction coinciding with the x-axis, and 
the a-separatrix [37] coincides with the equator of 
the Poincare sphere [36,37]. The integral curves of 
the node sector enter 0, as z + 00. According to 137, 
p. 3791 point 0, is a topological saddle a t  y = 2 k + 1 
and a saddle-node at  y = 2 k .  The neighbourhood of 

0 3 h  

/1 
Fig.2. An orthogonal projection of a positive octant of the PoincarC sphere on a plune: possible types of th,e phase portraits of 
system (11) when 0, is  an  unstable focus. x and y are dimensionless concentrations of the substrate and product, respectively 

Conditions for Self-Oscillations in System (II) 
In  a finite part of the (x, y) phase plane system (11) 

has only one equilibrium state, 0,,  with the coordi- 
nates 5 = ij = I .  In  the neighbourhood of O,, 
system (11) has a characteristic equation : 

its roots being 
___ - -. 

= -f { a ( y  - 1) -1 k I/[+ - 1) - 1 1 2 -  4x1. 

Hence it follows that 0, is 

a stable node at  
a stable focus a t  
an unstable focus at  
an unstable node at  

0 < a  <El, 
cc1 < cc < M o ,  

a. < cc < ccz, 
cc, < cc < 00. 

Here 
I 

a0 = y - 1  ' 

Thus at  a > a,, system (11) is unstable in the 
neighbourhood of 0,. Investigation of system (11) in 
infinity by means of the Poincarit transformations 
[36,37] shows that (11) has in a positive quadrant of 
infinity two more equilibrium states : 0,-an infinite 
end of the x-axis, and 0,-an infinite end of the y-axis 
(Eig.2). The topology of these points is established 
by the theorem [37, p. 3791,According to this theorem, 

0, in a positive quadrant consists of a parabolic sector 
and a part of a hyperbolic one at  any y > 1. The 
a-separatrix of the saddle coincides with the equator 
of the Poincare sphere, and a-separatrix approaches 
0, in the direction coinciding with y-axis. 

The topology of points 0, and 0, determined here 
can satisfy two types of the phase plane portrait. 
Whether one type or another holds true for system 
(II), both of them indicate the presence of a limit 
cycle in the case when point 0, is unstable (Fig.2). 
This is confirmed by the numerical solution of 
system (11). Fig.3 shows the transition of system (11) 
to the limit cycle a t  y = 2 ,  cc = 1 . l .  Numerical in- 
vestigation of system (11) shows that the limit cycle 
increases with a ,  and becomes infinitely large a t  
some finite a. However, it is to be noted that the 
transition of system (11) to an infinite limit cycle is 
in close relationship with an infinite increase of 
v 0, 0; , this being at  variance with the condition 
yl < 1 by means of which system (5) was reduced to 
system (11). Hence the existence of an infinite limit 
cycle in system (11) has no meaning for system (5) 
and model (I). 

The numerical analysis of system (5) shows that 
the limit cycle in this system is always bounded. 
Starting from this fact, it is not difficult to prove 
that the increase of x2 from 0 to 00 leads to an in- 
crease in the amplitude of oscillations which reaches 
its maximum and then drops again. It is possible 
that the dependence of the oscillation amplitude 
on x, has gaps, thus indicating the presence of hard 
self-excitation [38]. This question has not been in- 
vestigated, however. 
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Thus, a t  
a > a, 

of condition (15) on y is more complicated. There 
exists an optimum value of y ,  (13) 

in system (11) and hence in model (I) there appear 
self-oscillations. The frequency of self-oscillations is 

V 
yopt Es 1 + __ k,Kl ' 1 5  (' +&) (18) 

to the zero approximation given by 
when the right-hand side of inequality (15) is maxi- 
mum. If y drops from yoBt to 1 or increases from yopt 
to 00 the right-hand side of inequality (15) decreases 

1 
(14) cue= d T  . 

Y l  Y I  

Fig. 3. On the left: the transition of system (11) to the limit cycle from unstable focus 0,; on the right: time display of the process. 
The curves have been obt,ained by the digital computer solution of system (11) a t  a fixed integration step h = 0.1; y = 2,  

c( = 1.1. z and y as in Fig.2. t is dimensionless time 

When CI N I equation (14) can be used to calcu- 
late the frequency of self-oscillations with reasonable 
accuracy. For example, the frequency of self-oscillu- 
tions a t  y = 2 and a = 1.1 calculated by the com- 
puter solution of system (11) proved to be equal to 
0.967, whereas equation (14) predicts coo = 1. Thus 
in this case the error of calculation of the frequency 
by equation (14) amounts to 3.3 ,lo, this being quite 
satisfactory for zero approximation. 

For greater convenience in comparing model (I) 
with the known experimental facts let us reduce ex- 
pressions (13) and (14) by means of (B), (Il) ,  and (12) 
to the following form : 

where Kl = (k1 + k+2)/lc+l; K2 = 
1 (2)'; v = k+,e,. 

Expression (15) becomes the required condition for 
the appearance of self-oscillations in model (I). Ex- 
pressions (16), (17) determine the period of self-os- 
cillations. 

As follows from (15), with y held fixed the con- 
dition of self-excitation is satisfied more readily with 
lower vl, and larger K,, K,, and k,. The dependence 
6' 

I I I 

1 71 YOPT YZ Y 
Fig.4. Graphic solution of inequality (15). Curve 1 shows the 
dependence of the right-hand side of (15) on y ;  a straight 
line 2 shows the dependence of the left-hand side of (15) on y 

to zero (Fig.4). Hence it follows that inequality (15) 
can be satisfied only in a certain range of y values, 
namely y1 < y < y ,  , where y1 ,2 are positive roots of 
the equation 

Thus a certain moderate degree of substrate in- 
hibition determined by the range (yl , y,) is favourable 
to the appearance of self-oscillations in model (I). An 
excessive (1 < y < yl) or, conversely, too weak sub- 
strate inhibition ( y  > y,) results in damping self- 
oscillations. 

Fig.4 shows that a decrease in the ratio vl/k2K, 
leads to  a widening of the interval on which in- 



84 Model of Glycolytic Oscillations European J. Biochem. 

equality (15) is satisfied. Consequently, the range of y 
values corresponding to the self-oscillatory state in 
model (I) increases with a decrease in the source 
rate vl. 

In  the glycolytic extracts showing self-oscillations 
among the enzymes of the Embden-Meyerhof pathway 
pyruvate kinase and phosphofructokinase have the 
lowest activity [5-9,361. Hence it follows that in 
such extracts the sink of fructose-I ,6-diphosphate is 
controlled by pyruvate kinase which is very far €rom 
being saturated because of an extremely low level of 
the glycolytic flux. This makes it possible to think 
that the sink rate constant k, in (15,17-19) is pro- 
portional to VPKIKPK where V ~ K  is the maximum 
rate of the pynlvate kinase reaction, and KPK is the 
Michaelis constant for phosphoenolpyruvate. 

DISCUSSION 
The above analysis leads to an important con- 

clusion that the experimental study of self-oscillations 
in the phosphofructokinase reaction may be consid- 
erably simplified. In  fact, according to model (I) all 
the glycolytic reactions, except for the phosphofructo- 
kinase reaction, are not essential for the appearance 
of self-oscillations, their function being to  supply the 
substrate a t  the necessary rate and to remove the 
products. This implies that under experimental 
conditions the part of the glycolytic system feeding 
substrates to the phosphofructokinase reaction may 
be replaced by the capillaries through which sub- 
strate solutions are continuously delivered into a 
spectrophotometric cell. From the second half of the 
glycolytic system there may be taken only the part 
which ensures an irreversible sink of the products 
and affords a spectrophotometric recording of the 
process. Thus in studying glycolytic self-oscillations 
it is possible to do without using extracts and to 
replace them by a reconstituted system containing 
a small number of purified enzymes. 

Condition (15) shows that self-oscillations in reac- 
tion (I) arise more readily with lower enzyme-product 
affinity (&) . In  this respect reaction (I) is similar to 
a product-inhibited reaction [37,39]. The resemblance 
of these two types of reactions is strengthened by the 
fact that both of them require a marked substrate 
inhibition of the enzyme for the self-oscillatory state 
to be realized. I n  the absence of substrate inhibition 
only damped oscillations may exist in such reactions. 

This conclusion is a t  variance with the assertion 
of Higgins [12,13] about the possibility of self-oscilla- 
tions in the phosphofructokinase reaction in the pres- 
ence of product activation alone (y = 1). Higgins 
came to this conclusion on the basis of the model in 
which all the constants were chosen arbitrarily [12, 
131. However, for the model [12,13] to comply with 
the known experimental facts [9,24-301 the enzyme 
concentrations in this model must be far smaller than 

substrate and product concentrations, and all the 
normalized rate constants [see ( 2 ) ]  must be well 
over I .  Besides, account must be taken of the fact 
that both the phosphofructokinase reaction and the 
sinks of its products are far from being saturated 
since in a self-oscillatory state the rate of the glyco- 
lytic flux is much lower than the maximum rate of 
the phosphofructokinase reaction and that of the 
reactions controlling the sink of fructose-1,6-diphos- 
phate and ADP[6-101. With regard to this the 
model of Higgins takes the form [39,40] : 

According to the Dulac-Bendixson criterion [41] 
system (20) has no limit cycle in a positive quadrant 
of the phase plane with all the positive values of its 
parameters [40]. At v1 < 1 system (20) is reduced to 
the Lotka model [35] with one autocatalysis which is 
not known to be self-oscillatory. 

Thus the Higgins' system has no limit cycle with 
those parameter values with which self-oscillations in 
glycolysis are observed. However, the model of Hig- 
gins, as it has been shown in [40], has a limit cycle 
when the sink of the product is saturated. In  this 
case the model of Higgins takes the form: 

where v2 is the relative maximum rate of the sink 
and x, is the relative Michaelis constant for the sink. 
Other notations coincide with those in (6) a t  y = 1 .  

In  system (21) at  

there appear self-oscillations (soft excitation [38]) 
with the frequency which in a linear approximation 
is given by 

(00  = 312 ( I  - v1)2 -- V1 1 (1 - X 2  - v2) (v* - Vl + V l 4  . 
As seen from (22), self-oscillations in (21) can exist 
only in the case when 

v1 < v2 < 1 -x2. (23) 
Condition (23) and, probably, condition (22) can be 
secured in a reconstituted glycolytic system. 

The next point to be discussed is the compliance 
of model (I) with the experimental data. 

The appearance of sustained oscillations in cell 
extracts on addition of some polysaccharides is 
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probably the most striking fact discovered by 
Pyc [2,3] and confirmed afterwards by Pye and 
Chance [4], Hess et al. [5-91 and Frenkel [ll].  This 
fact which has no satisfactory explanation thus far, 
can be easily understood in terms of model (I). 

Actually, an addition to the extracts of trehalose 
[2-91 and glycogen [Ill instead of glucose brings 
about a sharp decrease in the rate of formation of 
fructose-6-phosphate due to the lower activity of 
trehalase [5,7-91 and probably, cr-glucenphosphory- 
lase in comparison with the activity of hexokinase. 
But such a decrease in the rate of formation of fruc- 
tose-6-phosphate, equivalent to the decrease in the 
source rate v, in model (I), favours production of self- 
oscillations as follows from (15). 

Frenkel [ 111 found an original way of limiting the 
glycolytic flux on the phosphofructokinase reaction 
step by adding apyrase to the extract. This resulted 
in a decrease in the ATP flux into the phosphofructo- 
kinase reaction. A decrease in the ATP flux as well 
as in the fructose-6-phosphate flux is equivalent to 
a decrease in the source rate v1 in model (I). So it is 
quite natural (see 15,16) that an addition of apyrase 
leads to the initiation of self-oscillations and at  the 
same time to an increase in the self-oscillation period 
as compared to that in the control experiment. 

The decrease of y corresponding to increasing 
substrate inhibition causes an increase in the period 
of self-oscillations (see 16,17). This property of the 
model is in good agreement with the data of Fren- 
kel [I l l  who has shown that the successive additions 
of ATP to the extracts increase the period of oscilla- 
tions. The descrease in a damping factor observed 
in the case indicates (Fig.4) that the initial degree 
of substrate inhibition in the phosphofructokinase 
reaction was not large (y > y2). 

It has been found that the amplitude and period 
of self-oscillations vary inversely with the pyruvste 
kinase concentration [42] as well as with the concen- 
tration of fructose-1,6-diphosphate [19,42-451 which 
was shown to be a strong activator of pyruvate 
kinase [46-481. This again is in good agreement with 
the model. Indeed, it follows from equation (17), an 
increase in the pyruvate kinase activity (an increase 
in k,) results in a decrease in the period of self-oscilla- 
tions. At the same time the steady state amplitude 
of oscillations decreases if k, is sufficiently large. 

Condition (15) is satisfied more readily with a 
large k2. This is in agreement with the data of Hess 
and Brand [43] who found that an increase in k, on 
addition of phosphoglyceratekinase to the extract 
led to a decrease in damping factor as well as in the 
period and amplitude of damped oscillations. 

Unfortunately, we cannot compare the model 
and the phosphofructokinase reaction under condi- 
tions of varying concentrations of different deinhib- 
itors such as AMP, 3’,5’-cyclic AMP, etc., since these 
substances change almost all the parameters of the 

phosphofructokinase reaction. I n  order to follow in 
the model the changes induced by addition of some 
deinhibitors a knowledge of the relationship between 
the parameters y ,  K,, K,, V and the concentration 
of a deinhibitor is necessary. Such data are not 
available as yet. 

I n  conclusion it should be noted that the suggested 
model is the simplest. It results from severe simpli- 
fications and limitations imposed on the actual 
glycolytic system. Some known experimental facts 
such as the phenomenon of double-frequency self- 
oscillations [4,8- lo], reversibility of the substrate 
sources [49], possibility of several alternative steady 
states [50-531 and some other things were deliber- 
ately left out of consideration. Therefore, the model 
should be considered as a first approach to a close 
understanding of the actual oscillatory mechanism. 

It is remarkable, however, that in spite of all 
these simplifications the model describes quali- 
tatively the basic dynamic properties of the phospho- 
fructokinase reaction correctly. This implies that the 
main variables of self-oscillatory glycolytic mechanism 
have been correctly chosen. This may be quite strictly 
proved by the corresponding mathematical theorems 
which are generalizations of the Tikhonov’s theorein 
used above. In  subsequent papers [54,55] it will be 
shown that model ( 5 )  can be obtained from the full 
scheme of the glycolytic system by means of limit 
transitions eliminating fast va,riables. 

It is to be hoped that the model can be used 
for a quantitative description of glycolytic self- 
oscillat,ions as well. For this purpose, however, it is 
necessary to have numerical datJa from the same 
source. 
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