Analysis of Dynamical Systems

Variant 3

Part 1: Brusselator

Analyse 2-D system.

$$\begin{cases} \dot{x} = a - x - bx + x^2y, \\ \dot{y} = bx - x^2y, \end{cases}$$

where a and b > 0 are constants.

Parameter	Version 3.1	Version 3.2
\overline{a}	0.4	1.0
b	1.2	1.7

Part 2: Newton-Leipnik chaotic system

Determine whether the following 3-D system represents a strange attractor or not.

$$\begin{cases} \dot{x} = -ax + y + 10yz, \\ \dot{y} = -x - 0.4y + 5xz, \\ \dot{z} = bz - 5xy, \end{cases}$$

where a, b > 0 and a = 0.4 and b = 0.175.

D. Kartofelev Variant 3