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Lecture outline

Analysis and properties of the Lorenz attractor dynamics

The Lyapunov exponents and Kolmogorov entropy

The Lyapunov time or the predictability horizon

Conceptual definition of chaos or deterministic chaos

Conceptual definition of attractor and strange attractor
Examples of chaotic systems and attractors

Dynamics of the Solar System

1-D maps, cobweb diagram and recurrence map (relation)

Examples discussed:
Various strange attractors
The double mathematical pendulum
The gravitational three-body problem
Magnetic pendulum in three magnetic potentials
The Lorenz map

Differences between chaotic behaviours
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The Lorenz attractor

The Lorenz attractor has the form
ẋ = d(y − x),
ẏ = rx− y − xz,
ż = xy − bz,

(1)

where r, d, and b are the parameters. For r = 28, d = 10, and
b = 8/3, the system has a chaotic solution. Other parameter values
may generate other types of solutions.

The Lorenz equations also arise in simplified models for lasers,
dynamos, thermosyphons, brushless DC motors, electric circuits,
chemical reactions and forward osmosis.
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Properties of the Lorenz attractor

There exists a symmetric pair of solutions. If (x, y)→ (−x,−y)
the system stays the same. If solution (x(t), y(t), z(t)) exists
then solution (−x(t),−y(t), z(t)) is also a solution.
The Lorenz system is dissipative1: volumes V in phase space
contract under the flow. As t→∞, V → 0.

V̇ =

∫
V

∇·~̇x dV (2)

∇·~̇x =
∂

∂x
[d(y − x)] + ∂

∂y
(rx− y − xz) + ∂

∂z
(xy − bz) =

= −(d+ 1 + b) < 0 = const. (3)

Since the divergence is constant, (2) reduces to

V̇ = −(d+ 1 + b)V ⇒ V (t) = V (0)e−(d+1+b)t. (4)
1See Mathematica .nb file uploaded to the course webpage.
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Bifurcation analysis of the Lorenz attractor

For r < 1 (d = 10, b = 8/3) there is only one stable fixed point
located at the origin. This point corresponds to no convection. All
orbits converge to the origin — a global attractor.
A supercritical pitchfork bifurcation occurs at r = 1, and for
r > 1 two additional fixed points appear at

(x∗, y∗, z∗) = C± =
(
±
√
β(r − 1), ±

√
β(r − 1), r − 1

)
. (5)

These correspond to steady convection. Fixed points are stable only if

r < rHopf, rHopf = d
d+ b+ 3

d− b− 1
= 24.74, (6)

which can hold only for positive r and d > b+ 1. At a critical value
r = rHopf, both stable fixed points lose stability through a subcritical
Hopf bifurcation.
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Bifurcation analysis of the Lorenz attractor

As we decrease r from rHopf, the unstable limit cycles expand and
pass precariously close to the saddle point at the origin. At
r = 13.926 the cycles touch the saddle point and become
homoclinic orbits; hence we have a homoclinic bifurcation which
is referred to as the first homoclinic explosion. Below r = 13.926
there are no limit cycles.

The region 13.926 < r < 24.06 is referred to as transient chaos2

region. Here, the chaotic trajectories eventually settle at C+ or C−.

2See Mathematica .nb file uploaded to the course webpage.
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Bifurcation analysis of the Lorenz attractor
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Bifurcation analysis of the Lorenz attractor

For r > 24.06 and r > rHopf = 28 (immediate vicinity): no stable
limit-cycles exist; trajectories do not escape to infinity (dissipation);
do not approach an invariant torus (quasi-periodicity). Almost all
initial conditions (I.C.s) will tend to an invariant set — the Lorenz
attractor — a strange attractor and a fractal.

Note: No quasi-periodic solutions for r > rHopf are possible because
of the dissipative property of the flow.

For r � rHopf different types of chaotic dynamics exist, e.g. noisy
periodicity, transient and intermittent chaos. One can even find
transient chaos settling to periodic orbits3.

3See Mathematica .nb file uploaded to the course webpage.
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The Lyapunov exponent and predictability horizon

Example: Suppose we’re trying to predict the future state of a
chaotic system within a tolerance of a = 10−3. Given that our
estimate of the initial state is uncertain to within δ0 = 10−7, for
about how long can we predict the state of the system, while
remaining within the tolerance?

Now suppose we manage to measure the initial state a million times
better, i.e., we improve our initial error to δ0 = 10−13. How much
longer can we predict?
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The Lyapunov exponent and predictability horizon

Solution: The original prediction has

t =
1

λ
ln

10−3

10−7
=

1

λ
ln(104) =

4 ln 10

λ
. (7)

The improved prediction has

t =
1

λ
ln

10−3

10−13
=

1

λ
ln(1010) =

10 ln 10

λ
. (8)

Thus, after a millionfold improvement in our initial uncertainty, we
can predict only 10/4 = 2.5 times longer (system’s timeframe)!

Conclusions: If one wants to predict further into the future the task
becomes exponentially harder. Since,

t ' 1

λ
ln

a

δ0
∼ ln

a

δ0
⇒ a

δ0
∼ et. (9)
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Conceptual definitions

Chaos a long-term aperiodic behaviour in a deterministic
system that exhibits sensitive dependents on I.C.s ,i.e.,
system has positive Lyapunov exponent λ.

Intermittency or intermittent chaos is the irregular alternation of
phases of apparently periodic and chaotic dynamics, or
different forms of chaotic dynamics (crisis-induced
intermittency).

Transient chaos is temporary short-lived chaos that is replaced
gradually or abruptly by periodic dynamics or stable
fixed point/s.

Crisis is the sudden appearance or disappearance of a strange
attractor as the parameters of a dynamical system are
varied.
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Conceptual definitions

Attractor meets the following criteria. Set A is:
1) Invariant set (start in A and stays in A for t→∞).
2) Attracts open set U of I.C.s. U is basin of attraction.
3) Is minimal (smallest set). There are no proper
sub-sets of A that satisfy (1) and (2).

Strange attractor an attractor that exhibits sensitive dependents on
I.C.s: The Lyapunov exponent λ > 0. Local geometric
structure (manifold) is fractal.

Chaotic attractor when emphasising the chaotic property of an
attractor.

Fractal attractor when emphasising the fractal geometry of an
attractor.
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Conceptual definitions

Strange non-chaotic attractor (SNA) an attractor with long-term
non-chaotic aperiodic dynamics. Such attractors are
generic in quasi-periodically driven nonlinear systems,
and like strange attractors, are geometrically fractal.
The largest Lyapunov exponent λ ≤ 0: trajectories do
not show exponential sensitivity to I.C.s.

Note: A system can be chaotic but not an attractor.
Chaotic attractors and other types of dynamics can co-exist in a
single system.
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The Rössler attractor

The Rössler attractor4 has the form
ẋ = −y − x,
ẏ = x+ ay,

ż = b+ z(x− c).
(10)

Chaotic solution exists for a = 0.1, b = 0.1, c = 14.

4See Mathematica .nb file uploaded to the course webpage.
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The Chen attractor

The Chen attractor5 has the form
ẋ = a(y − x),
ẏ = (c− a)x− xz + cy,

ż = xy − bz.
(11)

Chaotic solution exists for a = 35, b = 3, c = 28.

5See Mathematica .nb file uploaded to the course webpage.
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The modified Chen attractor

The modified Chen attractor6 has the form
ẋ = a(y − x),
ẏ = (c− a)x− xz + cy +m,

ż = xy − bz.
(12)

Chaotic solution exists for a = 35, b = 3, c = 28, m = 23.1.

6See Mathematica .nb file uploaded to the course webpage.
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The Lü attractor

The Lü attractor7 has the form
ẋ = a(y − x),
ẏ = −xz + cy,

ż = xy − bz.
(13)

Chaotic solution exists for a = 36, b = 3, 12.7 < c < 17.0 (similar to
the Lorenz system), 23.0 < c < 28.5 (similar to the Chen system).

7See Mathematica .nb file uploaded to the course webpage.
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The Pan-Xu-Zhou attractor

The Pan-Xu-Zhou attractor8 has the form
ẋ = a(y − x),
ẏ = cx− xz,
ż = xy − bz.

(14)

Chaotic solution exists for a = 10, b = 8/3, c = 16.

8See Mathematica .nb file uploaded to the course webpage.
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The Bouali attractor

The Bouali attractor9 has the form
ẋ = α(1− x)x− βz,
ẏ = −γ(1− x2)y,
ż = µx.

(15)

Chaotic solution exists for example for α = 3.0, β = 2.2, γ = 1.0 and
µ = 0.001.

9See Mathematica .nb file uploaded to the course webpage.
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Strange attractors

Some other strange attractors:

The Lorenz 84 attractor

The Newton–Leipnik chaotic system

The Thomas’ cyclically symmetric
attractor

The Sprott attractors (Sprott A – S)

The algebraically simplest dissipative
chaotic flow (based on jerk equation
derived by J. S. Sprott)

...
x + Aẍ± ẋ2 + x = 0, (16)

where A is constant taken as 2.017, for
example.

Figure: The
algebraically simplest
dissipative chaotic
flow.
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The double mathematical pendulum

The double pendulum: System is implicit for l1 6= l2.
(m1 +m2)l1θ̈1 +m2l2θ̈2 cos(θ1 − θ2)

+m2l2θ̇
2
2 sin(θ1 − θ2) + g(m1 +m2) sin θ1 = 0

m2l2θ̈2 +m2l1θ̈1 cos(θ1 − θ2)
−m2l1θ̇

2
1 sin(θ1 − θ2) +m2g sin θ2 = 0,

(17)
where

See Mathematica .nb file uploaded to the course webpage.
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The double mathematical pendulum

Credit: Paul Nathan, https://www.youtube.com/channel/UCXJZi4nWfeiZP7r21m_n2Xg
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Magnetic pendulum in three magnetic potentials

System is modeled with the following equations of motion:

ẍ+Rẋ−
N∑
i=1

xi − x(√
(xi − x)2 + (yi − y)2 + d2

)3 + Cx = 0,

ÿ +Rẏ −
N∑
i=1

yi − y(√
(xi − x)2 + (yi − y)2 + d2

)3 + Cy = 0,

(18)

where R is proportional to the air resistance and overall attenuation,
C is proportional to the effects of gravity, N is the number of
magnets, the i-th magnet is positioned at (xi, yi), d is the distance
between the pendulum at rest and the plane of magnets.

Additionally we assume that the pendulum length is long compared
to the spacing of the magnets. Thus, we may assume for simplicity
that the metal ball moves about on a xy-plane.
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Magnetic pendulum in three magnetic potentials10
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Figure: Magnets shown with the yellow, red and blue colours, attracting
the magnetic pendulum for three neighbouring initial conditions.

10See Mathematica .nb file uploaded to the course webpage (Lecture №1).
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Magnetic pendulum

Figure: The basins of attraction of the three magnets which are coloured
red, blue and green.

D. Berger, https://twitter.com/InertialObservr
D. Kartofelev YFX1560 25 / 40

https://twitter.com/InertialObservr


Magnetic pendulum

Figure: The basins of attraction of the three magnets which are coloured
red, blue and yellow.

H. Peitgen, et al, Chaos and Fractals: New Frontiers of Science, Springer-Verlag,
2004, pp. 707–714.
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Magnetic pendulum

Figure: Detail of previous slide showing the intertwined structure of the
three basins.

H. Peitgen, et al, Chaos and Fractals: New Frontiers of Science, Springer-Verlag,
2004, pp. 707–714.
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The gravitational three-body problem

The gravitational three-body problem11: system consists of 18
first order equations.

~̈ri =
3∑

j=1, j 6=i

−Gmj
~ri − ~rj
|~ri − ~rj|3

, i = 1, 2, 3, (19)

where ~ri = (xi, yi, zi) is the ith body’s position vector, ~̈ri is the
acceleration of ith body, mj is the jth mass, ~ri − ~rj is the vector
connecting the masses i and j, G is the gravitational constant, and
|~α| denotes the vector norm of vector ~α.

11See Mathematica .nb file uploaded to the course webpage. Numerical
solution of the planar problem where ~ri = (xi, yi) is uploaded.
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The gravitational three-body problem12

Figure: Numerical solution of the planar three-body problem.

12See Mathematica .nb file uploaded to the course webpage. Numerical
solution of the planar problem where ~ri = (xi, yi) is uploaded.
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Dynamics of the Solar System

Is our solar system chaotic or not?

Read: J. Laskar, “Large-scale chaos in the solar system,” Astronomy
and Astrophysics, 287(1), pp. L9–L12, (1994).

Consider also other works by J. Laskar.

Read: Wayne B. Hayes, Anton V. Malykh, Christopher M. Danforth,
“The interplay of chaos between the terrestrial and giant planets,”
Monthly Notices of the Royal Astronomical Society, 407(3),
pp. 1859–1865, (2010).

D. Kartofelev YFX1560 30 / 40



Introduction to 1-D maps

The general form of 1-D map is the following:

xn+1 = f(xn), (20)

where f is the given function, n ∈ Z+ is the number of iterates
applied to an initial condition x0 ∈ R or x0 ∈ C.

A graphical way of generating the iterates xn is to construct a
cobweb diagram.
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1-D maps: Cobweb diagram and map iterates
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Chaotic dynamics in the Lorenz attractor

How do we know that the Lorenz attractor is not just a stable
limit-cycle in disguise?

Playing devil’s advocate, a skeptic might say, “Sure, the trajectories
don’t ever seem to repeat, but maybe you haven’t integrated long
enough. Eventually the trajectories will settle down into a periodic
behaviour — it just happens that the period is incredibly long,
much longer than you’ve tried in your computer. Prove me wrong.”
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Chaotic dynamics in the Lorenz attractor

Lorenz directs our attention to a particular view of the attractor.
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Lorenz writes: “the trajectory apparently leaves one spiral only after exceeding
some critical distance from the center. Moreover, the extent to which this
distance is exceeded appears to determine the point at which the next spiral is
entered; this in turn seems to determine the number of circuits to be executed
before changing spirals again. It therefore seems that some single feature of a
given circuit should predict the same feature of the following circuit.” (Lorenz
1963)

The feature that he focuses on is zn the n-th local maximum of z(t).
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Chaotic dynamics in the Lorenz attractor

Lorenz’s idea is that zn should predict zn+1. To check this, he
numerically integrated the equations for t� 1, then found the local
maxima of z(t), and finally plotted zn+1 vs. zn. The data from the
chaotic time series appear to fall neatly on a curve.
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Figure: The Lorenz map shown with red where |f ′(z)| > 1 for ∀z 6= 0.

By this ingenious trick, Lorenz was able to extract order from chaos.
The normalised map zn+1 = f(zn) shown above is now called the
Lorenz map.
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Ruling out stable limit-cycles

Stability of fixed point z∗ can be determined by linearisation, consider
a slightly perturbed trajectory close to fixed point z∗

zn = z∗ + ηn, (21)

where |η| � 1. Linearisation of the map at z∗ yields

zn+1 = f(zn) = f(z∗ + ηn) =

[
Taylor series expansion

about zn = z∗

]
=

= f(z∗) +
f ′(z∗)

1!
(z∗ + ηn − z∗) +O(η2n) ≈ z∗ + f ′(z∗)ηn.

(22)
zn+1 − z∗︸ ︷︷ ︸

ηn+1

≈ f ′(z∗)ηn (23)
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Ruling out stable limit-cycles

Linearisation of the map at z∗ yields

ηn+1 ≈ |f ′(z∗)|ηn (24)

Since |f ′(z∗)| > 1, by the Lorenz map property, we get

|ηn+1| > |ηn|. (25)

Hence, the deviation ηn grows with each iteration. Fixed point z∗ is
unstable, and all orbits must be unstable.
General conclusions from linearisation:

|f ′(z∗)| < 1, z∗ is stable. (26)

|f ′(z∗)| = 1, z∗ participates in bifurcation. (27)

|f ′(z∗)| > 1, z∗ is unstable. (28)
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Conclusions

Analysis and properties of the Lorenz attractor dynamics

The Lyapunov exponents and Kolmogorov entropy

The Lyapunov time or the predictability horizon

Conceptual definition of chaos or deterministic chaos

Conceptual definition of attractor and strange attractor
Examples of chaotic systems and attractors

Dynamics of the Solar System

1-D maps, cobweb diagram and recurrence map (relation)

Examples discussed:
Various strange attractors
The double mathematical pendulum
The gravitational three-body problem
Magnetic pendulum in three magnetic potentials
The Lorenz map

Differences between chaotic behaviours
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Revision questions

Define attractor.

Define strange attractor.

What is the difference between a strange attractor and an
attractor?

Name properties of the Lorenz attractor.

What are the Lyapunov exponents?

What is the Lyapunov exponent?

What determines the number of Lyapunov exponents?

What is the Kolmogorov entropy?

What is predictability horizon?

What is the Lyapunov time?

Can a long-term solution to a chaotic system be predicted?
Explain.

List some examples of chaos in nature.
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Revision questions

What is final-state sensitivity?

What is chaos?

What is intermittent chaos?

What is transient chaos?

What is crisis?

What is strange non-chaotic attractor?
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