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Lecture outline

Conservative systems and centres

Closed orbits and limit-cycles
Importance of limit-cycles in applications
How to detect closed orbits?

Null-cline

Heteroclinic orbit

The Dulac’s criterion

The Poincaré-Bendixson theorem

D. Kartofelev YFX1560 2/23



Centers and conservative systems

Theorem: Suppose 7 = f(a?) is conservative and f is continuously
differentiable in # € R?. E(Z) is a conserved quantity and 7* is an
isolated fixed point.

If that fixed point is a local minimum or maximum of E(Z), then
that isolated fixed point * is a center, i.e., all trajectories close to

Z* are closed orbits.
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Mathematical pendulum

Mathematical pendulum? is given in the following normalised and
dimensionless form: )
0 +sinf =0, (1)

where 6 is the angular displacement. For angular velocity w = 6 we
rewrite the equation as a system of first order ordinary differential
equations (ODEs):

0=w
’ 2
w= —sind. (2)

1See Mathematica .nb file uploaded to the course webpage.
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Mathematical pendulum

Kinetic en. w

Energy E(6,w)

Potential en95 1/

Figure: System Hamiltonian. Energy surface.
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Mathematical pendulum

Vv
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Figure: Phase portrait showing five fixed points (0% w*) = (—2m,0),
(=m,0), (0,0), (m,0), (2m,0). Heteroclinic orbit is shown with the red

coloured curves.
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The Dulac’s criterion

Let Z = f() be a continuously differentiable vector field defined on
a simply connected subset R of a plane. If there exists a continuously
differentiable, real valued function g(Z) such that

div(g) = V- (g7), (3)

has one sign throughout R, then there are no closed orbits lying
entirely in R.

Note: If the sign changes no conclusion can be drawn.
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Show that there are no closed orbits in region R for z,y > 0 if
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Example: Dulac’s criterion (homework assignment)

Show that there are no closed orbits in region R € R? for
T =y,
5
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Proof by contradiction, the Dulac’s criterion

Let C be a closed orbit in subset R,
and let A be the region inside C'.
Green's theorem:

é/(V-ﬁ)dA - z{(ﬁ.ﬁ)dz (6)

If F = ¢Z, then

/[v (97)| dA = z{(gf i) dl 4 (7)

N S—— S——
#0
has one sign nLa:

by assumption

Therefore there is no closed orbit C in R.
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The Poincaré-Bendixson theorem

Suppose that: —
@ R is a closed, bounded subset in R?, called the trapping region;
Q 7= f(f) is a continuously differentiable vector field on an open
set containing R,

@ R does not contain any fixed points (P); and

@ there exists a trajectory C' that is “confined” in R, in the sense
that it starts in R and stays in R for all future time.

Then either C'is a closed orbit, or it spirals toward a closed orbit as

t — o0. In either case, R contains a closed orbit, that is shown as a

heavy closed curve in the above figure.
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Example: The Poincaré-Bendixson theorem

Search for orbits in an annular region R for small y given the system:

7 =r(1—7r% + prcosé, (8)
6=1.
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Glycolysis?: The Poincaré-Bendixson theorem

Search for closed orbits in an annular region R for glycolysis dynamics
given by the following dimensionless and normalised system:

&= —z+ay+ 2%y,

{ - Y (9)
y=>b—ay—zy,

where a and b are the kinetic parameter groups, x and y are the
concentrations of ADP and F6P molecules, respectively.

Read: Evgeni E. Sel'kov, “Self-oscillations in glycolysis 1. A simple

kinetic model,” European Journal of Biochemistry, 4(1), pp.79-86,
(1968)

2See Mathematica .nb file uploaded to the course webpage.
D. Kartofelev YFX1560 13/23



Glycolysis, trapping region
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Figure: Annular trapping region shown with the red coloured lines and a
circle. Local vector field flow directions are shown with the arrows.
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Glycolysis, inner boundary of the trapping region

Secondly, we focus on the inner boundary of the proposed trapping
region. We need to find and show that the fixed point:

Cf? - xT +ay +z Yy = (CC*, y*) _ (b, —),
y=0 b—ay* —x**y* =0 a+ b?

(10)
is unstable, i.e., the local vector field repels trajectories.

D. Kartofelev YFX1560 15/23



Glycolysis, inner boundary of the trapping region

We analyse fixed point (10) using linear analysis. The Jacobian of
Sys. (9) has the following form:

or 0%

B or Oy  (2zy—1 a+2?

/= oy 0Oy _<—2xy —a—xQ)' (11)
or Oy
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Glycolysis, inner boundary of the trapping region

The Jacobian evaluated at fixed point (10) takes the following form:

20°
i 1 a+b?
Tatr 4T

It's determinant A = det J
a,b > 0, and its trace

(e*y+) = @+ b* > 0 is positive because

T=trJ —— —1—a—0b. (13)

(z*y*) =

D. Kartofelev YFX1560 17 /23



Glycolysis, inner boundary of the trapping region

In order to ensure repelling unstable fixed points for A > 0, trace 7
has to be positive. The dividing line between repelling unstable fixed
points and stable ones is at 7 = 0. Solving

20°

=0
T a + b?

—1—a—-b"=0, (14)

for parameter b gives

ba) \/1—2@12\/1—8a.

(15)

This result defines a line in the parameter space of Sys. (9). For
parameter groups a and b in the region corresponding to 7 > 0, we
are guaranteed that Sys. (9) has a closed orbit—an oscillating
chemical reaction.
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Glycolysis, inner

boundary of the trapping region
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Figure: Parameter space defining the parameter values corresponding to
the unstable fixed point given by (10).
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Glycolysis3, limit-cycle
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3See Mathematica .nb file uploaded to the course webpage.
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Glycolysis, time-domain results
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Conclusions

Conservative systems

Closed orbits and limit-cycles
Importance of limit-cycles in applications
Null-cline

Heteroclinic orbit

The Dulac’s criterion

The Poincaré-Bendixson theorem

D. Kartofelev YFX1560 22/23



Revision questions

)

Expand on the connection between 2-D conservative systems
and centers.

Sketch a heteroclinic orbit.

What is limit-cycle?

Sketch a stable limit-cycle.

Sketch an unstable limit-cycle.

Sketch a half-stable (stable from outside) limit-cycle.
Sketch a half-stable (stable from inside) limit-cycle.
Define and sketch a null-cline.

What is the Dulac's criterion?

State the Poincaré-Bendixson theorem.

Does the Poincaré-Bendixson theorem apply to 3-D systems?
Can chaos occur in 2-D systems?
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