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Linearisation of 2-D systems

Nonlinear 2-D system for given functions f and g is defined by{
ẋ = f(x, y),

ẏ = g(x, y).
(1)

Let’s consider two small perturbation: |u| � 1 in the x-direction, and
|v| � 1 in the y-direction. The perturbed dynamics of the solution of
Sys. (1) in close proximity to fixed point (x∗, y∗) thus is{

x(t) = x∗ + u(t),

y(t) = y∗ + v(t),
(2)

equivalently we write: {
u(t) = x(t)− x∗,
v(t) = y(t)− y∗.

(3)
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Linearisation of 2-D systems

Temporal dynamics of perturbations u and v is the following:

u̇ = (x− x∗)̇ = ẋ = f(x∗+ u, y∗+ v) =

= f(x∗, y∗) + u
∂f

∂x

∣∣∣∣
(x∗, y∗)

+ v
∂f

∂y

∣∣∣∣
(x∗, y∗)

+O(u2, v2, uv) ≈

≈ u
∂f

∂x

∣∣∣∣
(x∗, y∗)

+ v
∂f

∂y

∣∣∣∣
(x∗, y∗)

v̇ = (y − y∗)̇ = ẏ = g(x∗+ u, y∗+ v) =

= g(x∗, y∗) + u
∂g

∂x

∣∣∣∣
(x∗, y∗)

+ v
∂g

∂y

∣∣∣∣
(x∗, y∗)

+O(u2, v2, uv) ≈

≈ u
∂g

∂x

∣∣∣∣
(x∗, y∗)

+ v
∂g

∂y

∣∣∣∣
(x∗, y∗)

(4)
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Linearisation of 2-D systems

For a better overview we collect the above results:
u̇ = u

∂f

∂x

∣∣∣∣
(x∗, y∗)

+ v
∂f

∂y

∣∣∣∣
(x∗, y∗)

,

v̇ = u
∂g

∂x

∣∣∣∣
(x∗, y∗)

+ v
∂g

∂y

∣∣∣∣
(x∗, y∗)

.

(5)
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Linearisation of 2-D systems

The matrix form for ~u = (u, v)T is the following:

~̇u =


∂f

∂x

∂f

∂y
∂g

∂x

∂g

∂y


∣∣∣∣∣∣∣∣
(x∗, y∗)

· ~u ≡ J
∣∣
(x∗, y∗)

· ~u, (6)

where matrix J is the Jacobian matrix of the given system.
Neglecting higher order terms (h.o.t.) O(u2, v2, uv) yields the
linearisation about fixed point (x∗, y∗) in form (6).

Note: Higher order terms of order O(uv) are also negligibly small
since |u|, |v| � 1.
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Example: An ambiguous borderline case

An example where linear center is disturbed and changed by
nonlinearity.

Consider the following system:{
ẋ = −y + ax(x2 + y2),

ẏ = x+ ay(x2 + y2),
(7)

where a is the control parameter1.

1See Mathematica .nb file uploaded to the course webpage.
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Analysis of the nonlinear dynamics
Sys. (7) is analysed in polar coordinates. Usually a coordinate
transform in the form: {

x = r cos θ,

y = r sin θ,
(8)

where r = r(t) and θ = θ(t), is used. This approach may prove to be
work-intense. Let’s instead use another valid identity in the form:r =

√
x2 + y2,

θ = tan−1 y

x
.

(9)

We are searching a system in the form:{
ṙ = f(r, θ),

θ̇ = g(r, θ),
(10)

where functions f(r, θ) and g(r, θ) are to be determined.
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Analysis of the nonlinear dynamics
Substituting (9) into original Sys. (7) results in{

ẋ = −y + ax(x2 + y2) = −y + axr2,

ẏ = x+ ay(x2 + y2) = x+ ayr2.
(11)

Using (9) we write
r2 = x2 + y2, (12)

where x = x(t), y = y(t) and r = r(t). We are interested in
temporal dynamics, i.e.:

d

dt
(r2) =

d

dt
(x2 + y2), (13)

2rṙ = 2xẋ+ 2yẏ | ÷ 2, (14)

rṙ = xẋ+ yẏ. (15)

This identity is used in connection with Sys. (11) to derive the first
equation of sought Sys. (10).
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Analysis of the nonlinear dynamics

Substituting (11) into the right-hand side of (15) results in

rṙ = x(−y + axr2) + y(x+ ayr2)

= −��xy + ax2r2 +��xy + ay2r2

= a (x2 + y2)︸ ︷︷ ︸
r2

r2 = ar4.
(16)

Above result can be simplified:

rṙ = ar4 | ÷ r, (17)

ṙ = ar3. (18)

We have found the first equation of sought Sys. (10). We are one
step closer to the polar representation of the original problem, given
by Sys. (7).
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Analysis of the nonlinear dynamics

The second equation of sought Sys. (10) is found in the same way.
Using (9) we study the temporal dynamics by writing:

d

dt
θ =

d

dt

(
tan−1 y

x

)
⇒

 θ = θ(t),
x = x(t),
y = y(t),
chain rule,
simplify

⇒ 1 · θ̇ = xẏ − yẋ
x2 + y2︸ ︷︷ ︸

r2

. (19)

Substituting (11) into the right-hand side of the obtained result gives:

θ̇ =
x(x+ ayr2)− y(−y + axr2)

r2

=
x2 +����axyr2 + y2 −����axyr2

r2
=

x2 + y2

r2
=

r2

r2
= 1,

(20)

θ̇ = 1. (21)

We have found the second equation of sought Sys. (10).
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Analysis of the nonlinear dynamics

Sys. (7) has been transformed into polar coordinates. Resulting
decoupled equations (18) and (21) are the following:{

ẋ = −y + ax(x2 + y2)

ẏ = x+ ay(x2 + y2)
⇒

ṙ = ar3,

θ̇ = 1.
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Cohabitation model: Sheep and rabbits

The Lotka-Volterra competitive cohabitation model2 from ecology—
competitive cohabitation of rabbits and sheep. The model has the
following normalised and dimensionless form:{

ẋ = x(3− x)− 2xy,

ẏ = y(2− y)− xy,
(22)

where x and y are the sizes of rabbit and sheep populations,
respectively.

2See Mathematica .nb file uploaded to the course webpage.
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Phase portrait of Sys. (22)
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Phase portrait of Sys. (22), linear analysis
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Phase portrait of Sys. (22)

Figure: Phase portrait. The portrait features two basins of attraction
corresponding to the stable fixed points. The stable manifold of the
saddle is located at the basin boundaries. The unstable manifold is shown
with the red dashed line.
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Predator–prey model: Fish and sharks

Home assignment. Study the dynamics. How is this model different
from the above presented “sheep and rabbits” model?

Model is given in the following normalised and dimensionless form:{
ẋ = αx− βxy,
ẏ = γβxy − δy,

(23)

where x is the concentration of the prey species, y is the
concentration of the predator species, α is the prey species’
population growth rate, β is the predation rate of y upon x, γ is the
assimilation efficiency of y, and δ is the mortality rate of the predator
species3.

3See Mathematica .nb file uploaded to the course webpage.
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Predator–prey model: Fish and sharks
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Nonlinear vs. linearised phase portrait
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equation (red)
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See Mathematica
.nb file uploaded
to the course
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Nonlinear vs. linearised phase portrait
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Conservative system

Consider a system with one degree of freedom given by an equation
of motion in the form:

mẍ = F (x) = −dV (x)

dx
, (24)

where m is the mass, V is the potential, and where force F is
explicitly independent of time t (no external driving force) and ẋ (no
attenuation or damping terms).

In the conservative system the total energy is constant in time:

E =
mẋ2

2
+ V (x) = const. (25)
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Conservative system, conserved quantity

Definition: Given a system ~̇x = ~f(~x), a conserved quantity is a
real-valued continuous function E(~x) that is constant on the system
trajectories, i.e., dE/dt = 0.

To avoid trivial examples, we also require that E(~x) be non-constant
on every open set. Otherwise a constant function like E(~x) = 0
would qualify as a conserved quantity for every system, and so every
system would be conservative!
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Conservative system

A proof from a classical mechanics textbook: Using Eq. (24) we write

mẍ+
dV

dx
= 0

∣∣∣ · ẋ, (26)

mẍẋ+
dV

dx
ẋ = 0. (27)

The left-hand side of (27) is a so-called perfect derivative or an
exact time-derivative.
By applying the chain rule ( d

dt
V (x(t)) = dV

dx
dx
dt

) in reverse we get:

d

dt

(
mẋ2

2
+ V (x)

)
= 0, (28)

from here it is clear that the sum of kinetic and potential energy do
not change in time. Energy E is indeed a conserved quantity

Ė(x, ẋ) = 0. (29)
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Conservative system: Example

Example4: A particle in a double-well potential.

The potential energy is given by the following function:

V (x) = − x2

2
+

x4

4
. (30)

4See Mathematica .nb file uploaded to the course webpage.
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Particle in a double-well potential
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Particle in a double-well potential, linear analysis
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Particle in a double-well potential

Figure: Phase portrait. The homoclinic orbit is shown with the red
trajectories.
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Particle in a double-well potential
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Conclusions

Linearisation of 2-D systems about fixed points

The Jacobian matrix of a system

Stability analysis – linear fixed points vs. nonlinear fixed points

Stable and unstable manifolds

Nonlinear vs. linearised phase portrait

Conservative systems

Homoclinic orbit
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Revision questions
Provide an example of nonlinear 2-D system.

Explain linearisation of 2-D systems about fixed points.

Can all nonlinear systems be linearised with the aim of
identifying their fixed point type?

Linearise the following system{
ẋ = 4x− 4xy,

ẏ = −9y + 18xy.
(31)

Without taking derivatives, linearise the following systems:{
ẋ = −y + xy,

ẏ = x,
(32)

{
ẋ = −y,
ẏ = x+ y2.

(33)
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Revision questions

Define Jacobian matrix of a system.

Sketch a homoclinic orbit.

Define conservative dynamical system.
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