Lecture №14: Fractals and fractal geometry, coastline paradox, spectral characteristics of dynamical systems, 1-D complex valued maps, the Mandelbrot set and nonlinear dynamical systems, introduction to applications of fractal geometry and chaos

Lecture outline

- Definition of fractal
- Spectral characteristics of periodic, quasi-periodic and chaotic systems
- Second look at 1-D and 2-D maps, complex valued maps
- The Mandelbrot set and the Fatou and Julia sets, their connection to nonlinear dynamical systems
- Generation of the Mandelbrot set and the corresponding Fatou sets
- The Buddhabrot
- The Multibrot sets
- Examples of fractal geometry in nature and applications
- Introduction to applications of fractals and chaos
 - Fractal similarity dimension and the coastline paradox
 - Synchronisation

D. Kartofelev

Definition of a fractal¹

Fractal Endless and complex *pattern* with fine structure at arbitrarily small scales. In other words magnification of tiny features of a fractal are reminiscent of the whole. Similarity can be exact (invariant), more often it is approximate or statistical.

Examples: The Cantor set, the von Kock curve, the Hilbert curve, the L-systems, etc.

¹See Mathematica .nb file uploaded to the course webpage.

D. Kartofelev

Spectral characteristics of dynamical systems

Figure: Power spectra of sine wave shown with the red curve and a periodic solution of the Lorenz attractor shown with the blue graph.

Spectral characteristics of dynamical systems

Figure: Power spectrum of quasi-periodic solution.

Spectral characteristics of dynamical systems

Figure: Power spectrum of a chaotic solution.

Dynamics analysis methods

Construction of the **Poincaré map** $\vec{P}(\vec{x}') = (f_1(x', y'), f_2(x', y'))^T$ (1). Mapping of the Poincaré section points where r is the radial distance from the origin (in the case of a "flat" attractor).

Dynamics analysis methods

Orbit diagram: A long-term discrete-time behaviour analysis.

The Mandelbrot set and dynamical systems

The Mandelbrot set 2 M is defined as follows:

$$\begin{cases} z_{n+1} = z_n^2 + c, \quad \{z, c\} \in \mathbb{C}, \ n \in \mathbb{Z}^+ \\ z_0 = 0 \\ c \in M \iff \limsup_{n \to \infty} |z_n| \le 2 \end{cases}$$

²See Mathematica .nb file uploaded to the course webpage.

D. Kartofelev

YFX1560

(2)

The Mandelbrot set

The complex square map given in the form:

$$z_{n+1} = z_n^2 + c, (3)$$

where z = x + iy, c = r + is, and $z, c \in \mathbb{C}$, can be represented as a 2-D real valued map. The component form of (3) is the following:

$$x_{n+1} + iy_{n+1} = (x_n + iy_n)^2 + r + is,$$
 (4)

$$x_{n+1} + iy_{n+1} = x_n^2 + 2ix_ny_n - y_n^2 + r + is,$$
(5)

$$x_{n+1} + iy_{n+1} = x_n^2 - y_n^2 + r + i(2x_ny_n + s).$$
 (6)

Separation of the real and imaginary parts, and elimination of the imaginary unit i yields:

$$\begin{cases} x_{n+1} = x_n^2 - y_n^2 + r \\ iy_{n+1} = i(2x_n y_n + s) \end{cases} \Rightarrow \begin{cases} x_{n+1} = x_n^2 - y_n^2 + r, \\ y_{n+1} = 2x_n y_n + s, \end{cases}$$
(7)

where $x, y, r, s \in \mathbb{R}$.

1-D complex maps, non-trivial dynamics

The Mandelbrot set, self-similar properties (video)

The Fatou sets and dynamical systems

The Fatou set ${\cal F}_c$ corresponding to the M set with fixed c value is defined as follows:

$$\begin{cases} z_{n+1} = z_n^2 + c, \quad \{z, c\} \in \mathbb{C}, \ n \in \mathbb{Z}^+ \\ c = \text{const.} = |c| \le 2 \\ z_0 \in F_c \iff \limsup_{n \to \infty} |z_n| \le 0.5 + \sqrt{0.25 - |c|} \end{cases}$$
(8)

Figure: The Fatou set or the **filled** Julia set for c = -1.1 - 0.1i.

D. Kartofelev

YFX1560

The Julia sets

The Julia set J_c corresponding to the ${\cal M}$ set with fixed c value is defined as follows.

Definition: The Julia set contains the compact boundary of a nonempty Fatou set.

Figure: The Julia set where c = -1.1 - 0.1i. The set is the boundary between the black and blue colours.

The Mandelbrot set and the Fatou sets

D. Kartofelev

The Mandelbrot set and the Fatou sets/Fatou dust

D. Kartofelev

YFX1560

Fractal dimension of the edge d = 2.0

Credit: CC BY-SA 3.0 Adam Majewski, Wolf Jung, J.C. Sprott

The Mandelbrot set and period-p orbits

Credit: CC BY-SA 3.0 Hoehue commonswiki

The main cardioid

Certain optical caustics can take the shape of a cardioid.

Figure: Optical caustic in a coffee cup.

Credit: CC BY-SA 3.0 Gérard Janot

D. Kartofelev

YFX1560

The Mandelbrot set and the Buddhabrot

The image is rotated in a clockwise direction by 90° .

Credit: CC BY-SA 3.0 Purpy Pupple, Evercat, Michael Pohoreski

Generalised Mandelbrot sets, Multibrot sets³

³See Mathematica .nb file uploaded to the course webpage.

	1.		C - 1	
- U	ĸа	rto	te	le١

YFX1560

Generalised Mandelbrot sets, Multibrot sets

Yarlung Tsangpo River, China. Credit: NASA/GSFC/LaRC/JPL, MISR Team.

D. Kartofelev

Fractal geometry and nature (computer graphics)

Fractal geometry and nature (computer graphics)

Brownian noise with fractal dimension $d = 2.0 \rightarrow$ topography.

Fractal geometry and technology

D. Kartofelev

The **coastline paradox**⁴ is the counterintuitive observation that the coastline of a landmass does not have a well-defined length. This results from the **fractal-like properties of coastlines**. The first recorded observation of this phenomenon was by Lewis Fry Richardson and it was expanded by Benoit Mandelbrot.

Read: B. Mandelbrot, "How long is the coast of Britain? Statistical self-similarity and fractional dimension," *Science, New Series*, **156**(3775), 1967, pp. 636–638.

⁴See Mathematica .nb file uploaded to the course webpage.

Coastline paradox

where L is the resulting measurement and Δx is the measurement resolution, i.e., length of a measuring stick.

Coastline paradox

YFX1560

Coastline paradox and Estonia⁵

Resulting length = 809 km

⁵See Mathematica .nb file uploaded to the course webpage.

Coastline paradox and Estonia

Coastline paradox, the von Kock <u>snowflake⁶</u>

⁶See Mathematica .nb file uploaded to the course webpage.

Coastline paradox

Great Britain d = 1.25; Norway d = 1.52; Estonia^{*} d = 1.2; South African coast d = 1.0

D. Kartofelev

Synchronisation: metronomes

Synchronisation: fireflies

Synchronisation: The Millennium bridge (2000)

Synchronisation

 $\label{eq:approx} \mbox{Aperiodicity of chaos} \to \mbox{bifurcation} / s \to \mbox{periodic solution} \\ \mbox{Conceptual model:}$

$$\dot{\phi} = \mu - \sin \phi, \tag{11}$$

where $\mu \ge 0$ is the system parameter and ϕ is the phase difference/s.

Conclusions

- Definition of fractal
- Spectral characteristics of periodic, quasi-periodic and chaotic systems
- Second look at 1-D and 2-D maps, complex valued maps
- The Mandelbrot set and the Fatou and Julia sets, their connection to nonlinear dynamical systems
- Generation of the Mandelbrot set and the corresponding Fatou sets
- The Buddhabrot
- The Multibrot sets
- Examples of fractal geometry in nature and applications
- Introduction to applications of fractals and chaos
 - Fractal similarity dimension and the coastline paradox
 - Synchronisation

D. Kartofelev

Revision questions

- Define fractal (technical definition).
- Define pre-fractal.
- Explain the coastline paradox.
- Can a coastline be described with Euclidean geometry?
- What determines spectral characteristics of dynamical systems?
- What is a 1-D complex valued map?
- What are the Mandelbrot set and the Fatou sets?
- What is the Julia set?
- Assuming $z = x + \mathrm{i} y$, $c = r + \mathrm{i} s$, and $z, c \in \mathbb{C}$, show that map in the form

$$\begin{cases} x_{n+1} = x_n^2 - y_n^2 + r, \\ y_{n+1} = 2x_n y_n + s, \end{cases}$$
(12)

is the real counterpart of the Mandelbrot set.

- What is the physical meaning of the Mandelbrot set?
- What is the physical meaning of the Fatou sets?
- What is the generalised Mandelbrot set also known as the Multibrot set?
- Name an example of self-similar phenomena in nature.