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systems
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Examples of fractal geometry in nature and applications
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Definition of a fractal1

Fractal Endless and complex pattern with fine structure at
arbitrarily small scales. In other words magnification of
tiny features of a fractal are reminiscent of the
whole. Similarity can be exact (invariant), more often it
is approximate or statistical.

Examples: The Cantor set, the von Kock curve, the Hilbert curve,
the L-systems, etc.

1See Mathematica .nb file uploaded to the course webpage.
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Spectral characteristics of dynamical systems
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Figure: Power spectra of sine wave shown with the red curve and a
periodic solution of the Lorenz attractor shown with the blue graph.
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Spectral characteristics of dynamical systems
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Figure: Power spectrum of quasi-periodic solution.
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Spectral characteristics of dynamical systems
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Figure: Power spectrum of a chaotic solution.
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Dynamics analysis methods

{
x′n+1 = f1(x

′
n, y

′
n)

y′n+1 = f2(x
′
n, y

′
n)

⇒ rn+1 = f3(rn) (1)

Construction of the Poincaré map ~P (~x′) = (f1(x
′, y′), f2(x

′, y′))T

(1). Mapping of the Poincaré section points where r is the radial
distance from the origin (in the case of a “flat” attractor).
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Dynamics analysis methods

⇒

Orbit diagram: A long-term discrete-time behaviour analysis.
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The Mandelbrot set and dynamical systems

The Mandelbrot set2 M is defined as follows:
zn+1 = z2n + c, {z, c} ∈ C, n ∈ Z+

z0 = 0

c ∈M ⇐⇒ lim sup
n→∞

|zn| ≤ 2

(2)
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2See Mathematica .nb file uploaded to the course webpage.
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The Mandelbrot set

The complex square map given in the form:

zn+1 = z2n + c, (3)

where z = x+ iy, c = r + is, and z, c ∈ C, can be represented as a
2-D real valued map. The component form of (3) is the following:

xn+1 + iyn+1 = (xn + iyn)2 + r + is, (4)

xn+1 + iyn+1 = x2n + 2ixnyn − y2n + r + is, (5)

xn+1 + iyn+1 = x2n − y2n + r + i(2xnyn + s). (6)

Separation of the real and imaginary parts, and elimination of the
imaginary unit i yields:{

xn+1 = x2n − y2n + r

�iyn+1 = �i(2xnyn + s)
⇒

{
xn+1 = x2n − y2n + r,

yn+1 = 2xnyn + s,
(7)

where x, y, r, s ∈ R.
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1-D complex maps, non-trivial dynamics

Fixing the polynomial System dynamics
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The Mandelbrot set, self-similar properties (video)

No embedded video files in this pdf

D. Kartofelev YFX1560 12 / 44



The Fatou sets and dynamical systems

The Fatou set Fc corresponding to the M set with fixed c value is
defined as follows:

zn+1 = z2n + c, {z, c} ∈ C, n ∈ Z+

c = const. = |c| ≤ 2

z0 ∈ Fc ⇐⇒ lim sup
n→∞

|zn| ≤ 0.5 +
√

0.25− |c|
(8)
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Figure: The Fatou set or the filled Julia set for c = −1.1− 0.1i.
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The Julia sets

The Julia set Jc corresponding to the M set with fixed c value is
defined as follows.

Definition: The Julia set contains the compact boundary of a
nonempty Fatou set.
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Figure: The Julia set where c = −1.1− 0.1i. The set is the boundary
between the black and blue colours.
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The Mandelbrot set and the Fatou sets
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The Mandelbrot set and the Fatou sets/Fatou dust
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Fractal dimension of the edge d = 2.0

Credit: CC BY-SA 3.0 Adam Majewski, Wolf Jung, J.C. Sprott
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The Mandelbrot set and period-p orbits

Credit: CC BY-SA 3.0 Hoehue commonswiki
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The main cardioid

Certain optical caustics can take the shape of a cardioid.

Figure: Optical caustic in a coffee cup.

Credit: CC BY-SA 3.0 Gérard Janot
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The Mandelbrot set and the Buddhabrot

The image is rotated
in a clockwise direction
by 90◦.

Credit: CC BY-SA 3.0 Purpy
Pupple, Evercat, Michael
Pohoreski
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Generalised Mandelbrot sets, Multibrot sets3

zn+1 = zpn + c, z0 = 0 (9)
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3See Mathematica .nb file uploaded to the course webpage.
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Generalised Mandelbrot sets, Multibrot sets

zn+1 = zpn + c, z0 = 0
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Fractal geometry and nature
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Fractal geometry and nature

Yarlung Tsangpo River, China. Credit: NASA/GSFC/LaRC/JPL, MISR Team.
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Fractal geometry and nature

D. Kartofelev YFX1560 25 / 44



Fractal geometry and nature

No embedded video files in this pdf
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Fractal geometry and nature
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Fractal geometry and nature (computer graphics)
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Fractal geometry and nature (computer graphics)

Brownian noise with fractal dimension d = 2.0 → topography.
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Fractal geometry and technology

D. Kartofelev YFX1560 30 / 44



Coastline paradox

The coastline paradox4 is the counterintuitive observation that the
coastline of a landmass does not have a well-defined length. This
results from the fractal-like properties of coastlines. The first
recorded observation of this phenomenon was by Lewis Fry
Richardson and it was expanded by Benoit Mandelbrot.

Read: B. Mandelbrot, “How long is the coast of Britain? Statistical
self-similarity and fractional dimension,” Science, New Series,
156(3775), 1967, pp. 636–638.

4See Mathematica .nb file uploaded to the course webpage.
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Coastline paradox

∆x = b ∆x = a

Slope of the resulting graph:

d = − ln(L(∆x))

ln(∆x)
=

ln(L(∆x))

ln(1/∆x)
, (10)

where L is the resulting measurement and ∆x is the measurement
resolution, i.e., length of a measuring stick.
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Coastline paradox

D. Kartofelev YFX1560 33 / 44



Coastline paradox and Estonia5

Resulting length = 809 km

5See Mathematica .nb file uploaded to the course webpage.
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Coastline paradox and Estonia

Resulting length = 1473 km
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Coastline paradox, the von Kock snowflake6

Measured length 3.16879 Measured length 4.91986

6See Mathematica .nb file uploaded to the course webpage.
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Coastline paradox

Great Britain d = 1.25; Norway d = 1.52; Estonia∗ d = 1.2; South
African coast d = 1.0
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Synchronisation: metronomes

No embedded video files in this pdf
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Synchronisation: fireflies

No embedded video files in this pdf
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Synchronisation: The Millennium bridge (2000)

No embedded video files in this pdf
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Synchronisation

Aperiodicity of chaos → bifurcation/s → periodic solution

Conceptual model:
φ̇ = µ− sinφ, (11)

where µ ≥ 0 is the system parameter and φ is the phase difference/s.
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Conclusions

Definition of fractal
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Revision questions

Define fractal (technical definition).

Define pre-fractal.

Explain the coastline paradox.

Can a coastline be described with Euclidean geometry?

What determines spectral characteristics of dynamical systems?

What is a 1-D complex valued map?

What are the Mandelbrot set and the Fatou sets?

What is the Julia set?

Assuming z = x+ iy, c = r + is, and z, c ∈ C, show that map
in the form {

xn+1 = x2n − y2n + r,

yn+1 = 2xnyn + s,
(12)

is the real counterpart of the Mandelbrot set.
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Revision questions

What is the physical meaning of the Mandelbrot set?

What is the physical meaning of the Fatou sets?

What is the generalised Mandelbrot set also known as the
Multibrot set?

Name an example of self-similar phenomena in nature.
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