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Lecture outline

Geometry of strange attractors

Analysis of stretch, fold and re-inject process in strange
attractors

Local microstructure of the Rössler attractor trajectories

Introduction to fractal geometry: non-integer dimensions

The Cantor set and von Koch curve (von Koch star)

Similarity dimension

Box counting dimension

Introduction to 2-D maps

The Hénon map as a simplified model of the Poincaré section of
strange attractors

Properties of the Hénon map

D.Kartofelev YFX1560 2 / 37



Geometry of strange attractors

Microstructure of the Poincaré section of the Rössler attractor.

What happens inside the Lorenz section? What is the internal
structure of the Lorenz section and how is it generated?
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Stretching, folding and re-injecting

Cooking analogy — dough kneading

stretch fold and repeat
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Stretching, folding and re-injecting

Cooking analogy — dough kneading
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Stretching, folding and re-injecting

After repeated re-injection steps.

Resulting number of layers is 2n, where n is the number of iterations.
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Stretching, folding and re-injecting

Puff pastry dough (pâte feuill)

Resulting puff pastry (pâte feuilletée)

Credit: CC BY-SA 3.0 Popo le Chien

D.Kartofelev YFX1560 7 / 37



Taffy pulling

No embedded video files in this pdf
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The Lorenz section

⇓

The Poincaré section

The Lorenz section

Internal structure of
the Lorenz section
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The Rössler attractor

The Rössler attractor1 has the form (as mentioned in Lectures 9, 11):
ẋ = −y − x,

ẏ = x+ ay,

ż = b+ z(x− c).

(1)

Chaotic solution exists for a = 0.1, b = 0.1, c = 14.

1See Mathematica .nb file uploaded to the course webpage.
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Poincaré section dynamics in the Rössler attractor

No embedded video files in this pdf
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Geometry of the Rössler attractor
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Geometry of the Rössler attractor
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Geometry of the Rössler attractor
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Geometry of the Rössler attractor
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Geometry of the Rössler attractor
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Do not forget about the uniqueness of solutions.
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Geometry of the Rössler attractor2
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2See Mathematica .nb file uploaded to the course webpage.
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Geometry of the Rössler attractor

Credit: Abraham & Shaw, ”Dynamics, the Geometry of Behavior, Part 2: Chaotic Behavior,”
1983, pp. 121–123, reproduced in Strogatz, ”Nonlinear Dynamics and Chaos,” 1994 edition,
p. 436
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Geometry of the Rössler attractor
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Number of layers in
a real attractor
2∞ =∞.
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The Cantor set and the Lorenz section

⇓

The Poincaré section

The Lorenz section

Internal infinite
structure of the Lorenz
section, 2∞ layers
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Properties of the Cantor set

The Cantor set3 shown to the fourth iterate (pre-fractal).

S0 = 1

S1 =
2
3

S2 =
(
2
3

)2
S3 =

(
2
3

)3
S4 =

(
2
3

)4
3See Mathematica .nb file uploaded to the course webpage.
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Properties of the von Koch curve

The von Koch curve4 shown to the fourth iterate.

S0 = 1

S1 =
4
3

S2 =
(
4
3

)2
S3 =

(
4
3

)3
S4 =

(
4
3

)4
4See Mathematica .nb file uploaded to the course webpage.
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Properties of the von Koch curve

Selected properties of the von Koch curve:

Measure (total length) of the curve is ∞

|S0| = 1, |S1| =
4

3
, |S2| =

(
4

3

)2
, |S3| =

(
4

3

)3
, . . .

|Sn| =
(
4

3

)n
, where n ∈ Z+ (2)

|S∞| = lim
n→∞

|Sn| =∞ (3)

Distance between any two points is ∞, see (3)
Self-similar — the curve is comprised of smaller copies (reduced
by factor of 3) of itself
Non-integer similarity and box dimension:

d =
ln 4

ln 3
≈ 1.26 (4)
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A way to think about dimensionality

Idea behind the similarity dimension.

r = 3 m = 9

r = 3 m = 27

Rule: m = r2

Rule: m = r3

The power of r carries
information about the
dimensionality.

D.Kartofelev YFX1560 24 / 37



Similarity dimension

If one can demonstrate the existence of a scaling relation in the form

m = rd ⇒ d =
lnm

ln r
, (5)

where r is the reduction factor of the self-similar substructures and m
is the number of the self-similar substructures that comprise the
original object.

Then we have d — a similarity dimension.

Example: The Cantor set, a scaling law for iterates of the fractal
exist and one can find that

d =
lnm

ln r
=

ln 2

ln 3
≈ 0.63.
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Box counting dimension

Generalisation of the similarity dimension. Below: L is the line
length, ε is the box size and N is the number of covering boxes.

ε = ε1 ε = ε2 < ε1

lazy

better

best

N(ε) ∼ L

ε
(6)

D.Kartofelev YFX1560 26 / 37



Box counting dimension in 2-D

A is the area of the rectangle, ε is the box size, and N is the number
of covering boxes.

ε = ε1 ε = ε2 < ε1

N(ε) ∼ A

ε2
(7)

The scaling law also holds for the Euclidean D-dimensional subset
regions R where D > 2 (the covering Euclidean cubes are
D-dimensional).

N(ε) ∼ R

εd
(8)
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Box counting dimension, power law

N(ε) ∼ R

εd
⇒ N(ε) ∼ 1

εd
, (9)

where R is the (unit) volume. Solving for the power d gives

N(ε) ∼ 1

εd

∣∣∣ · εd, (10)

εdN(ε) ∼ 1
∣∣ ln(·), (11)

d ln ε+ lnN(ε) ∼ 0, (12)

d ∼ − lnN(ε)

ln ε
∼

 since
ln(1/ε) = ln 1︸︷︷︸

=0

− ln ε

 ∼ lnN(ε)

ln(1/ε)
. (13)
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Box counting dimension, power law

N(ε) ∼ 1

εd

Conclusion: the power of ε carries information about the
dimensionality of an object.

Slope of the log-log plot

d = lim
ε→0

lnN(ε)

ln(1/ε)
. (14)

If limit ε→ 0 of d exist we have a box counting dimension (a
power law).

This approach also allows to estimate non-Euclidean, non-integer
dimensions of fractals and fractal-like objects.
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2-D maps: the Hénon map

Hénon created a simple fractal attractor in order to study the general
properties of strange attractors.

The 2-D Hénon map5 has the following form:{
xn+1 = yn + 1− ax2

n,

yn+1 = bxn,
(15)

where a and b are the control parameters. Chaotic solution exists for
a = 1.4, b = 0.3.

Read: M. Hénon, “A two-dimensional mapping with a strange
attractor,” Communications in Mathematical Physics, Vol. 50, No. 1
(1976), pp. 69–77.

5See Mathematica .nb file uploaded to the course webpage.
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The Hénon map

Modelling the stretch–fold–re-inject dynamics of the Poincaré section
of a 3-D attractor:

T ′ T ′′ T ′′′
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The Hénon map, local trapping region R
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The Hénon map, orbit diagram6

Period doubling and chaotic dynamics are present for b = 0.3.

6See Mathematica .nb file uploaded to the course webpage.
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Gingerbread man map or fractal7

Showing 4 · 104 iterates for initial conditions x0 = −0.3 and y0 = 0.
7See Mathematica .nb file uploaded to the course webpage.

D.Kartofelev YFX1560 34 / 37



Conclusions

Geometry of strange attractors

Analysis of stretch, fold and re-inject process in strange
attractors

Local microstructure of the Rössler attractor trajectories

Introduction to fractal geometry: non-integer dimensions

The Cantor set and von Koch curve (von Koch star)

Similarity dimension

Box counting dimension

Introduction to 2-D maps

The Hénon map as a simplified model of the Poincaré section of
strange attractors

Properties of the Hénon map
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Revision questions

How is it possible for two trajectories with almost equal initial
conditions to deviate exponentially and remain attracted to a
strange attractor (remain in the basin of attraction)?

Give an example of a dynamics that features global stability and
local instability.

Explain fractal microstructure of strange attractors.

Define fractal.

What is pre-fractal?

Construct a simple fractal (general idea).

What is self-similarity?

What is scale-invariance?

Are all fractals self-similar?

What is fractal geometry?
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Revision questions

What is fractal dimension?

What are similarity and box counting dimensions?

What is a power law?

What is the Cantor set?

What is the von Koch curve?

What is a 2-D map?

How to find fixed points of 2-D maps (period-1 point)?

What is the Hénon map, its significance?
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