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1 Quasi-periodicity

1.1 A graphical way of thinking about coupled oscillations

Besides a plane, another important two-dimensional phase space is a torus. A torus is the natural phase
space for systems of the form: {

θ̇1 = f1(θ1, θ2),

θ̇2 = f2(θ1, θ2),
(1)

where θ1 and θ2 are the angular displacements, and functions f1 and f2 are periodic in both arguments. An
intuitive way to think about Sys. (1) is to imagine two friends jogging on a circular stadium—our approach
so far. Here, θ1(t) and θ2(t) represent their angular positions with respect to the centre of the stadium.
This polar coordinate representation is shown in Fig. 1.
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Figure 1: Circular stadium where the angular positions of two runners are shown with θ1(t) and θ2(t).

Another way to think about Sys. (1) is to imagine a point having coordinates θ1(t) and θ2(t) on a surface
of a torus as shown in Fig. 2 (Left). But since the curved surface of a torus makes it hard to draw phase
portraits, we prefer to use an equivalent representation: a square with 2π-periodic boundary conditions.
Then if a trajectory runs off an edge, it magically reappears on the opposite edge, as shown in Fig. 2 (Right).
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Figure 2: (Left) A trajectory of Sys. (1) on the surface of a torus. Coordinate system (θ1, θ2) for the torus.
(Right) Equivalent representation of the torus surface where the plane is 2π-periodic both in θ1 and θ2.

1.2 Example: Decoupled case K1 = K2 = 0K1 = K2 = 0K1 = K2 = 0

We consider an example in the form:
{
θ̇1 = ω1 +K1 sin(θ2 − θ1),
θ̇2 = ω2 +K2 sin(θ1 − θ2),

(2)

where θ1 and θ2 are the angular displacements, fixed parameters ω1 > 0 and ω2 > 0 are the natural frequen-
cies or angular velocities, andK1 ≥ 0 andK2 ≥ 0 are the coupling constants. This system tends to synchro-
nise in phase. Think of the two joggers analogy presented above and shown in Fig. 1. If jogger θ1 is running
faster than jogger θ2, then term K1 sin(θ2 − θ1) in the first equation becomes negative and thus reduces
speed ω1 of jogger θ1. Synchronisation is also true for the reversed scenario where slower running jogger
will gain speed. Let’s study solution trajectories of Sys. (2) on the surface of a torus.
If K1 = K2 = 0, then Sys. (2) becomes decoupled and takes the form:

θ̇1 = ω1,

θ̇2 = ω2.
(3)
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The solution to Sys. (3) is obtained by integrating the relevant equations
∫
θ̇1 dt =

∫
ω1 dt,

∫
θ̇2 dt =

∫
ω2 dt,

(4)

since ω1 and ω2 are constant and after collecting the integration constants:

θ1(t) = ω1t+ C1,

θ2(t) = ω2t+ C2.
(5)

The obtained integration constants can be resolved on the boundary as C1 = C2 = 0 without loss of gener-
ality. The resulting solution trajectories, for any and all initial conditions, appear as straight lines on 2π-
periodic square with constant slope dθ2/dθ1 = ω2/ω1. There are two types on different dynamics possible
depending on whether the aforementioned slope is a rational or an irrational number.

1.2.1 Periodic solution for rational slope

If the slope is rational, then ω1/ω2 = p/q ∈ Q for some integers p, q ∈ Z with no common factors. In this
case all trajectories are closed orbits on the torus, because θ1 completes p revolutions in the same time that
θ1 completes q revolutions.
For example, Fig. 3 shows a trajectory on a 2π-periodic square with p = 3 and q = 2. When plotted on

a torus in three dimensions, the same trajectory gives a trefoil knot. All co-prime p, q pairs produce
knotted trajectories called the toroidal knots. Two integers p and q are said to be relatively prime,
mutually prime, or co-prime if the only positive integer (factor) that divides both of them is 1. The closed
knotted trajectory for p = 5 and q = 2 is called the cinquefoil knot (also called the pentafoil knot, the
surgeon’s knot or the Solomon’s seal knot). Slide 4 shows a trefoil knot and a cinquefoil knot as they appear
on a surface of a torus. We get a closed spiralling trajectory similar to a closed spring, not a knot, for non
co-prime p and q, e.g., p = 10 and q = 2.
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Figure 3: Trefoil knot where p = 3 and q = 2 shown on the 2π-periodic square.

The following numerical file visualises closed trajectories as they appear on the surface of a torus for
rational slopes ω1/ω2.

Numerics: nb#1
Trajectories on the surface of a torus: interactive 3-D plot. Periodic and quasi-periodic trajectories on
the surface of a torus. Trefoil (for p = 3, q = 2) and cinquefoil knots (for p = 5, q = 2).

The following numerical file shows numerical solution to decoupled Sys. (3) and its phase portrait.

Numerics: nb#2
Quasi-periodic oscillators. Quasi-periodic decoupled system: periodic solution, quasi- periodic solution.
The Fourier and power spectra of the solutions.
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Slide: 4

Quasi-periodicity2

Transitioning from 2-D to 3-D systems.

Figure: Two examples of closed trajectories defined by Sys. (1) as they
appear on the surfaces of tori. (Left) Trefoil knot (p = 3, q = 2). (Right)
Cinquefoil knot (p = 5, q = 2).

2See Mathematica .nb file uploaded to the course website.
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1.2.2 Quasi-periodic solution for irrational slope

If the slope is irrational ω1/ω2 ∈ P, then the solution is said to be quasi-periodic. In this case trajectories
will never close into themselves for t→∞. This implies that a time-domain solution will never repeat itself.
Figure 4 shows this scenario. How can we be sure that trajectories will never close? Any closed trajectory
necessarily makes an integer number of revolutions in both θ1 and θ2; hence the slope would have to be
rational, contrary to assumption. Furthermore, when the slope is irrational, each trajectory is dense for
t� 1 on the torus: in other words, each trajectory comes arbitrarily close to any given point on the torus.
This is not to say that the trajectory passes through each point; it just comes arbitrarily close.
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Figure 4: A trajectory with irrational slope shown on the 2π-periodic square. The trajectory is not closing
into itself for t→∞.

Quasi-periodicity is significant because for us it is a new type of long-term behaviour. Unlike the earlier
entries: fixed point, closed orbit, limit-cycles, homoclinic and heteroclinic orbits; quasi-periodicity occurs
only on a torus—a three-dimensional object.
The following numerical files shows the numerical solution to decoupled Sys. (3) with its phase portrait

and the dense three-dimensional trajectory of the quasi-periodic solution for irrational slope ω1/ω2.

Numerics: nb#2
Quasi-periodic oscillators. Quasi-periodic decoupled system: periodic solution, quasi- periodic solution.
The Fourier and power spectra of the solutions.
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Numerics: nb#1
Trajectories on the surface of a torus: interactive 3-D plot. Periodic and quasi-periodic trajectories on
the surface of a torus. Trefoil (for p = 3, q = 2) and cinquefoil knots (for p = 5, q = 2).
The dense trajectory on the surface of the torus corresponding to the trajectory shown in Fig. 4.

Figure 5: Dense trajectory on the surface of a torus for irrational slope ω1/ω2 ∈ P.

Note: Quasi-periodicity is not chaotic. In a quasi-periodic system two close-by initial conditions are lin-
early diverging with the passage of time, see Fig. 6. In the case of chaos the divergence must be
exponential. This notion will be further developed in future lectures.
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Figure 6: 2π-periodic square showing two close-by initial conditions, where distance ε� 1.

1.3 Example: Coupled case K1 6= 0K1 6= 0K1 6= 0, K2 6= 0K2 6= 0K2 6= 0

Now we consider the coupled case of Sys. (2) given in the form:
{
θ̇1 = ω1 +K1 sin(θ2 − θ1),
θ̇2 = ω2 +K2 sin(θ1 − θ2),

where ω1, ω2 > 0 and K1,K2 > 0. The dynamics can be deciphered by looking at the phase difference
φ = θ1 − θ2. Then the temporal dynamics of Sys. (2) yields

φ̇ = θ̇1 − θ̇2 = ω1 +K1 sin(θ2 − θ1)− ω2 −K2 sin(θ1 − θ2), (6)

φ̇ = ω1 −K1 sin(θ1 − θ2)− ω2 −K2 sin(θ1 − θ2), (7)

φ̇ = ω1 −K1 sinφ− ω2 −K2 sinφ, (8)

φ̇ = ω1 − ω2 − (K1 +K2) sinφ. (9)

The resulting dynamics depends on the interplay between |ω1 − ω2| and K1 +K2 (See and cf. Lecture 7,
the section where we analysed bifurcation SNIPER).

1.3.1 Periodic phase-locked solution, |ω1 − ω2| < K1 +K2|ω1 − ω2| < K1 +K2|ω1 − ω2| < K1 +K2

The dynamics of phase difference (9) is studied on the one-dimensional phase portrait shown in Fig. 7. We
see that there are two fixed point for φ ∈ [0, 2π]. These fixed points are implicitly defined by

φ̇ = 0 ⇒ ω1 − ω2 − (K1 +K2) sinφ
∗ = 0 ⇒ sinφ∗ =

ω1 − ω2

K1 +K2
⇒ φ∗ = sin−1 ω1 − ω2

K1 +K2
. (10)
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Figure 7: (Left) One-dimensional phase portrait of phase difference φ given by (9) where all trajectories are
approaching the stable fixed point. (Right) 2π-periodic square showing stable (solid bold line) and unstable
(dashed bold line) non-isolated fixed points or trajectories on a torus corresponding to fixed points defined
by (10) and shown on the 1-D phase portrait on the left. The slope of stable and unstable phase-locked
solutions is 1, since ω∗ = θ̇1 = θ̇2.

As Fig. 7 shows, all trajectories of Sys. (9) approach asymptotically the stable fixed point. Therefore, back
on the torus, the trajectories of Sys. (2) approach a stable phase-locked solution in which the oscillators
are separated by a constant phase difference φ∗. The phase-locked solution is periodic for t� 1; in fact,
both oscillators run at the constant frequency given by

ω∗ = θ̇1 = θ̇2 = ω1 −K1 sinφ
∗ = ω2 +K2 sinφ

∗. (11)

Substituting here for sinφ∗, using (10), yields

ω∗ = ω2 +K2
ω1 − ω2

K1 +K2
⇒ ω∗ =

K1ω2 −K2ω1

K1 +K2
. (12)

This frequency is called the compromise frequency because it lies between the natural frequencies of the
two oscillators. The compromise is not generally halfway; instead the frequencies are shifted by an amount
proportional to the coupling strengths K1 and K2, as shown by identity (12). From three-dimensional point
of view stable trajectory ω∗ acts like a 3-D limit-cycle for all initial conditions starting on the surface of
this torus. The following numerical file shows numerical solution to coupled Sys. (2) and its phase portrait.

Numerics: nb#3
Quasi-periodic coupled oscillations: the Fourier and power spectra of the solutions.
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Figure 8: (Left) One-dimensional phase portrait of phase difference φ given by (9) featuring a half-stable
fixed point. (Middle) Bifurcation diagram where bifurcation point (K1 + K2)

∗ = |ω1 − ω2|. (Right)
2π-periodic square showing a half-stable (bold line) non-isolated fixed point or a trajectory on the torus
corresponding to the fixed point shown on the left.

1.3.2 Quasi-periodic solution with half-stable fixed point, |ω1 − ω2| = K1 +K2|ω1 − ω2| = K1 +K2|ω1 − ω2| = K1 +K2

If we pull the natural frequencies apart, say by detuning one of the oscillators, then the locked solutions
approach each other and coalesce or merge for |ω1 − ω2| = K1 + K2, see Fig. 8. Thus the phase-locked
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solution is destroyed in a saddle-node coalescence of cycles bifurcation. Figure 8 (Left) shows the
one-dimensional phase portrait of phase difference φ for the current case. Figure 8 (Middle) shows the saddle-
node bifurcation diagram that corresponds to the saddle-node coalescence of cycles bifurcation taking place
on the torus surface. The following numerical file shows numerical solution to coupled Sys. (2) and its phase
portrait.

Numerics: nb#3
Quasi-periodic coupled oscillations: the Fourier and power spectra of the solutions.

Figure 9: (Left) One-dimensional phase portrait of phase difference φ given by (9). (Right) Flow on the
2π-periodic square corresponding to the phase portrait shown on the left.

1.3.3 Quasi-periodic or periodic solution, |ω1 − ω2| > K1 +K2|ω1 − ω2| > K1 +K2|ω1 − ω2| > K1 +K2

After the bifurcation, the flow is like that in the decoupled case studied earlier: we have either a quasi-pe-
riodic flow for ω1/ω2 ∈ P or a rational periodic flow for ω1/ω2 ∈ Q. The only difference is that now the
trajectories on the 2π-periodic square are curvy, not straight. Figure 9 shows the dynamics corresponding to
this case. The following numerical file shows numerical solution to coupled Sys. (2) and its phase portrait.

Numerics: nb#3
Quasi-periodic coupled oscillations: the Fourier and power spectra of the solutions.

An interactive overview notebook file for all possible behaviours of Sys. (2) is linked below.

Numerics: nb#4
Quasi-periodic coupled oscillations: interactive code.

2 3-D systems and introduction to chaos

The general form of three-dimensional or third order homogeneous systems is the following:




ẋ = f1(x, y, z),

ẏ = f2(x, y, z),

ż = f3(x, y, z),

(13)

where f1, f2, and f3 are the given functions. Fixed point or points (x∗, y∗, z∗) of the above system are
defined by 




ẋ = 0

ẏ = 0

ż = 0

⇒





f1(x
∗, y∗, z∗) = 0,

f2(x
∗, y∗, z∗) = 0,

f3(x
∗, y∗, z∗) = 0.

(14)

Phase portrait and solution trajectories of a 3-D system are now visualised in three dimensions, see Sec. 3
and Slides 16 and 17.
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2.1 Quasi-periodic solution and 3-D systems

Note: If you see trajectories of a three-dimensional system ending up on the surface of a torus, then there
is a possibility of quasi-periodic solution existing for that system.

2.2 Definition of chaos

There is no rigorous mathematical definition of chaos. This shouldn’t defer us from trying. In the next
week’s lecture we will give a more detailed conceptual definition of chaos in addition to the information
shown below.

Slides: 5–8
What happens if you Google term “chaos”?

Chaos, dictionary definition

Chaos3 in day-to-day laymen jargon (colloquial meaning):

a state of utter confusion or disorder.

a total lack of organisation or order.

complete confusion and disorder; a state in which behaviour and
events are not controlled by anything.

a state of things in which chance is supreme; especially, the
confused unorganised state of primordial matter before the
creation of distinct forms.

any confused, disorderly mass: a chaos of meaningless phrases.

3Source: various online dictionaries.
D.Kartofelev YFX1560 5 / 19

Chaos in mathematics and physics

Chaos theory is the field of study in mathematics that studies the
behaviour of dynamical systems that are highly sensitive to initial
conditions – a response popularly referred to as the “butterfly
effect”. Small differences in initial conditions (such as those due to
rounding errors in numerical computation or measurement
uncertainty) yield widely diverging outcomes for such dynamical
systems, rendering long-term prediction impossible in general. This
happens even though these systems are deterministic, meaning that
their future behaviour is fully determined by their initial conditions,
with no random (stochastic) elements involved. In other words, the
deterministic nature of these systems does not make them
predictable. This behaviour is known as deterministic chaos, or
simply chaos. Chaotic behaviour exists in many natural systems,
such as weather and climate. It also occurs spontaneously in some
systems with artificial components, such as road traffic.
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The colloquial meaning of the term “chaos” is often incorrectly associated with the mathematical use
of the term. These terms have very little (nothing) in common with each other.

Chaos in mathematics and physics

The fact that deterministic system is not predictable (determined) in
practice is not an internally contradicting statement, its a
manifestation of a new mathematical property or type of
solution of higher order (order more than two) nonlinear systems,
called chaos. Also, this long-term aperiodic solution is qualitatively
different from the periodic and quasi-periodic solutions since solutions
with slightly different initial conditions deviate exponentially.

The chaos was summarised by Edward Lorenz as:
Chaos – when the present determines the future, but the approximate
present does not approximately determine the future.

When predicting distant future states of a chaotic system one can
never know the starting point accurately enough.

D.Kartofelev YFX1560 7 / 19

Chaos in mathematics and physics

The chaos theory explains deterministic systems which in principle
can be predicted, for a time, then appear to become random. The
amount of time patterns can be predicted depends on a time scale
(the Lyapunov time) determined by the system’s dynamics.

Chaos is a property of reality that we sense when we try to predict
distant future.

SRB measure (Sinai-Ruelle-Bowen measure) – If statistics of
trajectories of a system are insensitive to initial conditions or small
differences of initial conditions then we say that the system has a
SRB measure.
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The confusing terms “chaos” and “chaos theory” are not useful nor even needed, since as mentioned
above, there are no agreed upon definition of chaos. All aspects of nonlinear and chaotic dynamical sys-
tems studied in the future lectures can be characterised without using the terms “chaos” or “chaotic”—
we have more precise terminology. In addition, all essential results of so called chaos theory are derived
by, and directly borrowed from other well-established science disciplines.

2.3 The Lorenz mill

We begin our study of three-dimensional systems and chaos with a classical example—the Lorenz mill.
The simplest version is a toy waterwheel with leaky paper cups suspended from its rim. Water is poured in
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steadily from the top. If the flow rate is too slow, the top cups never fill up enough to overcome friction, so
the wheel remains motionless. For faster inflow, the top cup gets heavy enough to start the wheel turning.
Eventually the wheel settles into a steady rotation in one direction or the other. By symmetry, rotation in
either direction is equally possible; the outcome depends on the initial conditions.
By increasing the flow rate still further, we can destabilise the steady rotation. Then the motion becomes

chaotic: the wheel rotates one way for a few turns, then some of the cups get too full and the wheel doesn’t
have enough inertia to carry them over the top, so the wheel slows down and may even reverse its direction.
Then it spins the other way for a while. The wheel keeps changing direction erratically. Equations of
motion of the Lorenz mill dynamics are presented below without dervation.

Slides: 9–11

Chaotic systems: The Lorenz mill4

Equations of motion of a chaotic water wheel a.k.a. the Lorenz mill
are the following:





ȧ1 = ωb1 −Ka1,

ḃ1 = −ωa1 −Kb1 + q1,

ω̇ = − ν

I
ω +

πGr

I
a1,

(2)

here I is the moment of inertia, θ is the angle of the wheel, ω is the
angular velocity, K is the liquid’s leakage rate, ν is the damping rate,
r is the radius of the wheel, G is the effective gravity constant. a1
and b1 are the Fourier amplitudes of the first modes of the liquid’s
mass distribution function

m(θ, t) =
∞∑

n=0

an(t) sinnθ + bn(t) cosnθ. (3)

4See Mathematica .nb file uploaded to the course website.
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The derivation of the equations of motion for this problem is discussed in Chapter 9 of our main
textbook.

Chaotic systems: The Lorenz mill

And, g1 is the Fourier amplitude of the first mode of the liquid inflow
mass distribution function

Q(θ) =
∞∑

n=0

qn cosnθ. (4)

0 10 20 30 40 50
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0
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t

ω
(t
)

Angular velocity of the wheel
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Chaotic systems: The Lorenz mill5

5See Mathematica .nb file uploaded to the course website.
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The Lorenz mill dynamics shows strong dependence on a selection of initial conditions.

Numerical file used to calculate the above results is linked below.

Numerics: nb#5
An example of a chaotic system: the Lorenz mill. Power spectra of the time-series solutions of the
Lorenz mill system. Flow trajectory plotting in 3-D.
Includes a demonstration of the system’s sensitive dependence on initial conditions.

Following slides show two video animations of the Lorenz mill and its peculiar dynamics.
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Slides: 12, 13

Chaotic systems: The Lorenz mill and chaos

No embedded video files in this pdf
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Chaotic systems: The Lorenz mill, SRB measure

No embedded video files in this pdf
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Some statistical aspects of the rotation might not be sensitive to initial conditions (SRB measure).

2.4 The Lorenz attractor

Slides: 14, 15
Eduard N. Lorenz derived this three-dimensional system from a drastically simplified model of convec-
tion rolls in the atmosphere. The same equations also arise in simplified models of lasers, dynamos,
thermosyphons, brushless direct current (DC) motors, electric circuits, chemical reactions, forward os-
mosis, and they exactly describe the motion of the Lorenz mill. The Lorenz mill is a specific case of the
Lorenz attractor. The proof can be found in our main textbook.

Chaotic systems: The Lorenz attractor

The Lorenz attractor:6 It can be shown that Sys. (2) is a specific
case of a more general system in the form:





ẋ = σ(y − x),

ẏ = rx− y − xz,

ż = xy − bz,

(5)

where σ, r, b > 0 are the control parameters.

Read: E. N. Lorenz, “Deterministic nonperiodic flow”. Journal of
the Atmospheric Sciences, 20(2), pp. 130–141 (1963).
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:

DNF>2.0.CO;2

6See Mathematica .nb file uploaded to the course website.
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Chaotic systems: The Lorenz attractor
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The system has only two nonlinearities, the quadratic terms xy and xz, rendering it a relatively simple
chaotic system.

Numerical file linked below contains the time-domain solution of the Lorenz attractor.

Numerics: nb#6
An example of a chaotic system: the Lorenz attractor. Numerical integration of the Lorenz attractor
(interactive 3-D plot, interactive 2-D (x-z projection) plot).
Includes a dynamic simulation of the Lorenz flow.

Reading suggestion

The original paper on the Lorenz attractor by Eduard N. Lorenz is deep, prescient, and surprisingly
readable—look it up! Edward N. Lorenz (1917–2008) is often considered to be the discoverer of chaos,
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this is not exactly true. Chaos was discovered by Japanese Professor of Electrical Engineering Yoshisuke
Ueda (1936-).

Link File name Citation
Paper#1 paper1.pdf Edward N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmo-

spheric Sciences, 20(2), pp. 130–141, (1963).
doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

3 A remark on plotting 3-D phase portraits

Slides: 16, 17

A remark on 3-D phase portrait visualisation7

7See Mathematica .nb file uploaded to the course website.
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A remark on 3-D phase portrait visualisation
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Three-dimensional phase portraits are hard to read visually if they are plotted using vectors placed
into three-dimensional projection. Slide 16 shows the vector field of the Lorenz attractor in the manner
we have been doing it so far for two-dimensional phase portraits, with exception of raising the dimen-
sionality by one. A good graphical overview can be given by showing a single or a couple trajectories
as shown on Slide 17. This is especially true in the case of chaotic attractors explained and defined in
future lectures.

Numerical file used to calculate the above results is linked below.
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Numerics: nb#7
A remark on 3-D phase portrait plotting. 3-D phase portrait and flow visualisation of the Lorenz
attractor.

4 Coursework

The coursework variant assigned to you is announced on the course webpage (or on the TalTech Moodle
page for this course). A positively graded coursework is a prerequisite for taking the exam.

4.1 Coursework requirements

The coursework consists of two parts. The first part requires you to analyse a 2-D system and the second
part requires the analysis of a 3-D system. Completed coursework may be handed over all at once or in
two parts at any time during the semester. The official submission deadline can be found on the course
webpage.

Part 1: Analysis of a 2-D system

1. Perform linear analysis:

• Find a fixed point or points of your system.
• Linearise your system about the fixed point or points.
• Plot the linearised phase portrait (suggestion).
• Determine the type of the linearised fixed point or points.
• Determine if/how changes in control parameter values influence the dynamics (type of fixed

point/s) of your system.

2. Perform nonlinear analysis of the full homogeneous system using a computer:

• Compare the type of the nonlinear fixed point or points with the corresponding linearised fixed
point or points.

• Plot the nonlinear phase portrait. Compare it with the linearised one.
• Explain any discrepancy between the nonlinear and linearised systems if any occurs.

3. Perform nonlinear analysis of the non-homogeneous system (if applicable) using a computer:

• Analyse the influence of the explicitly time dependant part of the system on the system dynamics.
• Plot the nonlinear non-homogeneous phase portrait. Compare it with the homogeneous one.
• Explain the obtained and presented results

4. Draw overall conclusions and comment on the presented results.

Part 2: Analysis of a 3-D system

1. Compare the known properties of strange attractors against your system.

2. Draw conclusions based on your analysis results.

How?

Above problems and specific tasks must be tackled with the use of analysis methods presented and discussed
during the lectures.

Personal consultation

Before submitting the completed and finalised coursework for an evaluation, You have the right to consult
the Lecturer and discuss your progress to ensure that the final submitted coursework is laking any technical
mistakes and/or errors. Please do not hesitate to use this opportunity.
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4.2 Coursework analysis tools

Students who lack coding skills are welcomed to use the numerical analysis tools provided by the Lecturer
and others. These tools don’t require any coding skills—just type in your system and study the results
displayed. For additional information visit the course webpage. Below are linked the numerical and symbolic
analysis tools created specially for this course.

Numerics: nb#8
Coursework analysis tools: Mathematica notebook for analysing 2-D and 3-D systems. Use of the
tool does not require coding skills.
This tool is capable: performing linear and eigenanalysis of linear and nonlinear systems; to plot 2-D
and 3-D phase portraits; and find/plot numerically integrated time-domain solutions of given systems.
Opening .nb files requires Wolfram Mathematica installation. Wolfram Player can’t handle them. No

coding skills required.

Revision questions

1. What is quasi-periodicity?
2. Can quasi-periodic system generate a chaotic solution? Why?
3. Do limit-cycles exist in 3-D phase spaces? Sketch an example.
4. What are 3-D and higher order systems?
5. What is chaos in the context of dynamical systems (deterministic chaos, chaos theory)?
6. Name properties of chaotic systems.
7. What does it mean that a chaotic system has a SRB measure (Sinai-Ruelle-Bowen measure)?
8. What is chaotic water wheel?
9. What is the Lorenz attractor?
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