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1 Bifurcations in 2-D systems

This lecture extends our earlier work on bifurcations, see Lecture 2. As we move up from one-dimensional
to two-dimensional systems, we still find that fixed points can be created or destroyed or destabilised as
parameters are varied—but now the same is true of closed orbits and limit-cycles as well. Thus we can be-
gin to describe the ways in which oscillations can be turned on or off.
In this broader context, what exactly do we mean by a bifurcation? The usual definition involves the con-

cept of topological equivalence: if the phase portrait changes its topological structure (loses topological
equivalence) as a parameter is varied, we say that a bifurcation has occurred. Examples include changes in
the number or stability of fixed points, closed orbits, or saddle connections as a parameter is varied. Intu-
itively, two phase portraits are topologically equivalent if one is a distorted version of the other. Bending
and warping are allowed, but not ripping, so closed orbits must remain closed, trajectories connecting saddle
points must not be broken, etc.

2 Classification of bifurcations in 2-D systems

Here we present a selection of bifurcations that most commonly occur in practical applications. Bifurcations
in two-dimensional systems can be classified for example as follows:

CASE I Bifurcations of fixed points

A) Bifurcations at λ1 = 0 or λ2 = 0 where λ1,2 are the system eigenvalues.

1) Saddle-node bifurcation
2) Transcritical bifurcation
3) Pitchfork bifurcation

∗ Supercritical pitchfork bifurcation
∗ Subcritical pitchfork bifurcation

B) The Hopf bifurcations, bifurcations at λ1,2 = ±iω
1) The supercritical Hopf bifurcation
2) The subcritical Hopf bifurcation

CASE II Global bifurcations of closed orbits

A) Saddle-node coalescence of cycles (accompanied by the subcritical Hopf)

B) SNIPER (saddle-node infinite period bifurcation) also called SNIC (saddle-node in invariant
cycle bifurcation)

C) Homoclinic bifurcation or saddle-loop bifurcation

This lecture is organised as follows: for each bifurcation, we present and discuss the normal form or a
simple prototypical example describing the bifurcation. Interactive numerical files are used to show the
phase plane dynamics as the bifurcation parameter is varied.

3 CASE IA1: Saddle-node bifurcation

The bifurcations of fixed points discussed in Lecture 2 have analogs in two dimensions, and indeed, in
all dimensions. Yet it turns out that nothing really new happens when more dimensions are added—
all the action is confined to a one-dimensional subspace along which the bifurcations occur, while in the
extra dimensions the flow is either simple attraction to or repulsion from that subspace, as we see below on
Slide 5.
Suppose a two-dimensional system has a stable fixed point. What are all the possible ways it could lose

stability as a parameter is varied? The eigenvalues λi of the Jacobian evaluated at that fixed point or in
other words the eigenvalues λi of linearised system, are the key (see Lecture 4). Since, the λ’s satisfy
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a quadratic characteristic equation with real coefficients, there are two possible pictures: either the eigen-
values are both real and negative or they are complex conjugates, see the classification chart for fixed
points in 2-D linear systems. If the fixed point is stable, the eigenvalues λ1 and λ2 must both λ1, λ2 < 0
or Re λ1,Re λ2 < 0. To destabilise the fixed point, we need one or both of the eigenvalues to become pos-
itive as the bifurcation parameter changes.

Slides: 4, 5
The saddle-node bifurcation is the basic mechanism for creation and destruction of fixed points.

Case I: Bifurcations of fixed points

Case I A 1: Saddle-node bifurcation. Normal form:

ẋ = a− x2

ẏ = −y (1)

����������
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Case I: Bifurcations of fixed points

Case I A 1: Saddle-node bifurcation. Normal form:

ẋ = a− x2

ẏ = −y
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On x-axis we see the bifurcation behaviour discussed in Lecture 2 (1-D dynamics), while in y-direction
the motion is exponentially damped and approaching the x-axis.
Case a < 0 shown on Slide 4 features a “ghost”—a bottleneck region of the phase portrait where

the flow on trajectories is slowed down. The slower vector field velocities are colour-coded with the
purple colour. The ghost is predicting the bifurcation—the appearance of the half-stable fixed point
(x∗, y∗) = (0, 0) for a = 0.

Figure 1 shows fixed point eigenvalues in the Imλ-Reλ graph corresponding to a saddle-node bifurcation.
Once again, if one or both λ’s cross into the right half-plane of the graph the stability of fixed point is
changed from stable to unstable, cf. Figs 1, 2, 3 and 4. Point λi = 0 corresponds to the bifurcation point.
The saddle-node, transcritical and pitchfork bifurcations occur at λ1 = 0 or λ2 = 0.
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Figure 1: Eigenvalues of the Jacobian evaluated at fixed the points that participate in saddle-node bifur-
cation. (Left) Case where the bifurcation parameter a < 0 with no real valued fixed points, see Slides 4, 5.
(Middle) Case a = 0, the bifurcation point. (Right) Case a > 0, featuring a saddle and a node.

The following interactive numerical file shows the phase plane dynamics of the saddle-node bifurcation.

Numerics: nb#1
Examples of bifurcations in 2-D systems: saddle-node bifurcation, transcritical bifurcation, supercritical
and subcritical pitchfork bifurcations. Interactive code.

The full linear analysis of fixed points undergoing a saddle-node bifurcation is presented here.

Numerics: nb#2
Linear analysis of the system from the previous .nb file.
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4 CASE IA2: Transcritical bifurcation

Slide 6 shows transcritical bifurcation occurring. Here again, we see that in the x-direction the bifurcation
behaviour is identical to the corresponding 1-D system dynamics presented in Lecture 2, and in the y-
direction the motion is exponentially damped and approaching the x-axis. Same conclusion will hold for
the pitchfork bifurcations discussed in the next section.

Slide: 6
In a transcritical bifurcation the fixed points are not destroyed whereas their stability is changed.

Case I: Bifurcations of fixed points

Case I A 2: Transcritical bifurcation. Normal form:

ẋ = ax− x2

ẏ = −y (2)

����������
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Figure 2 shows the eigenvalues of the system Jacobian evaluated at the fixed points undergoing a trans-
critical bifurcation.
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Figure 2: Eigenvalues of the Jacobian evaluated at the fixed points that are participating in a transcritical
bifurcation. (Left) Case where the bifurcation parameter a < 0. (Middle) Case a = 0, the bifurcation point.
(Right) Case a > 0.

The following interactive numerical file shows the phase plane dynamics of a transcritical bifurcation.

Numerics: nb#1
Examples of bifurcations in 2-D systems: saddle-node bifurcation, transcritical bifurcation, supercritical
and subcritical pitchfork bifurcations. Interactive code.

Linear analysis of fixed points undergoing a transcritical bifurcation is presented in the following numerical
file. Also, the file features the derivation of the eigenvalues shown in Fig. 2.

Numerics: nb#2
Linear analysis of the system from the previous .nb file.
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5 CASE IA3: Pitchfork bifurcation

5.1 Supercritical pitchfork bifurcation

Slide: 7
Pitchfork bifurcations occur in systems with symmetry. In the case of supercritical pitchfork bifur-
cation the bifurcating pitchfork branches are stable fixed points.

Case I: Bifurcations of fixed points

Case I A 3: Supercritical pitchfork bifurcation. Normal form:

ẋ = ax− x3

ẏ = −y (3)

����������
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Case a = 0 features algebraic decay or critical slowing of the flow as it approaches the fixed point.

Figure 3 shows the eigenvalues of the system Jacobian evaluated at the fixed points undergoing a super-
critical pitchfork bifurcation.
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Figure 3: Eigenvalues of the Jacobian evaluated at the fixed points that participate in a supercritical
pitchfork bifurcation. (Left) Case where the bifurcation parameter a < 0. (Middle) Case a = 0, the
bifurcation point. (Right) Case a > 0, featuring an unstable saddle at the origin and two bifurcated nodes.

The following interactive numerical file shows the phase plane dynamics of a supercritical pitchfork bifur-
cation.

Numerics: nb#1
Examples of bifurcations in 2-D systems: saddle-node bifurcation, transcritical bifurcation, supercritical
and subcritical pitchfork bifurcations. Interactive code.

Linear analysis of fixed points undergoing a supercritical pitchfork bifurcation is presented in the following
numerical file. Also, the file features the derivation of the eigenvalues shown in Fig. 3.

Numerics: nb#2
Linear analysis of the system from the previous .nb file.
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5.2 Subcritical pitchfork bifurcation

Slide: 8
In the case of subcritical pitchfork bifurcation the bifurcating branches are unstable fixed points.

Case I: Bifurcations of fixed points

Case I A 3: Subcritical pitchfork bifurcation. Normal form:

ẋ = ax+ x3

ẏ = −y (4)

����������
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Case a = 0 features algebraic decay or critical slowing of the flow near the fixed point.

Figure 4 shows the eigenvalues of the system Jacobian evaluated at the fixed points undergoing a subcritical
pitchfork bifurcation.
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t.ie aa t.tn t.HRFigure 4: Eigenvalues of the Jacobian evaluated at the fixed points that are participating a subcritical
pitchfork bifurcation. (Left) Case where the bifurcation parameter a < 0, featuring two unstable bifurcated
saddles with a stable node at the origin. (Middle) Case a = 0, the bifurcation point. (Right) Case a > 0.

The following interactive .nb file shows the phase plane dynamics of a subcritical pitchfork bifurcation.

Numerics: nb#1
Examples of bifurcations in 2-D systems: saddle-node bifurcation, transcritical bifurcation, supercritical
and subcritical pitchfork bifurcations. Interactive code.

Linear analysis of fixed points undergoing a subcritical pitchfork bifurcation is presented in the following
numerical file. Also, the file features the derivation of the eigenvalues shown in Fig. 4.

Numerics: nb#2
Linear analysis of the system from the previous .nb file.

6 CASE IB 1: The supercritical Hopf bifurcation

In CASE IA we explored the cases in which a real eigenvalue passes through λi = 0 or Im λ-axis used
in Figs 1, 2, 3 and 4. These were our old friends first presented during Lecture 2, namely the saddle-node,
transcritical, and both types of pitchfork bifurcations.
Let’s consider the other possible scenario, mentioned in Sec. 3, in which two complex conjugate eigen-

values simultaneously cross the imaginary axis in the Im λ-Re λ graph used above. The normal form of
the supercritical Hopf bifurcation, given in polar coordinates, is the following:

{
ṙ = µr − r3,
θ̇ = ω + br2,

(1)

D.Kartofelev 6/15 K As of October 18, 2024

https://www.tud.ttu.ee/web/dmitri.kartofelev/mittelindyn/numerics_7.nb
https://www.tud.ttu.ee/web/dmitri.kartofelev/mittelindyn/numerics_7b.nb
https://www.tud.ttu.ee/web/dmitri.kartofelev/YFX1560/LectureNotes_2.pdf


Lecture notes #7 Nonlinear Dynamics YFX1560

where µ is the bifurcation parameter, b is the control parameter regulating amplitude dependency of the
rotation rate θ̇, and ω is the angular velocity. If we assume b� 1, i.e., oscillation frequency θ̇ is weakly
dependent on amplitude r, then the original system can be approximated by the following one:

ṙ = µr − r3,
θ̇ ≈ ω.

(2)

This decoupled system is much more intuitive compared to Sys. (1). Let’s study the dynamics of Sys. (2)
in radial direction r and deduce the phase portrait for constant rotation rate θ̇ = ω. Figure 5 shows the
dynamics for the stated assumptions and varied µ.
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Figure 5: Dynamics in direction r and phase portraits for varied µ. (Top) Case µ < 0. (Middle) Case
µ = 0, the bifurcation point. Trajectories approach the fixed point algebraically, the flow near fixed point
is critically damped. (Bottom) Case µ > 0, featuring a stable limit-cycle that is shown with the bold circle.

The above results can be checked against numerical calculations. The dynamics in radial direction, time-
domain solutions, and phase portraits are shown in the following interactive numerical file.

Numerics: nb#3
Examples of bifurcations in 2-D systems: the supercritical Hopf bifurcation. Integrated solution and
bifurcation diagram.

Slides: 9, 10

Case I: Bifurcations of fixed points

Case I B 1: The supercritical Hopf bifurcation. Bif. parameter is µ.
Normal form: {

ṙ = µr − r3

θ̇ = ω + br2
(5)

D.Kartofelev YFX1560 9 / 25

Case I: Bifurcations of fixed points

Case I B 1: The supercritical Hopf bifurcation. Bif. parameter is µ.
Normal form: {

ṙ = µr − r3

θ̇ = ω + br2
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Slide 10 shows the bifurcation diagram directly corresponding to the results shown in Fig. 5. The
supercritical bifurcation phenomena are always associated with stable bifurcated objects, in this
case a stable limit-cycle. The stable limit-cycle is associated with the sign of r3 term in Sys. (1).

Figure 6 shows the eigenvalues of the system Jacobian evaluated at the fixed point the origin undergoing
a supercritical Hopf bifurcation.
Note: Don’t try to obtain the eigenvalues in the polar coordinated. Convert Sys. (1) into the Cartesian
coordinates and proceed from there.
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Figure 6: Eigenvalues of the Jacobian evaluated at the fixed point (located at the origin) that is participating
in a supercritical Hopf bifurcation. (Left) Case where the bifurcation parameter µ < 0. (Middle) Case µ = 0,
the bifurcation point. (Right) Case µ > 0.
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Figure 7: Dynamics in direction r and phase portraits for varied µ. (Top) Case −1/4 < µ < 0. Dynamics
for µ ≤ −1/4 is not part of this bifurcation. µ ≤ −1/4 corresponds to the dynamics shown to the right of
the vertical dashed line in ṙ(r) graphs. (Middle) Case µ = 0, the bifurcation point. Trajectories are moving
away from the fixed point algebraically where the flow is critically showed down. (Bottom) Case µ > 0.

7 CASE IB 2: The subcritical Hopf bifurcation

Normal form of the subcritical Hopf bifurcation given in polar coordinates is the following:
{
ṙ = µr + r3 − r5,
θ̇ = ω + br2,

(3)

where µ is the bifurcation parameter, b is the control parameter, carrying the same meaning as above, and
ω is the angular velocity. Here again, we assume b� 1 and rewrite the original system as follows:

ṙ = µr + r3 − r5,
θ̇ ≈ ω.

(4)
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Let’s study the dynamics of this system in radial direction r and deduce the phase portrait for constant
rotation rate θ̇ = ω. Figure 7 shows the dynamics for the stated assumptions and varied µ. The dynamics
shown to the right-hand side from the vertical dashed line in ṙ(r) graphs in Fig. 7 is ignored here. This
dynamics is part of the saddle-node coalescence of cycles bifurcation discussed in the next section and thus
not a part of the subcritical Hopf bifurcation discussed here.
The above results can be checked against numerical calculations. The dynamics in radial direction, time-

domain solutions, and the phase portraits are shown in the following interactive numerical file.

Numerics: nb#4
Examples of bifurcations in 2-D systems: the subcritical Hopf bifurcation. Integrated solution and
bifurcation diagram.

Slides: 11, 12

Case I: Bifurcations of fixed points

Case I B 2: The subcritical Hopf bifurcation. Bif. parameter is µ.
Normal form: {

ṙ = µr + r3 − r5

θ̇ = ω + br2
(6)
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Case I: Bifurcations of fixed points

Case I B 2: The subcritical Hopf bifurcation. Bif. parameter is µ.
Normal form: {

ṙ = µr + r3 − r5

θ̇ = ω + br2
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Slide 12 shows the bifurcation diagram for r-direction directly corresponding to the results shown
in Fig. 7. The subcritical bifurcation phenomena are alway associated with unstable bifurcated
objects, in this case an unstable limit-cycle. The unstable limit-cycle is associated with the sign of r3

term in Sys. (3).

Figure 8 shows the eigenvalues of the system Jacobian evaluated at the fixed point the origin undergoing
a supercritical Hopf bifurcation. The behaviour of the eigenvalues is the same when compared to the
supercritical case, shown in Fig. 6 and will be the same for CASE IIA.
Note: Linear analysis via linearisation can’t distinguish the supercritical Hopf from subcritical one.

i

Iii Fitt1
marI

r i
rHIM

I

III ff.fi.itFigure 8: Eigenvalues of the Jacobian evaluated at the fixed point (located at the origin) that is participating
in a subcritical Hopf bifurcation. (Left) Case where the bifurcation parameter −1/4 < µ < 0. (Middle)
Case µ = 0, the bifurcation point. (Right) Case µ > 0.

8 CASE IIA: Saddle-node coalescence of cycles (+ subcritical Hopf)

An example system for a saddle-node coalescence of cycles bifurcation is the same as used above in the
case of the subcritical Hopf bifurcation (3). We are reproducing it here again for clarity:

{
ṙ = µr + r3 − r5,
θ̇ = ω + br2,
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here µ was the bifurcation parameter. Here too, we study the simplified approximated Sys. (4). Figure
9 shows the dynamics for varied µ. Bifurcation point µ = µc = −1/4 corresponds to the coalescence
of stable and unstable limit-cycles. At this point a half-stable limit cycle is born or destroyed. The
half-stable limit-cycle is stable from the outside and unstable from the inside. Trajectories approaching
from outside will settle onto this limit-cycle but even the smallest perturbation will send any trajectory to-
wards the stable spiral located at the origin. Notice that the origin remains stable during this bifurcation
and also for µ < 0; fixed point at the origin does not participate in saddle-node coalescence of cycles
bifurcation.
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Figure 9: Dynamics in radial direction r and phase portraits for varied µ. (a) Case µ < µc = −1/4,
featuring a “ghost” region with slowed down flow. The ghost is predicting the appearance of the saddle-
node coalescence of cycles bifurcation. (b) Case µ = µc = −1/4, the saddle-node coalescence of cycles
bifurcation point featuring a half-stable limit-cycle. (c) Case µc < µ < 0, featuring a high-amplitude stable
limit-cycle and lower amplitude unstable limit-cycle. (d) Case µ = 0, the subcritical Hopf bifurcation
where the unstable limit-cycle has merged with the origin and changed the stability of the spiral, cf. Sec. 7.
The close proximity of the spiral features the algebraic critically slowed flow dynamics. (e) Case µ > 0,
featuring a high-amplitude stable limit-cycle and the unstable spiral at the origin.

The presented results can be checked against numerical calculations. The dynamics in radial direction,
time-domain solutions, and the phase portraits are shown in the following interactive numerical file.

Numerics: nb#5
Examples of bifurcations in 2-D systems: a saddle-node coalescence of limit-cycles. Bifurcation diagram.
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Slides: 13–15

Case II: Bifurcations of closed orbits

Case II A: Saddle-node coalescence of cycles. Bif. parameter is µ
and µc = −1/4. Example system:

{
ṙ = µr + r3 − r5

θ̇ = ω + br2
(7)
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Case II: Bifurcations of closed orbits

Case II A: Saddle-node coalescence of cycles. Bif. parameter is µ
and µc = −1/4. Example system:

{
ṙ = µr + r3 − r5

θ̇ = ω + br2
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Case II: Bifurcations of closed orbits

Case II A: Saddle-node coalescence of cycles. Bif. parameter is µ
and µc = −1/4. Example system:

{
ṙ = µr + r3 − r5

θ̇ = ω + br2

D.Kartofelev YFX1560 15 / 25

Slides 14 and 15 show the bifurcation diagram for saddle-node coalescence of cycles bifurcation. The
subcritical Hopf bifurcation for µ = 0 is responsible for hysteresis on the level of cycles, shown on
Slide 15. Systems exhibiting this type of hysteresis are considered dangerous. Reverting the system
to the stable fixed point located at the origin requires large changes in control parameter µ.

8.1 Why is the subcritical Hopf bifurcation considered dangerous?

As shown above and similarly in the case of the pitchfork bifurcations, the Hopf bifurcations come in both su-
percritical and subcritical varieties. The subcritical case is alwaysmuch more dramatic, and potentially
dangerous especially in engineering applications. After the bifurcation, the trajectories must jump to a
distant attractor, which may be a fixed point, another limit-cycle (see Slide 15), infinity, or in three and
higher dimensions a chaotic attractor (discussed in future lectures). The subcritical Hopf bifurcation with
an accompanying attractor combined are sometimes referred to as the Hopf bifurcation.
An additional danger lies in the fact that linear analysis via linearisation can’t distinguish the supercritical

Hopf from subcritical one. The bifurcating features of systems featuring the Hopf bifurcation are always
described by nonlinear terms. An analytical criterion for determining the subcritical Hopf exists, but it
can be difficult to use and it’s too complicated for our purposes. A quick and dirty approach is to use a
computer. If a small, attracting limit cycle appears immediately after the fixed point goes unstable, and if
its amplitude shrinks back to zero as the parameter is reversed, the bifurcation is supercritical; otherwise,
it’s probably subcritical, in which case the nearest attractor might be far from the fixed point, and the
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system may exhibit hysteresis as the parameter is reversed, see Slide 15. Of course, computer experiments
are not proofs and you should check and understand numerical integration methods and algorithms most
carefully before making any firm conclusions.

8.2 Examples of instabilities related to the subcritical Hopf bifurcation

Slides: 16–20
The subcritical Hopf bifurcations occur in the dynamics of nerve cells, in experimental chemistry of
chemical oscillators, in aeroelastic flutter and other vibrations of airplane wings, and in instabilities of
fluid flows. These systems are remarkable for their spectacular behaviours. Let’s watch some of them
in action:

Aeroelastic flutter

No embedded video files in this pdf
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The Tacoma Narrows bridge collapse, 1940

No embedded video files in this pdf
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The Briggs–Rauscher oscillating reaction

No embedded video files in this pdf
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The Belousov–Zhabotinsky reaction

No embedded video files in this pdf
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The tremor-dominant Parkinson’s disease

No embedded video files in this pdf
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9 CASE IIB: SNIPER (saddle-node infinite period bifurcation)

An example decoupled system in polar coordinates is given in the form:

ṙ = r
(
1− r2

)
,

θ̇ = ω − sin θ,
(5)

where angular velocity parameter ω is the bifurcation parameter. This system combines two decoupled
one-dimensional systems. Figure 10 shows the dynamics for varied ω. In radial direction r, all trajectories,
except r∗ = 0, approach the unit circle monotonically as t→∞. In the angular direction θ, the motion is
everywhere counterclockwise if ω > 1, whereas there are two invariant rays defined by

θ̇ = 0 ⇒ sin θ = ω, (6)

existing for ω < 1. Hence, as ω increases (or decreases) through the bifurcation point ω = ωc = 1, the phase
portraits changes as shown in Fig. 10, and on Slides 21 and 22.

Ei GHOST

if fr is rion yt.hr EEo
r

mtvU ftp.m

t.io
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ω > 1

ω = 1

ω < 1

Figure 10: One-dimensional phase portraits of the first and second equations of Sys. (5) are shown above in
the first two columns, and the resulting two-dimensional phase portrait is shown in the third column on the
polar plane for varied parameter ω. (Top) Case ω ' 1, featuring a slow flowing bottlenecking ghost region
that is predicting the imminent appearance of a SNIPER bifurcation. (Middle) Case ω = 1, the bifurcation
point. (Bottom) Case ω < 1, featuring two invariant sets or rays starting at the origin defined by θ̇ = 0.

As ω ' 1 decreases, the limit-cycle located at r = 1 develops a bottlenecking ghost region at θ = π/2 that
becomes increasingly severe as ω → 1+. The oscillation period lengthens and finally becomes infinite at
ω = 1, when a half-stable fixed point appears on the limit-cycle; hence the term infinite period bifurca-
tion. For ω < 1, the fixed point splits into a saddle and a stable node. The created fixed points remain
on the limit-cycle given by r = 1.
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Slides: 21, 22

Case II: Bifurcations of closed orbits

Case II B: SNIPER or SNIC. Bif. parameter is ω. Example system:

ṙ = r(1− r2)

θ̇ = ω − sin θ
(8)

ω > 1 ω = 1 ω < 1
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Case II: Bifurcations of closed orbits

Case II B: SNIPER or SNIC. Bif. parameter is ω. Example system:

ṙ = r(1− r2)

θ̇ = ω − sin θ

����������

ω > 1 ω = 1 ω < 1
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The presented results can be checked against numerical calculations. The dynamics in radial and angular
directions, time-domain solutions, and the phase portraits are shown in the following numerical file.

Numerics: nb#6
Examples of bifurcations in 2-D systems: SNIPER (saddle-node infinite period bifurcation). Integrated
solution and phase portrait.

The same numerical file contains an example of SNIPER bifurcation happening in a simplified and idealised
model of mammalian electrocardiogram signal (EKG).

Numerics: nb#6
Examples of bifurcations in 2-D systems: SNIPER (saddle-node infinite period bifurcation). Integrated
solution and phase portrait.
Example: Destruction of the closed orbit in a signal similar to human electrocardiogram (ECG).

10 CASE IIC: Homoclinic bifurcation or saddle-loop bifurcation

In this scenario, part of a limit-cycle moves closer and closer to a saddle point. At the bifurcation the
cycle touches the saddle point and becomes a homoclinic orbit. This is another kind of infinite period
bifurcation; to avoid confusion, we’ll call it a saddle-loop or homoclinic bifurcation.
Phase portraits of a solitary wave or a soliton wave propagation models feature this type of homoclinic

bifurcation. The homoclinic orbit at the bifurcation point corresponds to a self-reinforcing and stable
solitary wave.
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https://www.tud.ttu.ee/web/dmitri.kartofelev/mittelindyn/numerics_7f.nb
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Slide: 23
Slide 23 presents an example system for homoclinic bifurcation:

Case II: Bifurcations of closed orbits

Case II C: Homoclinic bifurcation. Bif. parameter is µ and
µc ≈ −0.8645. Example system:

{
ẋ = y

ẏ = µy + x− x2 + xy
(9)

µ < µc µ = µc µ > µc
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For µ < µc a stable limit-cycle, shown with the bold curve on Slide 23, is located close to the saddle
point. As µ increases to µ = µc the limit-cycle swells and bangs into the saddle resulting in the merger
of the two, creating a homoclinic orbit. The homoclinic orbit present at the bifurcation point
µ = µc ≈ −0.8645 is shown with the red trajectory. Once µ > µc the saddle connection breaks and the
orbit is destroyed.

The presented results can be checked against numerical calculations. The time-domain solution and the
phase portraits are shown in the following interactive numerical file.

Numerics: nb#7
Examples of bifurcations in 2-D systems: a homoclinic bifurcation or saddle-loop bifurcation (solitons).
Integrated solution and phase portrait.

Revision questions

1. Classification of bifurcations in 2-D.
2. What is the Hopf bifurcation?
3. What is the supercritical Hopf bifurcation?
4. What is the subcritical Hopf bifurcation?
5. What are global bifurcations of closed orbits?
6. Name some global bifurcations of closed limit-cycles.
7. What is a saddle-node coalescence (or bifurcation) of limit-cycles?
8. What is hysteresis on level of cycles?
9. Name dangers associated with the Hopf bifurcation.
10. What is a saddle-node infinite period bifurcation?
11. What is a (saddle-loop or) homoclinic bifurcation?
12. Name examples of dynamical instabilities.
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