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1 Introduction

We continue our discussion on bifurcation analysis of dynamical systems. A majority of time of this lecture
will be spent on an analysis of a relatively intuitive mechanics problem—an over-damped bead on a rotating
rigid hoop. This problem provides an example of a bifurcation in a Newtonian mechanical system. It also
illustrates the subtleties involved in replacing Newton’s law, which is a second-order equation, by a
simpler first-order equation.

Figure 1: The hoop and the sliding bead used during the classroom demonstration.

The bifurcation analysis of the aforementioned problem will lead us to the notion of 2-D phase portraits—
an important topic1 we will continue introducing and exploring further in the next lecture. Figure 1 shows
the bead on the hoop used during the lecture.

2 Over-damped bead on a rotating hoop

2.1 Equation of motion and simplification of the problem

Let’s derive the equation of motion for the over-damped bead on a rotating hoop problem. We start
with the simplified dynamics of the bead on a rotating hoop and explain the over-damping phenomena
as we go along. Let’s use the simplest and most familiar approach known to us for doing so—we determine
all the forces acting on the bead and apply the Newton’s second law of motion.

Slides: 3, 4

Ex: Over-damped bead on a rotating hoop

Figure: Scheme of the problem and used notations.

Derivation of the equation of motion in the following form:

mrφ̈ = −brφ̇−mg sin(φ) +mrω2 sin(φ) cos(φ). (1)
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Ex: Over-damped bead on a rotating hoop

Figure: Scheme of the problem and used notations.

Bifurcation analysis and construction of bifurcation diagram

Dimensional analysis, non-dimensional normalised form
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The above slides shows the schematic drawing of the bead on the hoop problem. The bead of mass m
slides along a wire hoop of radius r. The hoop is constrained to rotate at a constant angular velocity
ω about its vertical axis. Our goal is to analyse the motion of the bead, given that it is acted on by
both gravitational and centrifugal forces. This is the classical statement of the problem, but now
we want to add a new twist: suppose that there’s also a frictional force on the bead that opposes its
motion. To be specific, imagine that the whole system is immersed in a vat of molasses or some other

1Relevant to Your coursework.

D.Kartofelev 2/13 K As of September 20, 2024

https://www.tud.ttu.ee/web/dmitri.kartofelev/YFX1560/CW_requirements.pdf


Lecture notes #3 Nonlinear Dynamics YFX1560

very viscous fluid, and that the friction is due to viscous damping. We let φ be the angle between
the bead and the downward vertical direction. By convention, we restrict φ to the range −π < φ ≤ π,
so there is only one angle for each point on the hoop. Although, on some figures below we will show
the rage to be −2π < φ ≤ 2π to demonstrate the periodicity of the obtained solutions.

Before we continue, we also let
ρ = r sinφ, (1)

denote the distance of the bead from the vertical axis. Then the coordinate framework of the problem is as
shown in Fig. 2. Since, the hoop is assumed to be rigid, we only have to resolve the forces within the plane
of the hoop and along the tangential direction at point m. Figure 2 shows how we do this. Essentially,
we are deriving the equation of motion of mass m in the co-rotating with the hoop framework, i.e., the
plane defined by the hoop.

ρ = r sinφ

do
i

6

i

mρ~ω2 cosφ = [ρ = r sinφ]

= m~ω2r sin(φ) cos(φ)

~Fc =
m~vt

2

ρ
= [~vt =ρ~ω]

= mρ~ω2

m~g sinφ

|~Fv| = brφ̇ ~Fg = m~g

Figure 2: Forces acting on the bead with mass m. All forces are projected onto a tangential direction at
the point m. The problem is solved in the co-rotating with the hoop framework.

Now we write Newton’s law for the bead. There is a downward gravitational force ~Fg = m~g, a sideways
centrifugal force ~Fc = (m~vt

2)/ρ = mρ~ω2, and a tangential damping force |~Fv| = brφ̇, where b is the
viscous damping or friction constant. Constants g and b are taken to be positive; negative signs will be
added later as needed. After substituting ~vt =ρ~ω and ρ = r sinφ into the centrifugal term, and recalling
that the tangential acceleration |~a| = rφ̈, we obtain the governing equation

m~a =
∑

i

~Fi, (2)

where ~Fi are the forces acting in the tangential direction and the force projections onto the tangent line.
More explicitly

mrφ̈︸︷︷︸
inertial
term

= −brφ̇︸ ︷︷ ︸
viscous

or
friction
term

−m|~g| sin(φ)︸ ︷︷ ︸
gravity
term

+mr|~ω|2 sin(φ) cos(φ)︸ ︷︷ ︸
centrifugal

term

. (3)

The viscous and gravity terms work against the centrifugal term, hence the minus sign in front of them.
After evaluating the vector magnitudes and after some algebraic simplifications we get

mrφ̈ = −brφ̇−mg sin(φ) +mrω2 sin(φ) cos(φ), (4)
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or equivalently

mrφ̈ = −brφ̇+mg sin(φ)

(
rω2

g
cosφ− 1

)
. (5)

This is a second-order differential equation, as all Newton’s laws are, since the second derivative
φ̈ is the highest one that appears. We are not yet equipped to analyse second-order equations, so we
would like to find some conditions under which we can safely neglect inertial term mrφ̈. This would allow
for Eq. (5) to be reduced to a first-order equation that we know how to analyse. Of course, this is a dicey
business: we can’t just neglect terms because we feel like it! But we will for now, and later at the end
of this lecture we’ll try to find a regime where our approximation is justified and valid. After neglecting
inertial term mrφ̈ we get

brφ̇ = mg sin(φ)

(
rω2

g
cosφ− 1

)
. (6)

Now that we have the first-order equation we can study it graphically like we have done in previous
lectures. The following interactive numerical file includes the 1-D phase portrait defined by Eq. (6).

Numerics: nb#1
1-D approximation corresponding to the over-damped bead on a hoop dynamics: the 1-D phase portrait
and a family of numerical solutions corresponding to a set of initial conditions.
This file considers dimensionless and normalised form of Eq. (6). The derivation of the dimensionless
form of Eq. (6), namely Eq. (13), is explained in the blue text box for Slides 5 and 6 shown below.

Slides: 5, 6

Ex: Over-damped bead on a rotating hoop

1 2 3 4
τ

-3

-2

-1

1

2

3

ϕ(τ)

A family of solutions of 1-D
problem in the form:

dφ

dτ
= sin(φ)

(
rω2

g
cosφ− 1

)
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Ex: Over-damped bead on a rotating hoop

dφ

dτ
= sin(φ)

(
rω2

g
cosφ− 1

)
(2)

D.Kartofelev YFX1560 6 / 14

As was discussed in previous lectures phase portrait is a powerful tool for studying dynamical
systems without directly integrating them. It is often beneficial to study equations in a dimensionless
and normalised form.

———— Skip if needed: start ————
Independent variable t of Eq. (6) has a time dimension (seconds, in SI system of units). It is made

dimensionless by introducing dimensionless time τ and using variable exchange in the form

τ =
t

T
[1] ⇒ t = τT [s], (7)

where T is the time scale related to the flow on the line defined by Eq. (6). We substitute variable
exchange (7) into Eq. (6) to get

br
dφ

d(τT )
= mg sin(φ)

(
rω2

g
cosφ− 1

)
, (8)
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br

T
· dφ
dτ

= mg sin(φ)

(
rω2

g
cosφ− 1

)
. (9)

The obtained balance of forces is made dimensionless by dividing it with a typical force mg [N] present
in the equation

br

T
· dφ
dτ

= mg sin(φ)

(
rω2

g
cosφ− 1

) ∣∣∣∣÷mg, (10)

br

mgT
· dφ
dτ

= sin(φ)

(
rω2

g
cosφ− 1

)
. (11)

Additionally, we select the characteristic time scale T as follows (the selection criteria is explained in
greater detail in Sec. 2.3)

br

mgT
= O(1) ≈ 1 ⇒ T =

br

mg
, (12)

to get the desired dimensionless and normalised form of the original equation

dφ

dτ
= sin(φ)

(
rω2

g
cosφ− 1

)
. (13)

———— Skip if needed: stop ————

2.2 Bifurcation analysis of the simplified 1-D problem

From now on our concern is with the first-order system in the form (6). The fixed points of (6) correspond
to equilibrium positions for the bead. Naturally, we are interested in the stability of the fixed points. We
find the fixed points by solving

φ̇ = 0 ⇒ mg

br
sin(φ∗)

(
rω2

g
cosφ∗ − 1

)
= 0. (14)

Firstly, there are alway two fixed point corresponding to

mg

br
sinφ∗ = 0 ⇒ sinφ∗ = 0 ⇒

{
φ∗ = 0,

φ∗ = ±π.
(15)

The bottom of the hoop (φ∗ = 0) and the top (φ∗ = ±π). Secondly, and more interestingly, there are two
additional fixed points that depend on the angular velocity ω > 0 and they are defined by

rω2

g
cosφ∗ − 1 = 0. (16)

Below it will prove beneficial to rename quantity rω2/g as follows

γ =
rω2

g
, (17)

and use γ, the parameter that is strongly proportional to angular velocity ω, to rewrite (16)

γ cosφ∗ = 1, (18)

cosφ∗ =
1

γ
. (19)

The obtained result can be studied graphically using an arbitrary y-axis as was described in Lecture 2. We
plot cosφ vs.φ graph (y = cosφ) and look for its intersections φ∗ with the constant function 1/γ (y = 1/γ),
shown by the horizontal dashed lines in Fig. 3. For γ < 1 there are no intersections, whereas for γ > 1
there is a symmetrical pair of intersections to either side of φ = φ∗ = 0. For γ > 1 and as γ → ∞, these
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Figure 3: Graphical study of Eq. (19). Intersection of y = cosφ and y = 1/γ. For 1/γ < 1 or γ > 1 two
intersection points appear. They are shown with the small hollow bullets.

Ob
L J from g

on
Oom

Bo f Damian 7 T 9

YEI y I
ys I

Yg I 4pct Yg 1

slow spin fast spin fastest spin

1g
It

Ig
0 et

E L
it

xy

y

t.afe.it tIt t iTrajectory

Figure 4: Fixed points as they appear on the hoop. Stable fixed points are shown with the filled bullets
and unstable ones with the hollow bullets. (Left) Case where 1/γ ≥ 1 or γ ≤ 1 that corresponds to slowly
spinning hoop. (Middle) Case where 1/γ < 1 or γ > 1 that corresponds to fast spinning hoop. (Right)
Case where 1/γ � 1 or γ � 1 that corresponds to very fast spin.
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Figure 5: Bifurcation diagram for the bead on the rotating hoop problem. Bifurcation parameter γ is
proportional to angular velocity ω. Stable fixed points are indicated by the solid lines and curves, and
unstable fixed points by the dashed lines.

intersections approach φ = φ∗ = ±π/2. Figure 4 plots fixed points φ∗ as they appear on the hoop for the
cases γ ≤ 1, γ > 1 and γ � 1.
To summarise our results so far, we plot the bifurcation diagram by plotting all the fixed points as

a function of parameter γ. Figure 5 shows the resulting diagram. As usual, the solid lines and curves
denote the stable fixed points and dashed lines the unstable ones. We see that a supercritical pitchfork
bifurcation occurs when γ = 1 (bifurcation point). It’s left to you to check the stability of the fixed points,
using linear stability analysis or the graphical approach, i.e., the slope values evaluated at fixed points φ∗,
see Slide 6.
The following numerical file contains an interactive code that plots the intersection events shown in Fig. 3

and a quantitatively accurate rendering of the bifurcation diagram shown in Fig. 5.
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Numerics: nb#2
Over-damped bead on a hoop dynamics: graphical determination of the fixed points and the bifurcation
diagram (first-order model).
The quantitatively accurate rendering of the bifurcation diagram shown in Fig. 5.
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Figure 6: Quantitatively accurate bifurcation diagram for the bead on a rotating hoop problem. Bifur-
cation parameter γ is strongly proportional to angular velocity ω. The stable fixed points are indicated
by the solid lines and curves, and the unstable fixed points by the dashed lines.

Here’s the physical interpretation of the results: When γ < 1, the hoop is rotating slowly and the cen-
trifugal force is too weak to balance the force of gravity. Thus the bead slides down to the bottom φ = 0
and stays there. But if γ > 1, the hoop is spinning fast enough that the bottom becomes unstable. Since
the centrifugal force grows as the bead moves farther from the bottom, any slight displacement of the bead
will be amplified. The bead is therefore pushed up the hoop until gravity balances the centrifugal force;
according to (19), and Figs. 3, 5 and 6 this balance occurs at

φ = φ∗ = ± lim
γ→∞

[
cos−1

(
1

γ

)]
= ±π

2
. (20)

Which of these two fixed points is actually selected depends on the initial disturbance. Even though the
two fixed points are entirely symmetrical, a slight asymmetry in the initial conditions will lead to one of
them being chosen—physicists sometimes refer to these as symmetry-broken solutions. In other words,
the actualised solution has less symmetry than the governing equation.
What is the symmetry of the governing equation? Clearly the left and right halves of the hoop are

physically equivalent—this is reflected by invariance of Eqs. (3), (5) and (6) under the change of variables
φ → −φ. As we mentioned in Lecture 2, the pitchfork bifurcations are to be expected in situations where
such a symmetry exists.

2.3 Dimensional analysis of the full 2-D model, dimensionless form

We use Eq. (5) to determine under which conditions, i.e., parameter values, our prior assumption that in-
ertial term mrφ̈ can be neglected holds true. The dimensional analysis and the dimensionless form of the
equation of motion allows us to compare different terms of the equation to each-other. The advantage of
the dimensionless formulation is that we know how to define small terms, i.e., “much less than one.” Fur-
thermore, non-dimensionalising the equation reduces the number of parameters by lumping them together
into dimensionless groups. This reduction always simplifies the analysis. We rewrite Eq. (5) using the
Leibniz notation to be more transparent and accurate with our representation of the derivatives present.
The governing equation takes the following form:

mr
d2φ

dt2︸ ︷︷ ︸
[kg][m]

[1]
[s2]
≡[N]

= −brdφ
dt︸ ︷︷ ︸

[kg]
[s] [m]

[1]
[s]≡[N]

+ mg sin(φ)︸ ︷︷ ︸
[kg] [m]

[s2]
≡[N]

(
rω2

g
cosφ− 1

)

︸ ︷︷ ︸
[m][1][s2]
[s2][m]

≡[1]

, (21)

here and below the square brackets are used to show the dimensions associated with the different parts of
the equation. In order to non-dimensionalise or simply eliminate the dimension of the only independent
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variable that is time t, we introduce dimensionless time τ that has the following form:

τ =
t

T
[1] ⇒ t = τT [s], (22)

where T is an arbitrary time period (a characteristic time scale to be chosen later). When T is chosen cor-
rectly, the new derivatives dφ/dτ and d2φ/dτ2 should be O(1), i.e., of order unity. After substituting (22)
into (21) we get

mr
d2φ

d(τT )2
= −br dφ

d(τT )
+mg sin(φ)

(
rω2

g
cosφ− 1

)
. (23)

Constants T and T 2 can be factored out

mr

T 2
· d

2φ

dτ2︸︷︷︸
[1]

[1]2
≡[1]

= −br
T
· dφ
dτ︸︷︷︸

[1]
[1]
≡[1]

+mg sin(φ)

(
rω2

g
cosφ− 1

)
. (24)

At this point the derivative terms are indeed dimensionless. In order to eliminate rest of the dimensions
we divide by a force present in the last term on the right-hand side of the equation, namely the gravitational
force mg

mr

T 2︸︷︷︸
[N]

·d
2φ

dτ2
= −br

T
·

︸ ︷︷ ︸
[N]

dφ

dτ
+mg sin(φ)

(
rω2

g
cosφ− 1

)

︸ ︷︷ ︸
[N]

∣∣∣∣÷ mg︸︷︷︸
[N]

, (25)

to get the desired dimensionless form of the entire equation:

��mr

��mgT 2
︸ ︷︷ ︸

[1]

· d
2φ

dτ2︸︷︷︸
[1]

= − br

mgT︸ ︷︷ ︸
[1]

· dφ
dτ︸︷︷︸
[1]

+ sin(φ)

(
rω2

g
cosφ− 1

)

︸ ︷︷ ︸
[1]

. (26)

The magnitudes of all the terms of this equation can now be compared to each other. In order for the
assumption regarding the inertial term, presented in Sec. 2.1, to hold we select time scale T such that

r

gT 2
︸︷︷︸
�O(1)

· d
2φ

dτ2︸︷︷︸
O(1)

= − br

mgT︸ ︷︷ ︸
O(1)

· dφ
dτ︸︷︷︸
O(1)

+ sin(φ)

(
rω2

g
cosφ− 1

)

︸ ︷︷ ︸
O(1)

. (27)

We are interested in the regime where the left-hand side of Eq. (27) is negligible compared to all the other
terms, and where all the terms on the right-hand side are of comparable size, ideally O(1). Additionally, we
are allowed to assume that derivatives dφ2/dτ2 and dφ/dτ are also O(1). This implies that time scale T
and initial conditions φ(0) and dφ(0)/dτ are chosen appropriately. Using the first term on the right-hand
side of Eq. (27) we resolve T as follows:

br

mgT
= O(1) ≈ 1 ⇒ T =

br

mg
[s]. (28)

This selection of T results in the following equation:

�rm
2g�2

�gb
2r�2
· d

2φ

dτ2
= −���brmg

���mgbr
· dφ
dτ

+ sin(φ)

(
rω2

g
cosφ− 1

)
, (29)

m2g

b2r︸︷︷︸
[1]

· d
2φ

dτ2
= −dφ

dτ
+ sin(φ)

(
rω2

g︸︷︷︸
[1]

cosφ− 1

)
. (30)

Renaming the new-found dimensionless group located on the left-hand side of the result to

α =
m2g

b2r
, (31)
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and remembering that dimensionless group rω2/g (17) is called γ results in

α
d2φ

dτ2
= −dφ

dτ
+ sin(φ)(γ cosφ− 1). (32)

This equation has only two dimensionless groups α and γ instead of the five physical parameters (m, r, b,
g, ω) present in Eq. (5)—our starting point.
Let’s analyse the obtained result further and try to understand under which physical condition, i.e., under

which values of parameter, it is reasonable to neglect inertial term mrφ̈ present in initial Eq. (5). According
to the working assumptions

α� O(1) ≈ 1 ⇒ m2g

b2r
� O(1) ≈ 1, (33)

which means that

m2 � b2r

g
or b2 � m2g

r
. (34)

Since, powers m2 and b2, are more dominant or prominent algebraically speaking, we focus on them. For
high viscosity b� 1 and for small mass m� 1 the initial assumption holds true. Now we see what over-
damping means. Mass m has to be strongly damped by viscosity b or mass m has to be very small. In
summary, the dimensional analysis suggests that in the over-damped limit α → 0 Eqs. (5) or (32) can be
well approximated by the first-order system given by Eqs. (6) or (13).
Unfortunately, there is something fundamentally wrong with our idea of replacing a second-order equa-

tion by a first-order equation. The trouble is that a second-order equation requires two initial conditions,
whereas a first-order equation has only one. In our case, the bead’s motion is determined by its initial
angular position φ and angular velocity dφ/dτ , in the dimensionless case. These two quantities can
be chosen completely independent of each other. But that’s not true for the first-order system: given
the initial position, the initial velocity is dictated by Eqs. (6) or (13). Thus the solution to the first-order
system will not, in general, be able to satisfy both initial conditions. Imagine that someone gives our bead
an initial gliding velocity, such that e.g. in the dimensionless case

dφ(0)

dτ
6= sin(φ(0))(γ cosφ(0)− 1). (35)

We seem to have run into a paradox. Is our simplified 1-D model valid in the over-damped limit or not? If
it is valid, how can we satisfy the two arbitrary and mutually independent initial conditions demanded by
the full 2-D model given by Eqs. (5) or (32)? Once again the graphical approach comes to the rescue. An
answer to this conundrum can be given by graphing and analysing the 2-D phase portrait.

3 Introduction to 2-D phase portrait

In previous lectures we have exploited the idea that first-order system ẋ = f(x) can be regarded as a vector
field on a line (flow on a line). By analogy, a second-order system can be regarded as a vector field on a
plane—a phase plane. By introducing variable exchange ψ̂ = φ̇ (angular velocity, do not confuse with ω)
we rewrite the second-order model, given by Eq. (5), as a system of first-order ODEs in the following form:





φ̇ = ψ̂

mr
˙̂
ψ = −brψ̂ +mg sin(φ)

(
rω2

g
cosφ− 1

) ⇒





φ̇ = ψ̂,

˙̂
ψ = − b

m
ψ̂ +

g

r
sin(φ)

(
rω2

g
cosφ− 1

)
.

(36)

Same can be done for dimensionless and normalised form (32) derived in the previous section. We introduce
variable exchange ψ = dφ/dτ and rewrite the equation in the following form:





dφ

dτ
= ψ

α
dψ

dτ
= −ψ + sin(φ)(γ cosφ− 1)

⇒





dφ

dτ
= ψ,

dψ

dτ
= −ψ

α
+

sin(φ)(γ cosφ− 1)

α
.

(37)

These systems can be numerically integrated using standard ODE solvers. A way to think about these
systems graphically in the context of 2-D phase plane or 2-D phase portrait is explained below.
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Slide: 7

2-D phase portrait

{
ẋ = f(x, y)

ẏ = g(x, y)
or ~̇x = ~f(~x) (3)
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A phase portrait of a homogeneous second-order system represented here in the general form:
{
ẋ = f(x, y),

ẏ = g(x, y),
(38)

is constructed by plotting vector field ~̇x = (ẋ, ẏ)T = (f(x, y), g(x, y))T against the independent variables
x and y in xy-plane, as shown in Fig. 7 and on Slide 7. A trajectory of the vector field represents a
single solution of Sys. (38) corresponding to an initial condition—a single point in the plane (x0, y0),
where x0 = x(0) and y0 = y(0).
It is helpful to visualise vector fields in terms of a motion of an imaginary fluid. We imagine that a

fluid is flowing steadily on a phase plane with a local velocity given by Sys. (38). Then, to find the
trajectory starting at initial condition (x0, y0), we place an imaginary particle or phase point at (x0, y0)
and watch how it is carried around by the flow.
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Figure 7: (Left) Phase portrait of a 2-D or a second-order problem. A trajectory is shown with the
continuous curve where time moments t1 < t2 < t3 < t4. (Right) A simplest idea behind construction of
a 2-D phase portrait—an entire vector field for the shown ranges of variables x and y. The vector field
vectors are evaluated and shown at points (x, y) that are placed in a uniform grid. This grid is shown with
the dashed lines.

In this course we will be using computers to plot two and higher-dimensional phase portraits. Figure 7
(Right) shows how computer may constructs a vector field and thus a phase portrait. The figure explains
a simple idea behind plotting of vector fields. The further explanation and introduction to the topic of 2-D
phase portraits will resume in the next week’s lecture.
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3.1 Topological properties of 2-D phase portrait trajectories

Slides: 8–10
Below, a selection of topological properties of 2-D phase portrait trajectories is presented.

2-D systems: Existence and uniqueness

Existence and uniqueness: Solution to ~̇x = ~f(~x) exists and it is

unique if ~f(~x) and ~f ′(~x) are continuous. Function ~f is continuously
differentiable.
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2-D systems

What does uniqueness and existence of solutions imply?

Figure: (Top) Possible dynamics. (Bottom) Impossible dynamics. The
closed trajectory is showed with the blue closed curve.
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The uniqueness implies that non-closed trajectories can not have two futures when starting at a se-
lected initial condition—point (x0, y0), both in forward and backward flowing time.

2-D systems

What does uniqueness and existence of solutions imply?

Figure: Additional possible dynamics: trajectories can approach or
emanate from a fixed point because there is no motion at the fixed point,
and they can merge with or emanate from closed trajectories (special type
of dynamics called limit-cycles, only in nonlinear cases).
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Trajectories can approach to or emanate from a single fixed point because they can not reach or escape
them in a finite time, thus not contradicting the uniqueness of solutions property. Also, if you are
located exactly at fixed point (x∗, y∗) you are by definition not moving. The limit-cycle dynamics will
be explained in the future lectures.

3.2 A second look at the over-damped bead on a rotating hoop dynamics

The paradox raised in Sec. 2.3 is clarified when plotting and overlapping the phase portraits of second-order
full model (32) and simplified first-order model (13).

Slide: 11
The solid black curve corresponds to the dimensionless 1-D system defined by Eq. (13). The 2-D phase
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portrait calculated using the dimensionless model defined by Eq. (32) or Sys. (37) is shown with the grey
vector field. A single trajectory of the second-order model is shown with the red curve. The stability of
fixed points φ∗ corresponding to the 1-D model are indicated by the filled and empty bullets. The fixed
points of the 1-D model also coincide with fixed points of the 2-D model (φ∗, ψ∗), where ψ = dφ/dτ
(cf. Sys. (37)).

Ex: Over-damped bead on a rotating hoop

Phase portrait of 2-D problem:

α
d2φ

dτ 2
= −dφ

dτ
+sin(φ)(γ cosφ−1),

(4)
where

α =
m2g

b2r
, (5)

γ =
rω2

g
. (6)

1-D phase portrait of
dφ

dτ
= sin(φ)(γ cosφ− 1) is shown with black.
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An interactive analysis of the 2-D phase portrait can be performed using the following file.

Numerics: nb#3
Numerical solution and phase portrait of the over-damped bead on a hoop problem (second-order
model).
The numeric integration is performed on the dimensionless form of the full model given by Sys. (37)
using an ODE integrator (explicit Runge-Kutta method of order 5(4)).

A visual inspection of the above phase portrait and its trajectories allows us to conclude that a typical
2-D trajectory is made of two parts: a rapid initial transient, shown on Slide 11 with the red trajectory,
during which the trajectory zaps onto the curve defined by Eq. (13), followed by a much slower drift along
this curve.
Now we see how the paradox discussed in Sec. 2.3 is resolved: Second-order models (5) or (37) do behave

like first-order models (6) or (13), but only after a rapid initial transient. During this transient, it is not
correct to neglect inertial term d2φ/dτ2. The problem with our earlier approach is that we used only a
single time scale T = br/(mg), this time scale is characteristic of the slow drift process, but not of the rapid
initial transient.

Reading suggestion

For a biological example of bifurcation, we turn to a model for the sudden outbreak of an insect called the
spruce budworm. This insect is a serious pest in eastern Canada, where it attacks the leaves of the balsam
fir tree. When an outbreak occurs, the budworms can defoliate and kill most of the fir trees in the forest
in about four years. The insect outbreak model analysis can be found in the main textbook of the course
cited below or on the Internet as a video lecture2 given by Prof. Steven Strogatz himself.

Link File name Citation
Read#1 reading.pdf S.H. Strogatz, Nonlinear Dynamics and Chaos With Applications to Physics,

Biology, Chemistry, and Engineering, Perseus Books Publishing, L.L.C., pp.
73–79, (1994).

2Link: https://www.youtube.com/watch?v=P_YCvTabMO4
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https://www.tud.ttu.ee/web/dmitri.kartofelev/mittelindyn/numerics_3c.nb
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Revision questions

1. What is symmetry-broken solution?
2. What is dimensional analysis of an equation of motion?
3. What is dimensionless form of an equation?
4. What is normalised form of an equation?
5. How many initial conditions does first-order ODE have?
6. How many initial conditions does second-order ODE have?
7. Explain the notion of different time scales of a dynamical system.
8. Derive the dimensionless form of the following equation of motion:

m
d2u

dt2
+ b

du

dt
+ ku = 0, (39)

where u is the displacement, m is the mass and t is the time. Additionally, determine the
dimensions of damping coefficient b and stiffness k.

9. Derive the dimensionless form of the following nonhomogeneous equation of motion:

m
d2u

dt2
+ b

du

dt
+ ku = F0 cosω0t, (40)

where u is the displacement, m is the mass, F0 and ω0 are the driving force parameters, and t
is the time. Additionally, determine the dimensions of damping coefficient b, stiffness k, driving
force F0 and driving force frequency ω0.
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