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1 Introduction

Hint

Figure 1: Phase portrait of a 1-D problem or a first-order problem. Fixed points are shown with the filled
and empty bullets. The arrowheads show the direction of flow. The 1-D flow takes place on the x-axis.

We continue with the one-dimensional problems or the problems of flow on a line given in the form:

ẋ = f(x), (1)

where function f(x) can be linear or nonlinear. Figure 1 shows the phase portrait of a 1-D problem.
At times it is beneficial to simplify your problems in order to analyse them. This is especially true in case
of problems that are described by nonlinear differential equations. Linearisation is a tool for analysing
dynamics of nonlinear systems.

2 Linearisation of 1-D systems

2.1 Linearisation about fixed point x∗ and linear stability analysis of x∗

In mathematics, linearisation is finding a linear approximation to a function at a given point. The linear
approximation of a function is the first order Taylor expansion around the point of interest. In the study
of dynamical systems, linearisation is a method for assessing the local stability and type of a fixed point of
a system of nonlinear differential equations or discrete dynamical systems.

Slides: 3, 4

Linearisation of 1-D systems

The one-dimensional system is given by

ẋ = f(x). (1)

The dynamics close to fixed point x∗ can be expressed as follows:

x(t) = x∗ + η(t), (2)

where |η| � 1 is a small perturbation. The behaviour and change of
solution x over time thus is

ẋ = (x∗ + η)̇ = η̇. (3)

At the same time (1) holds. This mans that the dynamics of small
perturbations is the following:

η̇ = f(x) = f(x∗ + η). (4)
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Linearisation of 1-D systems

Taylor series expansion about x∗ of (4) results in

η̇ = f(x) = f(x∗ + η) (5)

= f(x∗) +
f ′(x∗)

1!
(x∗ + η − x∗) + f ′′(x∗)

2!
(x∗ + η − x∗)2 + . . . (6)

= f ′(x∗)η +
f ′′(x∗)

2!
η2 + . . .

︸ ︷︷ ︸
higher order terms, O(η2)

(7)

≈ f ′(x∗)η. (8)

If f ′(x∗) 6= 0, then term |f ′(x∗)η| �
∣∣∣f ′′(x∗)2!

η2
∣∣∣. Neglecting O(η2)

yields the linearisation of the system about fixed point x∗

η̇ = sη, (9)

where s = f ′(x∗) is simply the slope of function f(x) evaluated at x∗.
D.Kartofelev YFX1560 4 / 9

Let’s examine the dynamics of Eq. (1) close to its fixed point or points x∗. We assume the solution
is in the following form:

x(t) = x∗ + η(t), (2)

where |η| � 1 is a small perturbation. The behaviour and change of solution x over time thus is

ẋ = (x∗ + η)̇ = η̇. (3)
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At the same time it holds that ẋ = f(x). The combination of these results gives

η̇ = f(x) = f(x∗+ η) =



Taylor ser.
expansion
about x∗


 = f(x∗) +

f ′(x∗)
1!

(x∗+ η− x∗) + f ′′(x∗)
2!

(x∗+ η− x∗)2 + · · · =

=
[
f(x∗) = 0

]
= f ′(x∗)η +

f ′′(x∗)
2!

η2 + . . .
︸ ︷︷ ︸

higher order terms, O(η2)

≈ f ′(x∗)η. (4)

If f ′(x∗) 6= 0, then the term |f ′(x∗)η| �
∣∣∣f
′′(x∗)
2! η2

∣∣∣. Neglecting O(η2) yields the linearisation of the
system about fixed point x∗

η̇ = sη, (5)

where s = f ′(x∗) is simply the slope of function f(x) evaluated at x∗.

The linearised form (5) of the original system (1) is a familiar equation to us. Solution of Eq. (5) has the
form

η(t) = eCest = η0 e
st, (6)

where C is the constant of integration and η0 is a suitable initial amplitude. The stability of this solution
based on its behaviour is the following:

• If s > 0, then the solution is exponentially growing (exploding). We say that the solution dynamics
and corresponding fixed point are unstable.

• If s < 0, then the solution is exponentially decaying. Asymptotically approaching a stable value
(η(t) → 0 for t → ∞). We conclude that the solution dynamics and corresponding fixed point are
stable.

This behaviour is also clearly seen on the example phase portrait shown in Fig. 2. The linearised phase
portraits (shown in red) preserve the characteristics of the original flow (shown in black) in the close
proximity of their respective fixed point x∗1 and x∗2.
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Figure 2: (Top) Phase portraits of the original flow described by Eq. (1) and its linearised counterparts
given by Eq. (5). Linearisation is performed about fixed points x∗1 and x∗2. The slopes s1 and s2 correspond
to fixed points x∗1 and x∗2, respectively. Linearised solutions are shifted to coincide with the positions of
the fixed points. Linearised phase portraits are similar to the original flow only in close proximity to
their respective fixed points. (Bottom) Aforementioned linearised solutions shown on their respective phase
portraits.

If s = f ′(x∗) = 0, then no information from linearisation can be obtained. The determination of stability
type needs further analysis, i.e., additional terms in the Taylor series expansion (4) have to be considered.
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2.2 Examples of cases where f ′(x∗) = 0

Consider the following systems
ẋ = x2, (7)

ẋ = −x2, (8)

ẋ = x3, (9)

ẋ = −x3. (10)

Systems (7)–(10) share the same fixed point x∗ = 0 and have different stability types, this can be clearly
seen in Fig. 3. Systems (7) and (8) feature a new type of fixed point—the half-stable fixed point. The
origin and nature of the half-stable fixed point will become clear below (Sec. 6.1).
Systems (9) and (10) feature algebraic decay x(t) ∼ t−δ near the fixed point (see Slide 5), as opposed

to a more common (in the context of our course) exponential decay x(t) ∼ e−γt, where γ is constant.
We will revisit this idea in future lectures because algebraic decay may be a possible source of confusion in
analysis of 2-D systems.
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Figure 3: Phase portraits of Eqs. (7)–(10). Upper row of the graphs features a new type of fixed point—the
half-stable fixed point that is stable on one side but not on the other, hence the half filled bullets.

Slide: 5

Algebraic decay
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Figure: Algebraic decay near a fixed point: A family of numerical
solutions of ẋ = −x3 with fixed point at x∗ = 0. The initial condition of
the solution shown with the red curve is x(0) = 1. For comparison,
algebraic decay path x(t) ∼ t−δ where δ is constant is shown with the
blue curve.
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3 Example of linearisation and linear stability analysis

3.1 Linearisation of the logistic equation

The logistic equation has the form
ẋ = f(x) = rx

(
1− x

K

)
, (11)

where x ≥ 0 is the population size, r > 0 and K > 0 are the system parameters (see Lecture 1). Fixed
points are the following:

ẋ = 0 ⇒ rx∗
(
1− x∗

K

)
= 0 ⇒

{
x∗1 = 0,

x∗2 = K.
(12)

In order to obtain linearisation in form (5), we calculate the slope of the right hand side of (11) and evaluate
it at fixed points x∗1 and x∗2. The slope is

f ′(x) =
d

dx

[
rx
(
1− x

K

)]
=

d

dx

(
rx− r

K
x2
)
= r − 2r

K
x. (13)

Evaluation of the obtained slope at x∗ results in the following linearised system

η̇ = f ′(x∗)η =

(
r − 2r

K
x

)∣∣∣∣
x=x∗

η. (14)

In the case x∗1 = 0 we have

η̇ =

(
r − 2r

K
x

)∣∣∣∣
x=x∗1=0

η = rη, (15)

and in the case x∗2 = K we have

η̇ =

(
r − 2r

K
x

)∣∣∣∣
x=x∗2=K

η = (r − 2r)η = −rη. (16)

The phase portrait shown in Fig. 4 shows the obtained linearised systems using the red graphs.
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Figure 4: Stability of the fixed points is indicated by the hollow and filled bullets. Linearised results are
shown with the red lines. η̇ = rη for x∗1 = 0 and η̇ = −r(η −K) for x∗2 = K, here the graph η̇ = −rη (16)
is shifted to coincide with the actual position of the fixed point x∗2 = K.

3.2 Linear stability analysis of the fixed points

In order to evaluate the stability of the above fixed points we need to evaluate the signs of slopes f ′(x∗).
• For x∗1 = 0 we get: f ′(x∗) =

(
r − 2r

K x
)∣∣
x=x∗1=0

= r. The fixed point is unstable because the sign of
the slope is positive.

• For x∗2 = K we get: f ′(x∗) =
(
r − 2r

K x
)∣∣
x=x∗2=K

= −r. The fixed point is stable because the sign of
the slope is negative.

Figure 4 shows the clear relationship between the slopes of the linearised results and the stability of the
corresponding fixed points.
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4 Existence and uniqueness of solutions of 1-D systems

Slide: 6

Existence and uniqueness

Existence and uniqueness: Solution to ẋ = f(x) exists and it is
unique if f(x) and f ′(x) are continuous, i.e., function f is
continuously differentiable.

D.Kartofelev YFX1560 6 / 9

Graphically speaking uniqueness implies that the graphs of solutions x(t) for different initial con-
ditions x(0) do not cross each other, cf. Slide 5. A single initial condition x(0) cannot result in more
than one solution. The solution trajectories can’t have more than one future both in forward and
backward time t.

5 Impossibility of oscillations in 1-D systems

The 1-D systems are limited in what they can describe. The possible behaviours of solution x(t) as t→∞,
for ẋ = f(x) are:
(i) x(t)→ ±∞ as t→∞.
(ii) x(t)→ x∗ as t→∞.

The behaviours that are not possible include: oscillations, periodic and quasi-periodic solutions, chaos (last
two defined and explained in future lectures). Two mentioned examples of impossible behaviours are shown
in Fig. 5
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Figure 5: Examples of impossible behaviours in 1-D systems: (Left) oscillation with attenuation, (Right)
harmonic oscillation.
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Figure 6: Phase portrait of an arbitrary 1-D flow problem where x0 = x(0) is the initial condition.

Why is this true? Let’s study Fig. 6 where the flow is always damped out at the stable fixed points for
t → ∞. By definition 1-D systems do not have inertial terms (ẍ) this means that all forces are always
balanced out by the damping, remember that ẋ term is proportional to losses or damping, see Eq. (1).
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6 Bifurcation

Slide: 7

Bifurcation

Bifurcation: term is related to models with instabilities, sudden
changes and transitions.

With the change of a parameter the qualitative structure of the
vector field may change dramatically — fixed points may be created
or destroyed, or they might change their stability. Such a change is
called bifurcation.

Bifurcation point is the value of the parameter at witch the sudden
change (bifurcation) occurs.

Bifurcation coordinate is the coordinate (free variable) at witch
the bifurcation occurs.
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Slide 7 gives the definition of a bifurcation. In this section our goal is to familiarise ourselves with a selection
of basic bifurcation dynamics that occur in 1-D systems. They are:

• Saddle-node bifurcation
• Transcritical bifurcation
• Pitchfork bifurcation

– Supercritical pitchfork bifurcation
– Subcritical pitchfork bifurcation

6.1 Saddle-node bifurcation
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Figure 7: Phase portraits of Eq. (17) undergoing a saddle-node bifurcation.

Basic mechanism for creation or destruction of fixed points. The standard example is

ẋ = r + x2, (17)

where r is the control parameter. Figure 7 shows phase portraits corresponding to different values of r.
Fixed points exist only for r ≤ 0 and they are given by

ẋ = 0 ⇒ r + x∗2 = 0 ⇒ x∗ = ±i√r, r ≤ 0, (18)

where i is the imaginary unit. The bifurcation point value r = 0 and it occurs at spatial point x = 0, we
write (x, r) = (0, 0). This example also shows the origin of the mysterious half-stable fixed point present
in Eqs. (7) and (8). In those examples we simply caught the system at a moment of bifurcation.
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A similar general behaviour, i.e., bifurcation dynamics, happens for the system with inverted parabola:

ẋ = r − x2. (19)

Here, the fixed points exists only for r ≥ 0 their stability is the opposite compared to the previous example,
and their values are the following:

ẋ = 0 ⇒ r − x∗2 = 0 ⇒ x∗ = ±√r, r ≥ 0. (20)

6.1.1 Bifurcation diagram

Bifurcation diagram is obtained by plotting the graph of fixed point x∗ as a function of control parameter
r, analytically expressed by (18). The bifurcation diagram of Eq. (17) is shown in Fig. 8. Compare Fig. 8
to the corresponding Fig. 7.
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Figure 8: Bifurcation diagram of the saddle-node bifurcation. The unstable branch is shown with the
dashed bold curve and the stable branch with the continuous bold curve.

The following numerical file shows the quantitatively accurate phase portraits and bifurcation diagrams
discussed in this section.

Numerics: nb#1
Bifurcation diagrams and 1-D systems: saddle-node bifurcation, transcritical bifurcation, pitchfork
bifurcation (supercritical), pitchfork bifurcation (subcritical).

6.1.2 Not so clear example of a saddle-node bifurcation

Let’s consider the following problem
ẋ = r + x− ln(1 + x), (21)

where r is the control parameter. It is impossible to determine the dynamics of the fixed points algebraically.
Try it, and/or see the numerical file linked below.

Numerics: nb#1
Bifurcation diagrams and 1-D systems: saddle-node bifurcation, transcritical bifurcation, pitchfork
bifurcation (supercritical), pitchfork bifurcation (subcritical).
Note: The red error messages from Mathematica are left in intentionally. The symbolic calculation
packages (CAS – computer algebra system) can not handle the problem using inverse functions.

We employ a graphical approach to find the fixed points, bifurcation point and their dependents on con-
trol parameter r. This means that we need to solve

ẋ = 0 ⇒ r + x− ln(1 + x) = 0, (22)

or equivalently
r + x = ln(1 + x), (23)
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Figure 9: (Left) Behaviour of functions (24) as the value of r is changed. (Right) Bifurcation happening
for the tangent intersection of the line and the curve given by (24).

for variable x. We can use an arbitrary axis y to plot the left-hand side and the right-hand side of Eq. (23)

y = r + x and y = ln(1 + x). (24)

Figure 9 shows the behaviour of the line and the curve given by functions (24) as the value of r is changed.
A saddle-node bifurcation occurs when the tangent intersection takes place. We write and it must hold




r + x = ln(1 + x),

d

dx
(r + x) =

d

dx
ln(1 + x).

(25)

As stated above the first equation in Sys. (25) is hard to solve algebraically, but the second one is easier.
After taking the derivatives we get

1 =
1

1 + x
⇒ x∗ = 0. (26)

The corresponding r value can be found from the first equation in Sys. (25)

(r + x)|x=x∗=0 = ln(1 + x)|x=x∗=0, (27)

r = ln 1 = 0. (28)

Thus, the bifurcation coordinate and point (x, r) = (0, 0). The numeric computer analysis of this problem
is linked below.

Numerics: nb#1
Bifurcation diagrams and 1-D systems: saddle-node bifurcation, transcritical bifurcation, pitchfork
bifurcation (supercritical), pitchfork bifurcation (subcritical).
File content: A quantitatively precise behaviour of the dynamics shown in Fig. 9; the phase portrait
and bifurcation diagram corresponding to Eq. (21). Figure 10 shows the resulting diagram.
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Figure 10: Bifurcation diagram of the problem given by (21). The stable branch is shown with the
solid bold curve and the unstable branch is shown with the dashed curve.
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6.1.3 Normal form

Let’s take a closer look at the previous result. The series expansion of Eq. (21) is in the form

ẋ = r + x− ln(1 + x) ≈




Maclaurin ser.
expansion of
ln(1 + x)

about x∗ = 0


≈ r + x−

(
x− x2

2
+
x3

3
− x4

4
+ . . .

)

︸ ︷︷ ︸
the Maclaurin expansion

≈ r + x2

2
+O(x3). (29)

This result is similar to the example given by Eq. (17). Surely, after neglecting O(x3) terms, the qualitative
dynamics of this system will be exactly the same. Many systems can be reduced to the form (17) or (19)
near their respective fixed points. The normal form of the saddle-node bifurcation is thus given by

ẋ = r ± x2. (30)

All systems that can be reduced to this form share the abovementioned properties.

6.2 Transcritical bifurcation

The normal form of transcritical bifurcation is given by

ẋ = rx± x2, (31)

where r is the control parameter. Let’s study the case

ẋ = rx− x2 = x(r − x). (32)

Fixed points for this system are {
x∗1 = 0, ∀r,
x∗2 = r.

(33)

Figures 11 and 12 show the phase portraits for the varied values of r and the corresponding bifurcation
diagram, respectively. Note: x∗ = 0 can’t be destroyed but its stability can be changed. From Fig. 12 it is
clear that the bifurcation coordinate and point (x, r) = (0, 0).
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Figure 12: Bifurcation diagram of Eq. (32). The stable branches are shown with the bold continuous lines
and the unstable branches are shown with the dashed bold lines.
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These result can be compared against the result found using a computer.

Numerics: nb#1
Bifurcation diagrams and 1-D systems: saddle-node bifurcation, transcritical bifurcation, pitchfork
bifurcation (supercritical), pitchfork bifurcation (subcritical).

———— Skip if needed: start ————
Let’s analyse algebraically the stability of the bifurcation diagram branches shown in Fig. 12. In order to

determine the stability of the fixed points one needs to analyse the slopes of phase portrait curves at said
fixed points x∗:

f ′(x) =
d

dx
(rx− x2) = r − 2x. (34)

In case of x∗1 = 0

f ′(x∗1) = f ′(0) = r, x∗1 is

{
stable for r < 0,

unstable for r > 0.
(35)

In case of x∗2 = r

f ′(x∗2) = f ′(r) = −r, x∗2 is

{
stable for r > 0,

unstable for r < 0.
(36)

Indeed, these result agrees with the graphical and numerical results presented above.
———— Skip if needed: stop ————
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Figure 13: Phase portrait of Eq. (38) for different values of r. In the case r = 0 solutions near the fixed
point x∗ = 0 decay algebraically.
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Figure 14: Bifurcation diagram. The stable branches are shown with the bold continuous curves and a
lines, and the unstable branch is shown with bold dashed line.

6.3 Pitchfork bifurcation

Pitchfork bifurcations occurs in systems with symmetry. It involves mergers or splitting apart of fixed
points and changes in their stabilities. Normal form is given by

ẋ = rx± x3, (37)

where r is the control parameter.
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6.3.1 Supercritical pitchfork bifurcation

Let’s study the case
ẋ = rx− x3. (38)

Fixed points for this system are {
x∗1 = 0, ∀r,
x∗2 = ±

√
r, r ≥ 0.

(39)

Figures 13 and 14 show the phase portraits for varied values of r and the corresponding bifurcation
diagram, respectively. From Fig. 14 it is clear that the bifurcation coordinate and point (x, r) = (0, 0). The
above result can be compared against the result found using a computer.

Numerics: nb#1
Bifurcation diagrams and 1-D systems: saddle-node bifurcation, transcritical bifurcation, pitchfork
bifurcation (supercritical), pitchfork bifurcation (subcritical).

6.3.2 Subcritical pitchfork bifurcation

Let’s consider the other case of normal form (37) where

ẋ = rx+ x3. (40)

Fixed points for this system are the same as for the previous case but with different stability types. The
fixed point are {

x∗1 = 0, ∀r,
x∗2 = ±i

√
r, r < 0,

(41)

where i is the imaginary unit.
Figures 15 and 16 show the phase portraits for varied values of r and the corresponding bifurcation

diagram, respectively. From Fig. 16 it is clear that the bifurcation coordinate and point (x, r) = (0, 0).
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Figure 15: Phase portrait of Eq. (40) for different values of r. In the case r = 0 the solutions near the fixed
point x∗ = 0 decay algebraically. 

t

Figure 16: Bifurcation diagram. The stable branch is shown with the continuous bold line, and the unstable
branches are shown with the dashed bold curves and a line.

The obtained result can be compared against the result found using a computer.
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Numerics: nb#1
Bifurcation diagrams and 1-D systems: saddle-node bifurcation, transcritical bifurcation, pitchfork
bifurcation (supercritical), pitchfork bifurcation (subcritical).

Revision questions

1. What does linearisation of a nonlinear system imply?
2. Linearise the following 1-D system

ẋ = x3 − x (42)

3. What is bifurcation?
4. What is bifurcation diagram?
5. What is saddle-node bifurcation?
6. What is transcritical bifurcation?
7. What is pitchfork bifurcation?
8. What is supercritical pitchfork bifurcation?
9. What is subcritical pitchfork bifurcation?
10. What is normal form in the context of bifurcations?
11. Are oscillation possible in 1-D systems?
12. Why are oscillations impossible in 1-D systems?
13. What does uniqueness of solutions imply in the context of phase space trajectories?
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