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Lecture notes Nonlinear Dynamics YFX1560

Preface

Lecture notes

These lecture notes are created for the students of Tallinn University of Technology (TalTech) who are
taking the Nonlinear Dynamics (YFX1560) course. These lecture notes and other resources can be accessed
through the course webpage at https://www.tud.ttu.ee/web/dmitri.kartofelev/YFX1560.html.

Document navigation

Blue text boxes

The blue text boxes are used to refer to the information on the slides or the slides themselves that are used
during the lectures. Below is an example of a blue text box.

Slide: 13
Slide or multiple slides, clarifying comments, etc., related to the presented slide or slides are placed
inside the blue boxes.

Magnetic pendulum in three magnetic potentials1
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Figure: Magnets shown with yellow, red and blue colours, attracting the
magnetic pendulum for three neighbouring initial conditions (top view).

1See Mathematica .nb file uploaded to the course webpage.
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The upper-right corners of the blue text boxes show the slide numbering information.

Yellow text boxes

The yellow text boxes are used to refer to the numerical files (Wolfram Mathematica notebook files) used
during the lectures. An example of a yellow text box and its contents is shown below.

Numerics: nb#1
Short description of a script/program contained in the notebook file. Same descriptions can be found
in the index of the numerical files.
Additional information, clarifications, comments, calculation results etc., related to the numerical

file/s are also placed inside the yellow box.

The upper-right corners of yellow text boxes feature a hyperlink referring to the numerical file itself. These
numerical files can also be found on the course webpage and they are downloadable from the aforementioned
index contained in this .pdf file.
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https://www.tud.ttu.ee/web/dmitri.kartofelev/YFX1560.html
https://www.tud.ttu.ee/web/dmitri.kartofelev/mittelindyn/numerics_1.nb
https://www.tud.ttu.ee/web/dmitri.kartofelev/YFX1560/Index_num.pdf
https://www.tud.ttu.ee/web/dmitri.kartofelev/YFX1560/Index_num.pdf
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Grey text boxes

The grey text boxes are reserved for the revision questions and they are featured at the end of each lecture
note. An example of a grey text box is shown below.

Revision questions

1. What is dynamics?
2. Determine if the following equations/systems are linear or nonlinear:

ẋ = sinx. (1)

The same questions are featured on the slides. The revision questions for the entire course are compiled
into a single .pdf file that is accessible through the course webpage.

Hand-drawn graphs and figures
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Figure 1: An example of a hand-drawn graph.

The figures and graphs drawn on a black board or dry erase board during the lectures will be reproduced
in these lecture notes using crude hand-drawings. An example of a hand-drawn graph is shown in Fig. 1.

Suggested reading text boxes/tables

Some lectures will feature suggested reading materials in the form of refereed academic papers or textbook
chapters/excerpts. The index of the used papers can be found on the course webpage. These lecture notes
will refer to suggested reading materials using transparent tables. An example table is shown below.

Link File name Citation
Paper#1 paper0.pdf Evgeni E. Sel’kov, “Self-oscillations in glycolysis 1. A simple kinetic model,”

European Journal of Biochemistry, 4(1), pp. 79–86, (1968)
doi:10.1111/j.1432-1033.1968.tb00175.x

Acknowledgements

The course is based on the following textbooks:
• S.H. Strogatz, Nonlinear Dynamics and Chaos With Applications to Physics, Biology, Chemistry, and
Engineering, Second Edition, Avalon Publishing, 2014.

• K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos: An Introduction to Dynamical Systems, Springer, 2000.
• A. Medio, M. Lines, Nonlinear Dynamics A Primer, Cambridge University Press, 2003
• H. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals: New Frontiers of Science, New York: Springer-

Verlag, 2004.
In some instances small sections of the above textbooks (Strogatz, and Medio and Lines) are copy and
pasted directly into these course lecture notes.
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https://www.tud.ttu.ee/web/dmitri.kartofelev/YFX1560/revision_questions.pdf
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Lecture 1: Practical course navigation, introduction, magnetic
pendulum, history, dynamics, nonlinearity, ordinary ho-
mogeneous differential equation, 1-D problem, phase spa-
ce, phase portrait, fixed point and its stability

Contents

1 Practical course navigation 2

2 Introduction to the course 3

3 Classroom demonstration: Chaotic pendulum 3

4 History of the discipline (skip) 5

5 Introduction to theory: Basic definitions 7
5.1 Example: Harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Example: Mathematical pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 1-D phase portrait 8
6.1 Nonlinear 1-D flow problem, analytic solution . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.2 Nonlinear 1-D flow problem, graphical approach . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.3 The logistic equation, graphical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7 Conclusions and general introduction 12

Handout: List of lectures and the course syllabus.
Demonstration: Chaotic magnetic pendulum.
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https://www.youtube.com/watch?v=TYXVgJdcX_Q
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1 Practical course navigation

Welcome to Nonlinear Dynamics course! This course is aimed at newcomers to the topics and problems of
nonlinear dynamics and chaos, especially students taking a first course in the subject.

Slides: 3–7
The main communication channels between the Lecturer and students are the course webpage, TalTech
Moodle web page and e-mail.

General and contact info

Contact info: https://www.tud.ttu.ee/web/dmitri.kartofelev/

E-mail: dmitri.kartofelev@taltech.ee

Online resources:

Course webpage (coursework, lecture notes, etc.):
https://www.tud.ttu.ee/web/dmitri.kartofelev/YFX1560.html

Moodle (course discussion forum and grades):
https://moodle.taltech.ee/course/view.php?id=21971

Video lectures by S. Strogatz (author of the main textbook):
https://www.youtube.com/playlist?list=PLbN57C5Zdl6j_

qJA-pARJnKsmROzPnO9V

Course overview and syllabus:

https://www.tud.ttu.ee/web/dmitri.kartofelev/YFX1560/topics_

covered.pdf

https://ois2.taltech.ee/uusois/aine/YFX1560
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General and contact info

Examination: One coursework and one written exam.

Written exam. Revision questions: https://www.tud.ttu.ee/web/

dmitri.kartofelev/YFX1560/revision_questions.pdf

Two part coursework. Requirements: https://www.tud.ttu.ee/

web/dmitri.kartofelev/YFX1560/CW_requirements.pdf

Coursework is a prerequisite for taking the exam.

Course grading criteria: https://www.tud.ttu.ee/web/dmitri.

kartofelev/YFX1560/assessment2.pdf

Personal consultation: My office on Wednesdays and Fridays
(office hours, schedule the meeting in advance)

Visit me at least once to discuss the coursework.
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Numerical files and programs

The lecturer will be using Wolfram Mathematica programs/codes to
demonstrate the nonlinear phenomena being discussed.

To open .nb files:

Use you own computer/laptop and free Wolfram Player.
Download link: https://www.wolfram.com/player/

To open and execute .nb files:

Classroom with access to Mathematica software: ((((((hhhhhhSOC-408

Wolfram Cloud: https://www.wolframcloud.com

Wolfram Mathematica installation

Indexes of the numerical files used:

Index of .nb files https://www.tud.ttu.ee/web/dmitri.

kartofelev/YFX1560/Index_num.pdf
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Literature and textbooks

S.H. Strogatz, Nonlinear Dynamics and Chaos With
Applications to Physics, Biology, Chemistry, and
Engineering, Second Edition, Avalon Publishing, 2014.

M. Dichter, Student Solutions Manual for Nonlinear Dynamics
and Chaos, 2nd Edition (Volume 2), CRC Press, 2018

e-library access: https://ebookcentral.proquest.com/lib/

tuee/detail.action?docID=5394195

K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos: An Introduction
to Dynamical Systems, Springer, 2000.

H. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals: New
Frontiers of Science, New York: Springer-Verlag, 2004.

Ü. Lepik, J. Engelbrecht, Kaoseraamat, Teaduste Akadeemia
Kirjastus, 1999.

D.W. Jordan, P. Smith, Nonlinear Ordinary Differential
Equations, Oxford Univ. Press, 1988.

D.Kartofelev YFX1560 6 / 37

The main textbooks are the first three books. Most of the course is based on the Strogatz’s textbook.
The Strogatz’s textbook and Dichter’s solution manual are available at TalTech Library.
Estonian speaking student are encouraged to read the textbooks written in Estonian to familiarise

themselves with the correct technical terminology both in Estonian and English languages.

Literature and textbooks

H.G. Solari et al., Nonlinear Dynamics, Inst. of Physics, 1996.
R.C. Hilborn, Chaos and Nonlinear Dynamics, Oxford
Univ. Press, 1994.
D. Kaplan, L. Glass, Understanding Nonlinear Dynamics,
Springer, 1995.
J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical
Systems, and Bifurcations of Vector Fields, Springer, 1983.
Encyclopaedia of Nonlinear Sciences, ed. by A. Scott, Routledge,
2005.
A. Medio, M. Lines, Nonlinear Dynamics: A Primer, Cambridge
University Press, 2001.

During the forthcoming weekend google topics of nonlinear dynamics
and chaos.
Suggestion: BBC documentary “The secret life of chaos” (link).

D.Kartofelev YFX1560 7 / 37
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The BBC documentary can be seen as a well-worded introduction to some of the topics discussed in
this course.

2 Introduction to the course

Slides: 8–11
The course can be classified as an applied course. We will not be spending much time on proving math-
ematical theorems, arguing abstract arguments, etc. Virtually every idea will be illustrated by some
application to science or engineering. In some cases, the applications are drawn from the recent research
literature.

Introduction to the course

This course is aimed at newcomers to nonlinear dynamics and
chaos, especially students taking a first course in the subject.

Multidisciplinary course (applied), know your sciences.
Explanation through examples.

At first a surprising and unusual approach (compared to your
other courses in mathematics and physics).

Graphical and geometric thinking, intuitive approach.

By the end of the course you will get a more intimate
understanding of differential equations and their solutions.

Links between: order and chaos (what happens at the limits?);
simplicity and complexity (can they be the same thing?);
smoothness and roughness (infinite).
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Introduction to the course, prerequisites

Prerequisite courses

Bachelor’s level courses:

Linear Algebra, YMX0010

Mathematical Analysis I and II, YMX0081 and YMX0082

Differential equations, YMX????

Numerical Methods and Packages of Mathematics, YMX0110

Master’s level courses:

Equations of Mathematical Physics, YMX8140

Theoretical knowledge: linear algebra, calculus (chain rule),
mechanics (statics, dynamics), multivariable Taylor series expansion,
theory of systems of ODEs, polar coordinates, Fourier transform, etc.
Numerical integration: Mathematica, pplane (by Rice University),
Maple, MATLAB or Octave, ODE packages (Python, Fortran), etc.

Nonlinear problems are hard to solved analytically.
D.Kartofelev YFX1560 9 / 37

Introduction to the course, main topics

Nonlinear dynamic systems, from periodic to chaotic systems.

Classification and characteristics of ODEs.

Other deterministic chaotic systems (maps, feedback loops).

Classification and characteristics of maps.

Tools to understand and analyse the above systems.

Fractal geometry and fractals.

Applications and analysis tools of chaos and fractals.
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Introduction to the course, roadmap

1-D systems (homogeneous ODEs)

2-D systems

Classification of fixed points (linear systems)
Classification of bifurcations

Quasi-periodisity.

3-D systems and higher order systems

Strange attractors and chaos
Fractal geometry
Fractal microstructure of strange attractors

Poincaré map

1-D maps and period doubling

2-D maps

Classification of fixed points (linear maps)

Higher dimensional maps and complex valued maps
D.Kartofelev YFX1560 11 / 37

By the “roadmap” we mean logical structure of the course. Our broader goal will be to provide you
with an overview of the classification of ODEs and iterative maps based on their solution types which
can include chaotic dynamics.

3 Classroom demonstration: Chaotic pendulum

Before we start with the course let’s take a look at a mechanical system with a special type of dynamics
(properties defined properly later in the course). Namely, the magnetic pendulum in three magnetic poten-
tials a.k.a. the chaotic pendulum. The set-up is shown in Fig. 2. By the end of the course you will be able
to understand, analyse and quantify this type of dynamics.
Discussion with the students: Can a physicist predict the magnet at which the pendulum stops swinging,
i.e., the end state of the system for t → ∞ given its initial position and initial velocity? If you think that
the question is too vague, explain.

D.Kartofelev 3/14 K As of September 12, 2024
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Figure 2: Magnetic pendulum in three magnetic potentials a.k.a. chaotic pendulum.

It might be surprising for you. The calculations based on an accurate physical descriptions of the proposed
pendulum problem will generally fail to predict the end-state of the system accurately.

Slides: 13, 14
Using the classical mechanics and some magnetism one can model the pendulum’s motion by numeri-
cally integrating the relevant equations of motion.

Magnetic pendulum in three magnetic potentials1
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Figure: Magnets shown with yellow, red and blue colours, attracting the
magnetic pendulum for three neighbouring initial conditions (top view).

1See Mathematica .nb file uploaded to the course webpage.
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Magnetic pendulum in three magnetic potentials

System is modeled with the following equations of motion:




ẍ+Rẋ−
N∑

i=1

xi − x(√
(xi − x)2 + (yi − y)2 + d2

)3 + Cx = 0,

ÿ +Rẏ −
N∑

i=1

yi − y(√
(xi − x)2 + (yi − y)2 + d2

)3 + Cy = 0,

(1)

where R is proportional to the air resistance and overall attenuation,
C is proportional to the effects of gravity, N is the number of
magnets, the i-th magnet is positioned at (xi, yi), d is the distance
between the pendulum at rest and the plane of magnets.

Additionally we assume that the pendulum length is long compared
to the spacing of the magnets. Thus, we may assume for simplicity
that the metal ball moves about on a xy-plane.
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It seems that the end state is strongly dependant on the precise initial position (x0, y0) of the pendulum.
The initial conditions that are close (nearby) to each other do not appear to produce similar pendulum
trajectories and system end states. The predictive power of system (1) is not obvious.

The numeric solution to the magnetic pendulum in three magnetic potentials is linked below.

Numerics: nb#1
Numerical integration of the dynamical system describing magnetic pendulum’s motion. A pendulum
in which a metal ball (or a magnet) is attached to its end and which is oscillating over a plane where
a set of attractive magnets are present (2–6 magnets).
The principal simplifying assumptions are the following:

• The pendulum length is long compared to the spacing of the magnets. Thus, we assume that the
ball moves about on a plane rather than on a sphere with a large radius.

• The magnets are point attractors positioned a short distance below the pendulum plane at the
vertices of an equilateral triangle.

• All possible effects related to the Eddie current driven electromagnetism caused by the supporting
aluminium bars are ignored.

D.Kartofelev 4/14 K As of September 12, 2024
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Slides: 16, 17

Magnetic pendulum

Figure: The basins of attraction of the three magnets which are coloured
red, blue and yellow.

H. Peitgen, et al, Chaos and Fractals: New Frontiers of Science, Springer-Verlag,
2004, pp. 707–714.

D.Kartofelev YFX1560 16 / 37

Magnetic pendulum

Figure: Region highlighted on the previous slide showing the intertwined
structure of the three basins.

H. Peitgen, et al, Chaos and Fractals: New Frontiers of Science, Springer-Verlag,
2004, pp. 707–714.
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A closer look at this dynamics is shown here. The basin of attraction is defined as a set (region) of
initial conditions (x0, y0) that end up at a specific magnet (red, yellow or blue).
Discussion with students: What do you think we would see if we further enlarged this image

(increase the image resolution)? Keep in mind that two close-by initial states can produce differing
results, as the above numerical simulation demonstrated.

Hopefully, this demonstration generated some open-ended questions and a genuine interest for the subject
and the lectures to come.

4 History of the discipline (skip)

———— Skip if needed: start ————
The following is a shot excerpt from our main textbook (Strogatz, pp. 2–5, 1994):

The subject began in the mid-1600s, when Newton invented differential equations, discovered his laws
of motion and universal gravitation, and combined them to explain Kepler’s laws of planetary motion.
Specifically, Newton solved the two-body problem-the problem of calculating the motion of the earth around
the sun, given the inverse-square law of gravitational attraction between them. Subsequent generations of
mathematicians and physicists tried to extend Newton’s analytical methods to the three-body problem
(e.g., sun, earth, and moon) but curiously this problem turned out to be much more difficult to solve. After
decades of effort, it was eventually realised that the three-body problem was essentially impossible to solve,
in the sense of obtaining explicit formulas for the motions of the three bodies. At this point the situation
seemed hopeless.
The breakthrough came with the work of Poincaré in the late 1800s. He introduced a new point of

view that emphasised qualitative rather than quantitative questions. For example, instead of asking for
the exact positions of the planets at all times, he asked “Is the solar system stable forever, or will some
planets eventually fly off to infinity?” Poincaré developed a powerful geometric approach to analysing such
questions. That approach has flowered into the modern subject of dynamics, with applications reaching far
beyond celestial mechanics. Poincaré was also the first person to glimpse the possibility of chaos, in which a
deterministic system exhibits aperiodic behaviour that depends sensitively on the initial conditions, thereby
rendering long-term prediction impossible.
But chaos remained in the background in the first half of this century; instead dynamics was largely

concerned with nonlinear oscillators and their applications in physics and engineering. Nonlinear oscilla-
tors played a vital role in the development of such technologies as radio, radar, phase-locked loops, and
lasers. On the theoretical side, nonlinear oscillators also stimulated the invention of new mathematical
techniques—pioneers in this area include van der Pol, Andronov, Littlewood, Cartwright, Levinson, and
Smale. Meanwhile, in a separate development, Poincaré’s geometric methods were being extended to yield
a much deeper understanding of classical mechanics, thanks to the work of Birkhoff and later Kolmogorov,
Arnold, and Moser.
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The invention of the high-speed computer in the 1950s was a watershed in the history of dynamics. The
computer allowed one to experiment with equations in a way that was impossible before, and thereby to
develop some intuition about nonlinear systems. Such experiments led to Lorenz’s discovery in 1963 of
chaotic motion on a strange attractor1. He studied a simplified model of convection rolls in the atmosphere
to gain insight into the notorious unpredictability of the weather. Lorenz found that the solutions to his
equations never settled down to equilibrium or to a periodic state—instead they continued to oscillate in
an irregular, aperiodic fashion. Moreover, if he started his simulations from two slightly different initial
conditions, the resulting behaviours would soon become totally different. The implication was that the
system was inherently unpredictable—tiny errors in measuring the current state of the atmosphere (or any
other chaotic system) would be amplified rapidly, eventually leading to embarrassing forecasts. But Lorenz
also showed that there was structure in the chaos—when plotted in three dimensions, the solutions to his
equations fell onto a butterfly-shaped set of points. He argued that this set had to be “an infinite complex
of surfaces”—today we would regard it as an example of a fractal.
Lorenz’s work had little impact until the 1970s, the boom years for chaos. Here are some of the main

developments of that glorious decade. In 1971 Ruelle and Takens proposed a new theory for the onset of
turbulence in fluids, based on abstract considerations about strange attractors. A few years later, May
found examples of chaos in iterated mappings arising in population biology, and wrote an influential review
article that stressed the pedagogical importance of studying simple nonlinear systems, to counterbalance the
often misleading linear intuition fostered by traditional education. Next came the most surprising discovery
of all, due to the physicist Feigenbaum2. He discovered that there are certain universal laws governing
the transition from regular to chaotic behaviour; roughly speaking, completely different systems can go
chaotic in the same way. His work established a link between chaos and phase transitions, and enticed
a generation of physicists to the study of dynamics. Finally, experimentalists such as Gollub, Libchaber,
Swinney, Linsay, Moon, and Westervelt tested the new ideas about chaos in experiments on fluids, chemical
reactions, electronic circuits, mechanical oscillators, and semiconductors.
Although chaos stole the spotlight, there were two other major developments in dynamics in the 1970s.

Mandelbrot codified and popularised fractals, produced magnificent computer graphics of them, and showed
how they could be applied in a variety of subjects. And in the emerging area of mathematical biology, Win-
free applied the geometric methods of dynamics to biological oscillations, especially circadian (roughly
24-hour) rhythms and heart rhythms. By the 1980s many people were working on dynamics, with contri-
butions too numerous to list. Following slides itemise and summarise this history.

Slides: 18, 19
Selection of notable historic figures, their contributions to the field and the associated dates.

History of the discipline

1666 Newton – Invention of calculus, explanation of
planetary motion. Two body problem solved. Problem
of the Moon.

1700s Flowering of calculus and classical mechanics.
1800s Analytical studies of planetary motion.

Determined chaos (not stochastic), analytical studies.
1890s Poincaré – Father of chaos. Geometric approach, 3

body problem explained. Poincaré’s work goes
unnoticed.

1920–1950 Nonlinear oscillators in physics and engineering,
invention of radio, radar, laser.

1950 Computer is invented and in use.
1920–1960 Birkhoff, Komogorov, Arnold, Moser – Complex

behaviour in Hamiltonian mechanics. KAM theorem.
1961/1963 Ueda and Lorenz – Strange attractor. Butterfly effect.
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History of the discipline

1970s Ruelle and Takens – Turbulence and chaos.

May – Chaos in iterative maps.

Myrberg and Feigenbaum – Universal rout to chaos.
Connection between chaos and phase transition.

Experimental studies of chaos.

Winfree – Nonlinear oscillators in biology.

Mandelbrot – Father of fractal geometry. Fractals.

1980s Widespread interest in chaos, fractals, oscillators and
their applications. Topic has peaked.

1990s Engineering application (encoding communication).
Complex systems

2000–present Complex systems, networks (social, economics,
internet, biology).

D.Kartofelev YFX1560 19 / 37

———— Skip if needed: stop ————
1First published works on chaotic attractors and related phenomena were authored by Japanese Electrical Engineering

Professor Yoshisuke Ueda (1936–).
2First published works on period doubling and related phenomena were authored by Finnish mathematician Pekka Juhana

Myrberg (1892–1976).
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5 Introduction to theory: Basic definitions

Slides: 20–25
The taxonomy of mechanics presented below is generalised and simplified. Usually, in classical me-
chanics statics and dynamics are seen as a subset of rigid body mechanics.
Statics — moment about a point is zero; summation of forces is zero.
Dynamics — here moment, forces and displacement are not zero.

In this course we widen our definition of dynamics beyond the rigid body mechanics, see Slide 20.

Introduction to theory: basic definitions

Mechanics (solid and fluid) can be roughly divided into statics and
dynamics.

• Statics: the branch of mechanics concerned with the forces acting
on stationary bodies. The acting forces are in equilibrium.

• Dynamics: the branch of mechanics concerned with the
motion/changes of bodies/systems under the action of forces. The
acting forces are not in equilibrium.
The branch of any science in which changes in variables are
considered e.g. chemical kinetics, population biology, nonlinear
oscillations, econophysics, etc. All these subjects can be placed under
a common mathematical framework.

Nonlinear dynamics: concerns with dynamical systems or processes
that are inherently nonlinear. Nonlinear dynamical systems, describing
changes in variables over time, may appear chaotic, unpredictable, or
counterintuitive, contrasting with much simpler linear systems.
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Introduction to theory: basic definitions

In this course we will be mainly studying systems of ODEs of the form

~̇x = ~f(~x), (2)

where the dot ˙ denotes the time derivative (the Newton notation for

differentiation), ~x and ~f are vectors and ~x ∈ Rn. The set Rn is called
(n-dimensional) phase space.

We will also consider maps in the form

~xn+1 = ~f(~xn), (3)

where n is the number of iterates, ~x is a vector and ~x ∈ Rn or
~x ∈ Cn.
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The main notation for differentiation used in this course is the Newton’s notation—so-called dot and
prime notation. At times when we need to be more precise and accurate with our derivatives the
Leibniz’s notation (∂/∂t, ∂/∂x) or the Leibniz–Newton mixed notation will be used.

Introduction to theory: basic definitions

The component form of n-th order system ~̇x = ~f(~x) is





ẋ1 = f1(x1, x2, x3, . . . , xn),

ẋ2 = f2(x1, x2, x3, . . . , xn),

ẋ3 = f3(x1, x2, x3, . . . , xn),
...

ẋn = fn(x1, x2, x3, . . . , xn).

(4)

Linearity: The above system is linear if function ~f is a linear
function. Functions fi are linear combinations of the independent
variables xi. Variables xi appear in the first power only. No products,
trigonometric, exponential, etc. functions of xi are present.
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Introduction to theory: basic definitions

Nonlinearity: Any system that is not linear is nonlinear.

Autonomous system: no explicit dependence on time t in ~f .

Non-autonomous system: explicitly dependant on time t in ~f .




ẋ1 = f1(x1, x2, x3, . . . , xn, t),

ẋ2 = f2(x1, x2, x3, . . . , xn, t),

ẋ3 = f3(x1, x2, x3, . . . , xn, t),
...

ẋn = fn(x1, x2, x3, . . . , xn, t).

(5)

A bulk of the time will be spent on work with the autonomous
systems.
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The order n of system (4) can also be understood as its dimension or more accurately the dimension
of its phase space, see Slide 21.
In addition to the explanation of linear functions fi given on Slide 22, you might remember the

technical definition from your linear algebra courses. A function fi is said to be a linear if for any two
vectors ~x, ~y and any scalar c the following two conditions are satisfied:

fi(~x+ ~y) = fi(~x) + fi(~y), (1)

fi(c~x) = cfi(~x). (2)

Condition (1) is called additivity (operation of addition) and condition (2) is called homogeneity
(homogeneity of degree 1/operation of scalar multiplication).
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Introduction to theory: nonlinearity

Figure: A nonlinear system is a system in which the change of the output
is not proportional to the change in the input.
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Introduction to theory

Figure: Linearity and nonlinearity in higher order systems. The nonlinear
systems allow for much larger number of possible dynamics compared to
the linear systems.
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NB! Discontinuities are nonlinear. Nonlinear systems may and often do produce more complex outcomes
compared to linear systems.

5.1 Example: Harmonic oscillator

Are the following systems linear or nonlinear? Autonomous or non-autonomous? The equation of motion
of the harmonic oscillator has the form:

mẍ︸︷︷︸
inertial
term

+ kx︸︷︷︸
stiffness
term

= 0, (3)

where x is the displacement, m is the mass and k is the stiffness (of the spring).
By introducing a variable exchange v = ẋ (velocity) we rewrite second-order Eq. (3) as a system of first

order ODEs 


ẋ = v,

v̇ = − k
m
x.

(4)

From here it is easy to see that this 2-D or second order system is linear and autonomous.

5.2 Example: Mathematical pendulum

The normalised dimensionless equation of motion for the mathematical pendulum has the following form:

θ̈ + sin θ = 0, (5)

where θ is the angular displacement. By introducing a variable exchange ω = θ̇ (angular velocity) we
rewrite second-order Eq. (5) as a system of first order ODEs

{
θ̇ = ω,

ω̇ = − sin θ.
(6)

From here it is easy to see that this 2-D or second order system is nonlinear and autonomous.

6 1-D phase portrait

6.1 Nonlinear 1-D flow problem, analytic solution

The goal of this section is to demonstrate that some problems are much easier to understand when solved
using a graphical/geometric approach introduced and explained below. For comparison we solve the
following problem using the knowledge from the corses on calculus and differential equations that you may
have previously taken.
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Slides: 27–30

1-D phase portrait, 1-D flow

Example problem: 1-D flow is in the form

ẋ = sinx, (8)

where x is the particle position and ẋ is the particle velocity.

Let’s try to solve the problem using your usual thinking (analytical
solution).

1 Separation of variables

dx

dt
= sinx

∣∣∣ · dt (9)

dx = sinx dt | ÷ sinx (10)

dx

sinx
= dt (11)
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1-D phase portrait, 1-D flow

2 Integration of the lhs and rhs
∫

dx

sinx
=

∫
dt (12)

lhs:

∫
dx

sinx
=

∫
cscx dx = − ln | cscx+ cotx|+ C1 (13)

rhs:

∫
dt = t+ C2 (14)

Resulting equation:

− ln | cscx+ cotx|+ C1 = t+ C2 (15)

− ln | cscx+ cotx| = t+ C, (16)

where C = C1 + C2.
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1-D phase portrait, 1-D flow

3 Resolving the integration constant C.
Lets assume that x = x0 at t = 0 then from (16) it follows

C = − ln | cscx+ cotx| − t⇒
[
x = x0
t = 0

]
⇒ (17)

⇒ C = − ln | cscx0 + cotx0| (18)

4 Solution: Substitution of constant C in (16) gives

t = −C − ln | cscx+ cotx| =
= ln | cscx0 + cotx0| − ln | cscx+ cotx| (19)

t = ln

∣∣∣∣
cscx0 + cotx0
cscx+ cotx

∣∣∣∣ (20)

Inversion of (20) in the form t(x) = f(x, x0) to x(t) = g(t, x0) is
possible using trigonometric identities.
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1-D phase portrait, 1-D flow

t = ln

∣∣∣∣
cscx0 + cotx0
cscx+ cotx

∣∣∣∣

How practical is this result?

For example can you answer the following simple question given that
you have the analytic solution.

What is the long-term behaviour of this flow for x0 =
π

4
?

lim
t→∞

x(t) (21)

Where would you find the particle?
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6.2 Nonlinear 1-D flow problem, graphical approach

Let’s answer question (21) posed on Slide 30 using the graphical approach mentioned above. This approach
relies on the analysis of the system’s phase portrait.

Slide: 31

1-D phase portrait, graphical approach

Figure: Phase portrait of the 1-D system in the form: ẋ = f(x). Stable
and unstable fixed points are shown with the filled and unfilled circles,
respectively.
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Simply graph the 1-D phase portrait by plotting the ẋ against x and analyse the result visually. A
first-order system ẋ = f(x) can be regarded as a vector field on a line—the x-axis. Think of a
particle flowing on a line described by the flow direction given by sign of ẋ and velocity ẋ.

Visual inspection and analysis of the phase portraits will prove to be a useful tool in this course. The fixed
points shown on Slide 31 are important characteristic points corresponding to the lack of motion, i.e.,

ẋ = f(x∗) = 0, (7)

where x∗ is the coordinate of the fixed point. There are two distinct types of fixed points shown on Slide
31. The stable fixed points attract the flow and the unstable fixed points repel it. On the graphs
fixed points are usually denoted by filled and/or empty bullets (• – stable fixed point, ◦ – unstable fixed
point).

i i
stablefp

Figure 3: Phase portrait, the graph of particle velocity ẋ vs. position x, of Eq. (8). The particle flow speed
and direction are indicated with the arrowheads. Here, > indicates the flow to the right and >> even faster
flow to the right.

1-D phase portrait of the aforementioned problem (Slide 27) that has the form:

ẋ = sinx, (8)

is shown in Fig. 3. Fixed points x∗ are the following

ẋ = 0 ⇒ sinx∗ = 0 ⇒ x∗ = nπ, where n ∈ Z. (9)

A visual inspection of the phase portrait reveals the answer to the original question (Slide 30). The long-term
behaviour of a particle starting at x0 = x(0) = π/4 is

lim
t→∞

x(t) = π. (10)

Moreover, the 1-D phase portrait shown in Fig. 3 can be used to deduce qualitatively the integrated solution
x(t). This method of deduction of the solution is shown in Fig. 4.

it
sinE E tanE 35.260

it _i

I

Figure 4: Qualitative solution of Eq. (8) for x0 = x(0) = π/4.

Let’s check the obtained result against a numerically integrated solution.

D.Kartofelev 10/14 K As of September 12, 2024



Lecture notes #1 Nonlinear Dynamics YFX1560

Numerics: nb#2
Analytic solution to a nonlinear ODE. Numerical solution and phase portrait of 1-D flow ẋ = sinx.

Slide: 32

1-D examples: phase space, phase portrait

1-D flow problem2 of the form (8):

ẋ = sinx.

A set of numerical solutions:

0 1 2 3 4 5 6 7
t

1

2

3

4

5

6

x(t)

2See Mathematica .nb file uploaded to the course webpage.
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6.3 The logistic equation, graphical approach

 

output

input

particlevelocity
unstable fp
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1
it
If X slope sin E tanE 35.260

I

Iz ope sin L tan111 450q.LY
iqyy

r

I ii t0
dying

Figure 5: Phase portrait of the logistic equation given by Eq. (11).

The logistic equation is an example of a 1-D nonlinear problem from ecology—a simplified model of popu-
lation dynamics in isolation. The model has the following form:

ẋ = rx
(
1− x

K

)
, (11)

where x ≥ 0 is the size of the population, r is the reproduction rate, K is the carrying capacity of the
finite ecology. Also, we assume that {r,K} ∈ R and r,K > 0.
Non-negative fixed points x∗ are the roots of the following quadratic polynomial

ẋ = 0 ⇒ rx∗
(
1− x∗

K

)
= 0 ⇒

{
x∗1 = 0,

x∗2 = K.
(12)

Figure 5 shows the phase portrait and the corresponding fixed points. All the information regarding the
dynamics is clearly visible. For example the long-term behaviour for x0 = x(0) > 0 is always K,

lim
t→∞

x(t) = K. (13)
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In biology it is beneficial to consider the population growth rate per capita

ẋ

x
= r

(
1− x

K

)
. (14)

The ẋ/x vs. x graph is shown in Fig. 6. The graph shows clearly that if x < K, then ẋ/x > 0, i.e., the
population is growing and if x > K, than ẋ/x < 0, i.e., the population is decreasing.

 

output

input
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unstable fp

e f iIstablefp
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dying

Figure 6: Growth rate per capita, Eq. (14) where K is the carrying capasity.

The numerical solution of the logistic equation is linked and presented below.

Numerics: nb#3
Numerical solution and phase portrait of the 1-D logistic equation.

Slide: 33

1-D examples: phase space, phase portrait

The logistic equation3 (population dynamics in isolation):

ẋ = rx
(
1− x

K

)
, (22)

where r and K are the parameters, x is the size of the population.

0 1 2 3 4
t

10

20

30

40
x(t)

What is the
value of carrying
capacity K here?

3See Mathematica .nb file uploaded to the course webpage.
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7 Conclusions and general introduction

Now that we have established the ideas of linearity, nonlinearity and phase space, we can present
a framework for dynamics and its applications. Here, our goal is to show the bigger picture of the entire
subject. The framework presented on Slide 34 will guide our studies throughout this course. The framework
has two axes. One axis tells us the number of variables needed to characterise the state of the system.
Equivalently, this number is the dimension of the phase space. The other axis tells us whether the system
is linear or nonlinear.
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Upper part of the graphs is more familiar to you because of your previous studies. In contrast, the lower
half of the graph—the nonlinear half—is often ignored or deferred to later courses. But no more! In this
course we start in the lower left corner and systematically head to the right. As we increase the
phase space dimension from n = 1 to n = 3, we encounter new phenomena at every step, from fixed
points and bifurcations when n = 1, to nonlinear oscillations when n = 2, and finally chaos and fractals
when n = 3. In all cases, a geometric approach proves to be very powerful, and gives us most of the
information we want, even though we usually can’t solve the equations in the traditional sense of finding a
formula for the answer.

Slide: 34

Big picture
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The problems that were mentioned/discussed during this lecture are highlighted with red rectangles.
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Revision questions

1. What is dynamics?
2. Name a dynamical system.
3. Define nonlinearity.
4. Determine if the following equations/systems are linear or nonlinear:

ẋ = sinx, (15)

ẋ = lnx, (16)
{
ẋ = y,

ẏ = xy,
(17)

ẍ+ ẋ+ x = 0. (18)

5. What is ordinary homogeneous differential equation?
6. Define 1-D dynamical system. Name a 1-D problem.
7. What is phase space?
8. What is phase portrait?
9. Sketch 1-D phase portrait of the following systems:

ẋ = 3 cosx, (19)

ẋ = 0.5x2 − 1, (20)

ẋ = x3. (21)

10. What is a fixed point?
11. How to find a fixed point of a differential equations?
12. Find the fixed point or points of the following system:

ẍ+ ẋ+ x = 0. (22)

13. Explain fixed point stability.
14. What is linear analysis of a system?
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