Analysis of Dynamical Systems

Variant 8

Part 1: Van der Pol oscillator ${ }^{1}$
Analyse 2-D system.

$$
\ddot{x}-b\left(1-x^{2}\right) \dot{x}+x=0,
$$

where b is a constants.

Parameter	version 8.1	version $\mathbf{8 . 2}$
b	5	1

Part 2: Sprott B, chaotic flow

Determine whether the following 3-D system represents a strange attractor or not.

$$
\left\{\begin{array}{l}
\dot{x}=y z \\
\dot{y}=x-y, \\
\dot{z}=1-x y .
\end{array}\right.
$$

[^0]
[^0]: ${ }^{1}$ Some aspects of the dynamics of this system are discussed during the lectures.

