Analysis of Dynamical Systems

Variant 5

Part 1: Duffing oscillator ${ }^{1}$

Analyse 2-D system.

$$
\ddot{x}+\delta \dot{x}-\beta x+\alpha x^{3}=f \cos (\omega t),
$$

where $\alpha, \beta, \delta, \omega$, and f are constants.

Parameter	version 5.1	version 5.2
α	100	1
β	1	1
δ	1	0.15
ω	3.679	1.12
f	2.4	0.3

Part 2: Sprott A, chaotic flow

Determine whether the following 3-D system represents a strange attractor or not.

$$
\left\{\begin{array}{l}
\dot{x}=y, \\
\dot{y}=-x+y z, \\
\dot{z}=1-y^{2} .
\end{array}\right.
$$

[^0]
[^0]: ${ }^{1}$ Some aspects of the dynamics of this system are discussed during the lectures.

