Analysis of Dynamical Systems

Variant 4

Part 1: Ueda oscillator

Analyse 2-D system.

$$
\ddot{x}+k \dot{x}+x^{3}=B \cos (\omega t),
$$

where k, B, and ω are constants.

Parameter	version 4.1	version $\mathbf{4 . 2}$
k	0.05	0.05
B	7.5	12
ω	1.0	1.317

Part 2: Thomas' cyclically symmetric attractor
Determine whether the following 3-D system represents a strange attractor or not.

$$
\left\{\begin{array}{l}
\dot{x}=\sin (y)-b x, \\
\dot{y}=\sin (z)-b y, \\
\dot{z}=\sin (x)-b z,
\end{array}\right.
$$

where b is a constant and corresponds to how dissipative the system is, and acts as a bifurcation parameter. Select $b<0.208186$ and $b \neq 0$.

