Analysis of Dynamical Systems

Variant 2

Part 1: Bacterial respiration by Fairén and Velarde

Analyse 2-D system.

$$
\left\{\begin{array}{l}
\dot{x}=B-x-\frac{x y}{1+Q x^{2}}, \\
\dot{y}=A-\frac{x y}{1+Q x^{2}},
\end{array}\right.
$$

where constants A, B and Q are positive.

Parameter	version 2.1	version 2.2
A	2.0	2.0
B	3.0	3.0
Q	6.5	3.5

Part 2: Lorenz attractor ${ }^{1}$

Determine whether the following 3-D system represents a strange attractor or not.

$$
\left\{\begin{array}{l}
\dot{x}=\sigma(y-x), \\
\dot{y}=r x-y-x z, \\
\dot{z}=x y-b z,
\end{array}\right.
$$

where σ, r, and b are constants.

Parameter	value
σ	10
b	$8 / 3$
r	28

[^0]
[^0]: ${ }^{1}$ Some aspects of the dynamics of this system are discussed during the lectures.

