The classification of fixed points of linear homogeneous 2-D systems $\dot{\vec{x}} = A\vec{x}$ where trace $\tau = \lambda_1 + \lambda_2$ and determinant $\Delta = \lambda_1 \lambda_2$ are determined by 2×2 system matrix A.

The presented classification can also be summarised in a concise flowchart:

- if ∆ < 0: Isolated fixed point CASE 1: Saddle point¹
- if $\Delta = 0$: Non-isolated five
 - Non-isolated fixed points
 - if $\tau < 0$:
 - CASE 5a: Line of stable fixed points²
 - if τ = 0: CASE 5b: Plane of fixed points³
 - if τ > 0: CASE 5a: Line of unstable fixed points⁴
- if $\Delta > 0$:

Isolated fixed point

- if τ < −√4∆: CASE 2a: Stable node⁵
- if $\tau = -\sqrt{4\Delta}$:
 - $\circ\,$ if there is one uniquely determined eigenvector (the other is non-unique): CASE 4a: Stable degenerate node^6
 - $\circ\,$ if there are no uniquely determined eigenvectors (both are non-unique): CASE 4b: Stable star^7
- if $-\sqrt{4\Delta} < \tau < 0$: CASE 2b: **Stable spiral**⁸
- if τ = 0: CASE 3: Centre⁹
- if $0 < \tau < \sqrt{4\Delta}$: CASE 2b: Unstable spiral¹⁰
- if $\tau = \sqrt{4\Delta}$:
 - $\circ\,$ if there is one uniquely determined eigenvector (the other is non-unique): CASE 4a: Unstable degenerate node^{11}
 - $\circ\,$ if there are no uniquely determined eigenvectors (both are non-unique): CASE 4b: Unstable ${\rm star}^{12}$
- if $\sqrt{4\Delta} < \tau$: CASE 2a: Unstable node¹³

General notes:

- ▶ For 2-D linear systems, the above predictions are always accurate.
- ▶ For 2-D nonlinear systems, when the above are used as predictions of nonlinear dynamics:
 - The descriptions are always correct for cases 1, 5, 8, 10, and 13 but can be inaccurate for cases 2, 3, 4, 6, 7, 9, 11, and 12.
 - Ambiguous cases 6, 7, 11, and 12 at least have their stability correctly determined.
 - If the system is conservative, a prediction of case 9 is accurate.