The classification of fixed points of linear homogeneous 2-D systems $\dot{\vec{x}}=A \vec{x}$ where trace $\tau=$ $\lambda_{1}+\lambda_{2}$ and determinant $\Delta=\lambda_{1} \lambda_{2}$ are determined by 2×2 system matrix A.

The presented classification can also be summarised in a concise flowchart:

- if $\Delta<0$:

Isolated fixed point
CASE 1: Saddle point ${ }^{1}$

- if $\Delta=0$:

Non-isolated fixed points

- if $\tau<0$:

CASE 5a: Line of stable fixed points ${ }^{2}$

- if $\tau=0$:

CASE 5b: Plane of fixed points ${ }^{3}$

- if $\tau>0$:

CASE 5a: Line of unstable fixed points ${ }^{4}$

- if $\Delta>0$:

Isolated fixed point

- if $\tau<-\sqrt{4 \Delta}$:

CASE 2a: Stable node ${ }^{5}$

- if $\tau=-\sqrt{4 \Delta}$:
- if there is one uniquely determined eigenvector (the other is non-unique):

CASE 4a: Stable degenerate node ${ }^{6}$

- if there are no uniquely determined eigenvectors (both are non-unique):

CASE 4b: Stable star ${ }^{7}$

- if $-\sqrt{4 \Delta}<\tau<0$:

CASE 2b: Stable spiral ${ }^{8}$

- if $\tau=0$:

CASE 3: Centre ${ }^{9}$

- if $0<\tau<\sqrt{4 \Delta}$:

CASE 2b: Unstable spiral ${ }^{10}$

- if $\tau=\sqrt{4 \Delta}$:
- if there is one uniquely determined eigenvector (the other is non-unique):

CASE 4a: Unstable degenerate node ${ }^{11}$

- if there are no uniquely determined eigenvectors (both are non-unique): CASE 4b: Unstable star ${ }^{12}$
- if $\sqrt{4 \Delta}<\tau$:

CASE 2a: Unstable node ${ }^{13}$

General notes:

- For 2-D linear systems, the above predictions are always accurate.
- For 2-D nonlinear systems, when the above are used as predictions of nonlinear dynamics:
- The descriptions are always correct for cases $1,5,8,10$, and 13 but can be inaccurate for cases $2,3,4,6,7,9,11$, and 12 .
- Ambiguous cases $6,7,11$, and 12 at least have their stability correctly determined.
- If the system is conservative, a prediction of case 9 is accurate.

