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Centers and conservative systems

Theorem: Suppose ~̇x = ~f(~x) is conservative and ~f is continuously
differentiable in ~x ∈ R2. E(~x) is a conserved quantity and ~x∗ is an
isolated fixed point. If that fixed point is a local minimum or
maximum of E(~x), then that isolated fixed point ~x∗ is a center, i.e.,
all trajectories close to ~x∗ are closed orbits.
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Mathematical pendulum

Mathematical pendulum1 is given in the following form:

θ̈ + sin θ = 0, (1)

where θ is the angular displacement. For angular velocity ω = θ̇ we
rewrite the equation as follows{

θ̇ = ω,

ω̇ = − sin θ.
(2)

1See Mathematica .nb file uploaded to the course webpage.
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Mathematical pendulum

Figure: Hamiltonian, energy surface.
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Mathematical pendulum

Figure: Phase portrait showing five fixed points (θ∗, ω∗) = (−2π, 0),
(−π, 0), (0, 0), (π, 0), (2π, 0). Heteroclinic orbit is shown with the red
curves.
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The Dulac’s criterion

Let ~̇x = ~f(~x) be a continuously differentiable vector field defined on
a simply connected subset R of a plane. If there exists a continuously
differentiable, real valued function g(~x) such that

div(g~̇x) = ∇ · (g~̇x), (3)

has one sign throughout R, then there are no closed orbits lying
entirely in R.

Note: If the sign changes no conclusion can be made.
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Example: The Dulac’s criterion

Show that there are no orbits in region R for x, y > 0 if{
ẋ = x(2− x− y),

ẏ = y(4x− x2 − 3).
(4)
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Example: Dulac’s criterion (homework assignment)

Show that there are no orbits in region R ∈ R2 for (hint: pick
g(~x) = e−2x) {

ẋ = y,

ẏ = −x− y + x2 + y2.
(5)
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Proof by contradiction, the Dulac’s criterion

Let C be a closed orbit in subset R,
and let A be the region inside C.
Green’s theorem:∫∫
A

(
∇ · ~F

)
dA =

∮
C

(
~F · ~n

)
dl (6)

If ~F = g~̇x, then∫∫
A

[
∇ · (g~̇x)

]
︸ ︷︷ ︸

6=0
has one
sign by

assumption

dA =

∮
C

(
g~̇x · ~n

)
︸ ︷︷ ︸

=0
~n⊥~̇x

dl  (7)

Therefore there is no closed orbit C in R.
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The Poincaré-Bendixson theorem

Suppose that:
1 R is a closed, bounded subset in R2, called the trapping region;
2 ~̇x = ~f(~x) is a continuously differentiable vector field on an open

set containing R;
3 R does not contain any fixed points (P ); and
4 there exists a trajectory C that is “confined” in R, in the sense

that it starts in R and stays in R for all future time.

Then either C is a closed orbit, or it spirals toward a closed orbit as
t→∞. In either case, R contains a closed orbit (shown as a heavy
closed curve in the above figure).
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Example: The Poincaré-Bendixson theorem

Search for orbits in an annular region R for small µ{
ṙ = r(1− r2) + µr cos θ,

θ̇ = 1.
(8)
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Glycolysis2: The Poincaré-Bendixson theorem

Search for orbits in an annular region R for glycolysis dynamics given
by the following system:{

ẋ = −x+ ay + x2y,

ẏ = b− ay − x2y,
(9)

where a and b are the kinetic parameters, x and y are the
concentrations of ADP and F6P molecules, respectively.

Read: Evgeni E. Sel’kov, “Self-oscillations in glycolysis 1. A simple
kinetic model,” European Journal of Biochemistry, 4(1), pp. 79–86,
(1968)

2See Mathematica .nb file uploaded to the course webpage.
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Glycolysis, trapping region

Figure: Annular trapping region shown with the red lines and a circle.
Local vector field flow directions are shown with the arrows.
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Glycolysis, inner boundary of the trapping region

Secondly, we focus on the inner boundary of the proposed trapping
region. We need to find and show that the fixed point{
ẋ = 0

ẏ = 0
⇒

{
−x∗ + ay∗ + x∗2y∗ = 0

b− ay∗ − x∗2y∗ = 0
⇒ (x∗, y∗) =

(
b,

b

a+ b2

)
,

(10)
is unstable, i.e., it repels the local vector field.
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Glycolysis, inner boundary of the trapping region

We analyse fixed point (10) using linear analysis. The Jacobian of
Sys. (9) has the following form:

J =


∂ẋ

∂x

∂ẋ

∂y
∂ẏ

∂x

∂ẏ

∂y

 =

(
2xy − 1 a+ x2

−2xy −a− x2
)
. (11)
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Glycolysis, inner boundary of the trapping region

The Jacobian evaluated at fixed point (10) takes the form

J |(x∗,y∗) =

 2b2

a+ b2
− 1 a+ b2

− 2b2

a+ b2
−a− b2

 . (12)

It’s determinant ∆ = det J |(x∗,y∗) = a+ b2 > 0 is positive because
a, b > 0, and its trace

τ = tr J |(x∗,y∗) =
2b2

a+ b2
− 1− a− b2. (13)
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Glycolysis, inner boundary of the trapping region

In order to ensure repelling unstable fixed points for ∆ > 0 trace τ
has to be positive. The dividing line between repelling unstable fixed
points and stable ones is τ = 0. Solving

τ = 0 ⇒ 2b2

a+ b2
− 1− a− b2 = 0, (14)

for b gives

b(a) =

√
1

2

(
1− 2a±

√
1− 8a

)
. (15)

This result defines a line in the parameter space of Sys. (9). For
parameters a and b in the region corresponding to τ > 0, we are
guaranteed that Sys. (9) has a closed orbit—an oscillating chemical
reaction.
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Glycolysis, inner boundary of the trapping region

Closed orbits

Stable f.p.
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Figure: Parameter space defining the parameter values corresponding to
unstable fixed point given by (10).
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Glycolysis3, limit-cycle
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3See Mathematica .nb file uploaded to the course webpage.
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Glycolysis, time-domain results
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Conclusions

Conservative systems

Closed orbits and limit-cycles

Importance of limit-cycles in applications

Null-cline

Heteroclinic orbit

The Dulac’s criterion

The Poincaré-Bendixson theorem
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Revision questions

Expand on the connection between 2-D conservative systems
and centers.

Sketch a heteroclinic orbit.

What is limit-cycle?

Sketch a stable limit-cycle.

Sketch an unstable limit-cycle.

Sketch a half-stable (stable from outside) limit-cycle.

Sketch a half-stable (stable from inside) limit-cycle.

Define and sketch a null-cline.

What is the Dulac’s criterion?

State the Poincaré-Bendixson theorem.

Does the Poincaré-Bendixson theorem apply to 3-D systems?

Can chaos occur in 2-D systems?
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