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Lecture outline

Conservative systems and centres

Closed orbits and limit-cycles
Importance of limit-cycles in applications
How to detect closed orbits?

Null-cline

Heteroclinic orbit

The Dulac’s criterion

The Poincaré-Bendixson theorem
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Centers and conservative systems

Theorem: Suppose 7= f(i:’) is conservative and fis continuously
differentiable in # € R?. E(Z) is a conserved quantity and 7* is an
isolated fixed point. If that fixed point is a local minimum or
maximum of E(Z), then that isolated fixed point Z* is a center, i.e.,
all trajectories close to Z* are closed orbits.
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Mathematical pendulum

Mathematical pendulum? is given in the following form:
6 + sinfh = 0, (1)

where 6 is the angular displacement. For angular velocity w = 0 we
rewrite the equation as follows

0 =w
’ 2
{w:—sinG. (2)

1See Mathematica .nb file uploaded to the course webpage.
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Mathematical pendulum
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Figure: Hamiltonian, energy surface.
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Mathematical pendulum
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Figure: Phase portrait showing five fixed points (0*,w*) = (—2m,0),
(—m,0), (0,0), (m,0), (2m,0). Heteroclinic orbit is shown with the red

curves.
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The Dulac’s criterion

Let Z = f() be a continuously differentiable vector field defined on
a simply connected subset R of a plane. If there exists a continuously
differentiable, real valued function g(Z) such that

div(gi) = V - (9), (3)

has one sign throughout R, then there are no closed orbits lying
entirely in R.

Note: If the sign changes no conclusion can be made.
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Example: The Dulac’s criterion

Show that there are no orbits in region R for x,y > 0 if

{a’:zx(Z—x—y), (@)

y=y(dr — 2* — 3).
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Example: Dulac’s criterion (homework assignment)

Show that there are no orbits in region R € R? for (hint: pick
9(F) = e7*)
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Proof by contradiction, the Dulac’s criterion

Let C be a closed orbit in subset R,
and let A be the region inside C.
Green's theorem:

K/(v-ﬁ)dA:f(ﬁ-ﬁ)dz (6)

If F = gf, then

/ V- (9] da = 2{ (gir7) i 4 (7)

A —— N——
#0 =0,
has one nlx
sign by

assumption

Therefore there is no closed orbit C in R.
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The Poincaré-Bendixson theorem

Suppose that:
@ R is a closed, bounded subset in R?, called the trapping region;
Q 7= f(f) is a continuously differentiable vector field on an open
set containing R,

@ R does not contain any fixed points (P); and

@ there exists a trajectory C that is “confined” in R, in the sense
that it starts in R and stays in R for all future time.

Then either C'is a closed orbit, or it spirals toward a closed orbit as

t — oo. In either case, R contains a closed orbit (shown as a heavy

closed curve in the above figure).
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Example: The Poincaré-Bendixson theorem

Search for orbits in an annular region R for small

{7*:7"(1—7“2)-|-,u7"(:089, (8)
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Glycolysis?: The Poincaré-Bendixson theorem

Search for orbits in an annular region R for glycolysis dynamics given
by the following system:

(9)

&= —z+ay+ 2%y,
y=b—ay—a?y,

where a and b are the kinetic parameters, x and y are the
concentrations of ADP and F6P molecules, respectively.

Read: Evgeni E. Sel’kov, “Self-oscillations in glycolysis 1. A simple
kinetic model,” European Journal of Biochemistry, 4(1), pp.79-86,
(1968)

2See Mathematica .nb file uploaded to the course webpage.
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Glycolysis, trapping region
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Figure: Annular trapping region shown with the red lines and a circle.
Local vector field flow directions are shown with the arrows.
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Glycolysis, inner boundary of the trapping region

Secondly, we focus on the inner boundary of the proposed trapping
region. We need to find and show that the fixed point

Z%' N T Fay +x%y = (m*,y*) _ (b, _)7
y=0 b—ay* — x*y* =0 a + b2

(10)
is unstable, i.e., it repels the local vector field.
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Glycolysis, inner boundary of the trapping region

We analyse fixed point (10) using linear analysis. The Jacobian of
Sys. (9) has the following form:

ot 0Ot

B or Oy ~(2zy—1 a+a?

7= oy 0Oy _(—ny —a—xQ)' (11)
or 0Oy
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Glycolysis, inner boundary of the trapping region

The Jacobian evaluated at fixed point (10) takes the form

20°
i 1 a+?d?
Tarr 0T

It's determinant A = det J
a,b > 0, and its trace

(e*y+) = @+ b* > 0 is positive because

T=trJ —— —1—a—0b. (13)

(z*y*) =
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Glycolysis, inner boundary of the trapping region

In order to ensure repelling unstable fixed points for A > 0 trace 7
has to be positive. The dividing line between repelling unstable fixed
points and stable ones is 7 = 0. Solving

20°

T=0 a -+ b2

—1—a—-b"=0, (14)

for b gives

bla) = \/% (1 —2a++v1-8a). (15)

This result defines a line in the parameter space of Sys. (9). For
parameters a and b in the region corresponding to 7 > 0, we are
guaranteed that Sys. (9) has a closed orbit—an oscillating chemical
reaction.
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Glycolysis, inner boundary of the trapping region

Figure: Parameter space defining the parameter values corresponding to
unstable fixed point given by (10).
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Glycolysis3, limit-cycle
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Glycolysis, time-domain results
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Conclusions

Conservative systems

Closed orbits and limit-cycles
Importance of limit-cycles in applications
Null-cline

Heteroclinic orbit

The Dulac’s criterion

The Poincaré-Bendixson theorem
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Revision questions

)

Expand on the connection between 2-D conservative systems
and centers.

Sketch a heteroclinic orbit.

What is limit-cycle?

Sketch a stable limit-cycle.

Sketch an unstable limit-cycle.

Sketch a half-stable (stable from outside) limit-cycle.
Sketch a half-stable (stable from inside) limit-cycle.
Define and sketch a null-cline.

What is the Dulac's criterion?

State the Poincaré-Bendixson theorem.

Does the Poincaré-Bendixson theorem apply to 3-D systems?
Can chaos occur in 2-D systems?

D. Kartofelev YFX1520 23/23



