
Lecture №11: Feigenbaum’s analysis of period

doubling, renormalisation, universal limiting

function, discrete-time dynamics analysis, the
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Lecture outline

Feigenbaum’s analysis of period doubling

The universal route to chaos

Universal aspects of period doubling in unimodal maps

Superstable fixed points and period-p orbits

Renormalisation

Universal limiting functions and the onset of chaos

Discrete-time dynamics analysis methods

The Poincaré section
Return map or the Poincaré map
The Lorenz section

Non-homogenous systems

Examples studied:

The periodically forced damped Duffing oscillator
The Rössler attractor
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1-D unimodal maps and the Feigenbaum constants

δ = lim
n→∞

∆n−1

∆n

= lim
n→∞

rn−1 − rn−2
rn − rn−1

≈ 4.669201609... (1)

α = lim
n→∞

dn−1
dn
≈ −2.502907875... (2)
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Superstable fixed point (the logistic map)

f(x∗, r) = x∗, x∗ = xm, and f ′(x∗, r) = 0 ⇒ r = 2. (3)

Convergence of xn about the non-trivial fixed point x∗

ηn+1 =
|f ′′(x∗, r)|

2!
η2n +O(η3n), (4)

is quadratic. The iterates xn converge quadratically.
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Superstable period-p point (the logistic map)

Superstable period-p orbit: x∗ = xm = max f is also a local min. or
max. of fp map (p-th iterate of map f).

For example in the case of period-2 point

f 2(x∗, r) = x∗, (x∗ = xm) ⇒ r = 1 +
√

5 (5)(
f 2(x∗, r)

)′
=

d

dx∗
[f(f(x∗, r))] = f ′(f(x∗, r)) · f ′(x∗, r) = 0. (6)
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Orbit diagram, superstable period-2n points

rn – stable period-2n orbit is born (bifurcation point).
Rn – superstable period-2n point.

lim
n→∞

Rn−1

Rn

= δ (7)
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Period doubling bifurcation points

Values of bifurcation points and superstable points of a few first
period doublings in the logistic map.

r0 = 1.0 non-trivial R0 = 2.0 f.p.

r1 = 3.0 R1 = 1 +
√

5 ≈ 3.23607 period-2

r2 = 1 +
√

6 ≈ 3.44949 R2 ≈ 3.49856 period-4
r3 ≈ 3.54409 R3 ≈ 3.55464 period-8
r4 ≈ 3.56441 R4 ≈ 3.56667 period-16
r5 ≈ 3.56875 R5 ≈ 3.56924 period-32
...

...
...

r∞ ≈ 3.569945672 R∞ = r∞ ≈ 3.56994567 period-2∞

r∞ – onset of chaos (accumulation point).

lim
n→∞

rn−1 − rn−2
rn − rn−1

= lim
n→∞

Rn−1

Rn

= δ (8)
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Feigenbaum’s analysis, renormalisation

f(x,R0) f 2(x,R1)

(a) (b) (c)
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Feigenbaum’s analysis, renormalisation

f(x,R0) f 2(x,R1) αf 2
(x
α
,R1

)

(a) (b) (c)

Read: Mitchell J. Feigenbaum, “The universal metric properties of
nonlinear transformations,” Journal of Statistical Physics 21(6), pp.
669–706, 1979. Also relevant to the following three slides ⇓.
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Limiting function g(x) and Feigenbaum constant α

Let’s consider a functional equation in the following form:

g(x) = α g(g
(x
α

)
) = α g2

(x
α

)
, (9)

where α acts as scaling coefficient and

α =
1

g(1)
. (10)

The power series solution is obtained by assuming a power expansion
in the following form:

g(x) = 1 + ax2 + bx4 + cx6 + dx8 + ex10 + . . . , (11)

where the map maximum is quadratic.
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Limiting function g(x) and Feigenbaum constant α

Numeric solution1: the one term approximation where

g(x) = 1 + ax2 +O(x4), (12)

results in

a = −1

2
(1 +

√
3), α =

1

g(1)
≈ −2.73205, (9.2% error). (13)

��������
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xn

x x
+1 g(x), (one term)

Logistic map

Logistic map shifted

1See Mathematica .nb file uploaded to the course webpage.
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Limiting function g(x) and Feigenbaum constant α

Numeric solution2: the four term approximation where

g(x) = 1 + ax2 + bx4 + cx6 + dx8 +O(x10). (14)

Coefficients: a ≈ −1.528, b ≈ 0.1053, c ≈ 0.02631, d ≈ −0.003344
and

α =
1

g(1)
≈ −2.50316, (0.01% error). (15)

��������
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x x
+1 g(x)

Logistic map

Logistic map shifted

2See Mathematica .nb file uploaded to the course webpage.
D. Kartofelev YFX1520 12 / 30



The Poincaré section

Intersection of an attractor trajectory with hypersurface S.
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Discrete-time dynamics analysis

{
x′n+1 = f1(x

′
n, y

′
n)

y′n+1 = f2(x
′
n, y

′
n)

⇒ rn+1 = f3(rn) (16)

Construction of the Poincaré map ~P (~x′) = (f1(x
′, y′), f2(x

′, y′))T

(16). Mapping of the Poincaré section points where r is the radial
distance from the origin (“flat” attractor).
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The Poincaré section, periodic forcing3

3Credit: J. Thompson, H. Stewart, 1986, Nonlinear dynamics and chaos:
geometrical methods for engineers and scientists. Chichester, UK: Wiley.
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The Poincaré section, periodic forcing
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The periodically driven damped Duffing oscillator

Figure: The mechanical Duffing oscillator.

The non-autonomous equation of motion has the following form:

ẍ− x+ x3 + δẋ = F cosωt, (17)

where δ is the damping coefficient, F and ω are the forcing strength
and frequency, respectively.
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The periodically driven damped Duffing oscillator

We introduce the variable exchange y = ẋ and rewrite (17){
ẋ = y,

ẏ = x− x3 − δy + F cosωt.
(18)

The equivalent 3-D system is obtained by applying variable exchange
z = ωt 

ẋ = y,

ẏ = x− x3 − δy + F cos z,

ż = ω.

(19)

The above holds since

z =

∫
ż dt =

∫
ω dt = ω

∫
dt = ωt+ C. (20)
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The Poincaré section4, The Duffing oscillator
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4See Mathematica .nb file uploaded to the course webpage.
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The Poincaré section dynamics: Duffing oscillator

No embedded video files in this pdf
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The Rössler attractor

The Rössler attractor5 is given by (as mentioned in Lecture 9):
ẋ = −y − x,
ẏ = x+ ay,

ż = b+ z(x− c).
(21)

Chaotic solution exists for a = 0.1, b = 0.1, c = 14.

5See Mathematica .nb file uploaded to the course webpage.
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The Rössler attractor: the Poincaré sections6
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6See Mathematica .nb file uploaded to the course webpage.
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The Rössler attractor: the Poincaré sections7
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7See Mathematica .nb file uploaded to the course webpage.
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Rössler system: return map and Poincaré sections

Credit: Y. Maistrenko and R. Paškauskas
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The Rössler attractor, orbit diagram
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The Rössler attractor, period doubling

No embedded video files in this pdf
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The Rössler attractor, the Poincaré section

No embedded video files in this pdf
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The Lorenz section

The Lorenz section — section of a section.
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Conclusions

Feigenbaum’s analysis of period doubling

The universal route to chaos

Universal aspects of period doubling in unimodal maps

Superstable fixed points and period-p orbits

Renormalisation

Universal limiting functions and the onset of chaos

Discrete-time dynamics analysis methods

The Poincaré section
Return map or the Poincaré map
The Lorenz section

Non-homogenous systems

Examples studied:

The periodically forced damped Duffing oscillator
The Rössler attractor
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Revision questions

What are the values of the Feigenbaum constants?

What are the Feigenbaum constants?

Define superstable fixed point of a map.

Define superstable period-p point (or period-p orbit) of a map.

What are the universals of unimodal maps?

What is the universal route to chaos?

Idea behind renormalisation?

What are the universal limiting functions in the context of maps?

Name discrete-time dynamics analysis methods.

What is the Poincaré section?

What is the Poincaré map (return map)?

What is the Lorenz section?
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