Lecture №11: Feigenbaum's analysis of period doubling, renormalisation, universal limiting function, discrete-time dynamics analysis, the Poincaré section, the Poincaré map, the Lorenz section, attractor reconstruction

Dmitri Kartofelev, PhD

Tallinn University of Technology, School of Science, Department of Cybernetics, Laboratory of Solid Mecha

YFX1520

Lecture outline

- Feigenbaum's analysis of period doubling
- The universal route to chaos
- Universal aspects of period doubling in unimodal maps
- Superstable fixed points and period-p orbits
- Renormalisation
- Universal limiting functions and the onset of chaos
- Discrete-time dynamics analysis methods
 - The Poincaré section
 - Return map or the Poincaré map
 - The Lorenz section
- Non-homogenous systems
- Examples studied:
 - The periodically forced damped Duffing oscillator
 - The Rössler attractor

1-D unimodal maps and the Feigenbaum constants

Superstable fixed point (the logistic map)

 $f(x^*, r) = x^*, \quad x^* = x_m, \text{ and } f'(x^*, r) = 0 \implies r = 2.$ (3)

Convergence of x_n about the non-trivial fixed point x^*

$$\eta_{n+1} = \frac{|f''(x^*, r)|}{2!} \eta_n^2 + O(\eta_n^3), \tag{4}$$

is quadratic. The iterates x_n converge quadratically.

D. Kartofelev

Superstable period-p point (the logistic map)

Superstable period-p orbit: $x^* = x_m = \max f$ is also a local min. or max. of f^p map (p-th iterate of map f).

For example in the case of period-2 point

$$f^{2}(x^{*},r) = x^{*}, \quad (x^{*} = x_{m}) \quad \Rightarrow r = 1 + \sqrt{5}$$
 (5)

$$(f^2(x^*,r))' = \frac{\mathrm{d}}{\mathrm{d}x^*}[f(f(x^*,r))] = f'(f(x^*,r)) \cdot f'(x^*,r) = 0.$$
 (6)

Orbit diagram, superstable period- 2^n points

(7)

Period doubling bifurcation points

Values of bifurcation points and superstable points of a few first period doublings in the logistic map.

$r_0=1.0$ non-trivial	$R_0 = 2.0$	f.p.
$r_1 = 3.0$	$R_1 = 1 + \sqrt{5} \approx 3.23607$	period-2
$r_2 = 1 + \sqrt{6} \approx 3.44949$	$R_2 \approx 3.49856$	period-4
$r_3 \approx 3.54409$	$R_3 \approx 3.55464$	period-8
$r_4 \approx 3.56441$	$R_4 \approx 3.56667$	period-16
$r_5 \approx 3.56875$	$R_5 \approx 3.56924$	period-32
:	÷	÷
$r_{\infty} \approx 3.569945672$	$R_{\infty} = r_{\infty} \approx 3.56994567$	period- 2^{∞}

 r_{∞} – onset of chaos (accumulation point).

$$\lim_{n \to \infty} \frac{r_{n-1} - r_{n-2}}{r_n - r_{n-1}} = \lim_{n \to \infty} \frac{R_{n-1}}{R_n} = \delta$$
(8)

Feigenbaum's analysis, renormalisation

$$f(x, R_0)$$

$$f^2(x, R_1)$$

(b)

(c)

Feigenbaum's analysis, renormalisation

Read: Mitchell J. Feigenbaum, "The universal metric properties of nonlinear transformations," Journal of Statistical Physics 21(6), pp. 669–706, 1979. Also relevant to the following three slides \Downarrow .

Limiting function g(x) and Feigenbaum constant α

Let's consider a functional equation in the following form:

$$g(x) = \alpha g(g\left(\frac{x}{\alpha}\right)) = \alpha g^2\left(\frac{x}{\alpha}\right), \tag{9}$$

where α acts as scaling coefficient and

$$\alpha = \frac{1}{g(1)}.\tag{10}$$

The power series solution is obtained by assuming a power expansion in the following form:

$$g(x) = 1 + ax^{2} + bx^{4} + cx^{6} + dx^{8} + ex^{10} + \dots,$$
(11)

where the map maximum is quadratic.

Limiting function g(x) and Feigenbaum constant α

Numeric solution¹: the one term approximation where

$$g(x) = 1 + ax^2 + O(x^4),$$
(12)

results in

$$a = -\frac{1}{2}(1 + \sqrt{3}), \quad \alpha = \frac{1}{g(1)} \approx -2.73205, \quad (9.2\% \text{ error}).$$
 (13)

¹See Mathematica .nb file uploaded to the course webpage.

D. Kartofelev

Limiting function g(x) and Feigenbaum constant α

Numeric solution²: the four term approximation where

$$g(x) = 1 + ax^{2} + bx^{4} + cx^{6} + dx^{8} + O(x^{10}).$$
 (14)

Coefficients: $a \approx -1.528$, $b \approx 0.1053$, $c \approx 0.02631$, $d \approx -0.003344$ and

$$\alpha = \frac{1}{g(1)} \approx -2.50316, \quad (0.01\% \text{ error}).$$
 (15)

²See Mathematica .nb file uploaded to the course webpage.

D. Kartofelev

The Poincaré section

Intersection of an attractor trajectory with hypersurface S.

Discrete-time dynamics analysis

Construction of the Poincaré map $\vec{P}(\vec{x}') = (f_1(x', y'), f_2(x', y'))^T$ (16). Mapping of the Poincaré section points where r is the radial distance from the origin ("flat" attractor).

The Poincaré section, periodic forcing³

³Credit: J. Thompson, H. Stewart, 1986, *Nonlinear dynamics and chaos: geometrical methods for engineers and scientists.* Chichester, UK: Wiley.

The Poincaré section, periodic forcing

Figure 3. Illustration of a Strange Attractor and the Associated Poincaré Map (from James Gleick, Chaos: Making a New Science [New York: Pengin Books 1987], 143)

The periodically driven damped Duffing oscillator

Figure: The mechanical Duffing oscillator.

The non-autonomous equation of motion has the following form:

$$\ddot{x} - x + x^3 + \delta \dot{x} = F \cos \omega t, \tag{17}$$

where δ is the damping coefficient, F and ω are the forcing strength and frequency, respectively.

The periodically driven damped Duffing oscillator

We introduce the variable exchange $y = \dot{x}$ and rewrite (17)

$$\begin{cases} \dot{x} = y, \\ \dot{y} = x - x^3 - \delta y + F \cos \omega t. \end{cases}$$
(18)

The equivalent 3-D system is obtained by applying variable exchange $z=\omega t$

$$\begin{cases} \dot{x} = y, \\ \dot{y} = x - x^3 - \delta y + F \cos z, \\ \dot{z} = \omega. \end{cases}$$
(19)

The above holds since

$$z = \int \dot{z} \, \mathrm{d}t = \int \omega \, \mathrm{d}t = \omega \int \mathrm{d}t = \omega t + C.$$
 (20)

The Poincaré section⁴, The Duffing oscillator

⁴See Mathematica .nb file uploaded to the course webpage.

D. Kartofelev

The Poincaré section dynamics: Duffing oscillator

No embedded video files in this pdf

The Rössler attractor

The Rössler attractor⁵ is given by (as mentioned in Lecture 9):

$$\begin{cases} \dot{x} = -y - x, \\ \dot{y} = x + ay, \\ \dot{z} = b + z(x - c). \end{cases}$$
(21)

Chaotic solution exists for a = 0.1, b = 0.1, c = 14.

⁵See Mathematica .nb file uploaded to the course webpage.

D. Kartofelev

The Rössler attractor: the Poincaré sections⁶

⁶See Mathematica .nb file uploaded to the course webpage.

D. Kartofele	٩
--------------	---

The Rössler attractor: the Poincaré sections⁷

⁷See Mathematica .nb file uploaded to the course webpage.

D. Kartofelev

Rössler system: return map and Poincaré sections

r is the radial distance from the origin

Credit: Y. Maistrenko and R. Paškauskas

The Rössler attractor, orbit diagram

The Rössler attractor, period doubling

No embedded video files in this pdf

The Rössler attractor, the Poincaré section

No embedded video files in this pdf

The Lorenz section

The Lorenz section — section of a section.

D. Kartofelev

Conclusions

- Feigenbaum's analysis of period doubling
- The universal route to chaos
- Universal aspects of period doubling in unimodal maps
- Superstable fixed points and period-p orbits
- Renormalisation
- Universal limiting functions and the onset of chaos
- Discrete-time dynamics analysis methods
 - The Poincaré section
 - Return map or the Poincaré map
 - The Lorenz section
- Non-homogenous systems
- Examples studied:
 - The periodically forced damped Duffing oscillator
 - The Rössler attractor

Revision questions

- What are the values of the Feigenbaum constants?
- What are the Feigenbaum constants?
- Define superstable fixed point of a map.
- Define superstable period-p point (or period-p orbit) of a map.
- What are the universals of unimodal maps?
- What is the universal route to chaos?
- Idea behind renormalisation?
- What are the universal limiting functions in the context of maps?
- Name discrete-time dynamics analysis methods.
- What is the Poincaré section?
- What is the Poincaré map (return map)?
- What is the Lorenz section?