Lecture №10: 1-D unimodal maps, the Lorenz, logistic and sine maps, period doubling bifurcation, tangent bifurcation, intermittency, orbit diagram, the Feigenbaum constants

Dmitri Kartofelev, PhD

Tallinn University of Technology, School of Science, Department of Cybernetics, Laboratory of Solid Mechanics

Lecture outline

- The Lorenz map and unstable limit-cycles, graphical approach
- Connection between 3-D chaotic systems and 1-D maps
- Period-p points (period-p orbit)
- The logistic map
- Analysis and properties of the logistic map
- Sine map
- Period doubling bifurcation in unimodal maps
- Tangent bifurcation in unimodal maps
- Orbit diagram (or the Feigenbaum diagram) or fig tree diagram
- The Feigenbaum diagram
- Universal aspect of period doubling in unimodal maps
- Universal route to chaos
- ullet The Feigenbaum constants δ and α

The logistic map

The logistic map¹ has the following form:

$$x_{n+1} = rx_n(1-x_n), \quad x_0 \in [0,1], \quad r \in [0,4], \quad n \in \mathbb{Z}^+,$$
 (1)

where r is the control parameter.

Read: Robert M. May, "Simple mathematical models with very complicated dynamics," *Nature* **261**, pp. 459–467, 1976.

doi:10.1038/261459a0

D. Kartofelev YFX1520 3 / 19

 $^{^{1}}$ See Mathematica .nb file (cobweb diagram and orbit diagram) uploaded to the course webpage.

The Lyapunov exponent of the logistic map

Chaos is characterised by **sensitive dependence on initial conditions**. If we take two close-by initial conditions, say x_0 and $y_0=x_0+\eta$ with $\eta\ll 1$, and iterate them under the map, then the difference between the two time series $\eta_n=y_n-x_n$ should grow exponentially

$$|\eta_n| \sim |\eta_0 e^{\lambda n}|,\tag{2}$$

where λ is the Lyapunov exponent. For maps, this definition leads to a very simple way of measuring the Lyapunov exponents. Solving (2) for λ gives

$$\lambda = \frac{1}{n} \ln \left| \frac{\eta_n}{\eta_0} \right|. \tag{3}$$

By definition $\eta_n = f^n(x_0 + \eta_0) - f^n(x_0)$. Thus

$$\lambda = \frac{1}{n} \ln \left| \frac{f^n(x_0 + \eta_0) - f^n(x_0)}{\eta_0} \right|. \tag{4}$$

The Lyapunov exponent of the logistic map

For small values of η_0 , the quantity inside the absolute value signs is just the derivative of f^n with respect to x evaluated at $x=x_0$:

$$\lambda = \frac{1}{n} \ln \left| \frac{\mathrm{d}f^n}{\mathrm{d}x} \right|_{x=x_0}.$$
 (5)

Since $f^n(x) = f(f(f(\dots f(x)))\dots)$, by the chain rule

$$\left| \frac{\mathrm{d}f^{n}}{\mathrm{d}x} \right|_{x=x_{0}} = \left| f'(f^{n-1}(x_{0})) \cdot f'(f^{n-2}(x_{0})) \cdot \dots \cdot f'(x_{0}) \right|$$

$$= \left| f'(x_{n-1}) \cdot f'(x_{n-2}) \cdot \dots \cdot f'(x_{0}) \right| = \left| \prod_{i=0}^{n-1} f'(x_{i}) \right|.$$
(6)

Our expression for the Lyapunov exponent becomes

$$\lambda = \frac{1}{n} \ln \left| \prod_{i=0}^{n-1} f'(x_i) \right| = \frac{1}{n} \sum_{i=0}^{n-1} \ln |f'(x_i)|. \tag{7}$$

The Lyapunov exponent of the logistic map

$$\lambda = \frac{1}{n} \ln \left| \prod_{i=0}^{n-1} f'(x_i) \right| = \frac{1}{n} \sum_{i=0}^{n-1} \ln |f'(x_i)|.$$

The Lyapunov exponent is the large iterate n limit of this expression, and so we have,

$$\lambda = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \ln|f'(x_i)|.$$
(8)

This formula can be used to study the Lyapunov exponent 2 as a function of control parameter r

$$\lambda(r) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \ln|f'(x_i, r)|.$$
 (9)

D. Kartofelev YFX1520 6 / 19

²See Mathematica .nb file uploaded to the course webpage.

The logistic map, period-2 window

Period-2 window for $3 \le r < 1 + \sqrt{6}$.

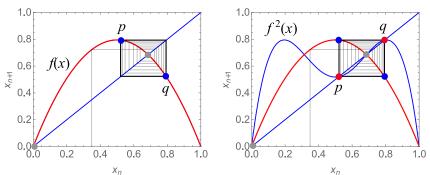


Figure: The logistic map where r=3.18 and $x_0=0.35$. Fixed points (f.p.s) in the case where r<3 are shown with the grey bullets. Period-2 points of f(x) map for $r\geq 3$ are shown with the blue bullets. The fixed points of $f^2(x)$ map for $r\geq 3$ are shown with the red bullets.

The logistic map, period-2 window

Period-2 window for $3 \le r < 1 + \sqrt{6}$.

$$\begin{cases}
f(p) = rp(1-p) = q, \\
f(q) = rq(1-q) = p,
\end{cases}$$
(10)

where period-2 point values p and q are the f.p.s of f(x) map.

On the other hand it also holds

$$\begin{cases} f(p) = f(f(q)) \equiv f^{2}(q) = r[rq(1-q)][1 - (rq(1-q))] = q, \\ f(q) = f(f(p)) \equiv f^{2}(p) = r[rp(1-p)][1 - (rp(1-p))] = p, \end{cases} \Rightarrow \begin{cases} f(p) = f(f(p)) \equiv f^{2}(p) = r[rp(1-p)][1 - (rp(1-p))] = p, \\ \Rightarrow f^{2}(x) = r[rx(1-x)][1 - (rx(1-x))] = x, \end{cases}$$

$$(11)$$

where period-2 point values p and q are the f.p.s of $f^2(x)$ map.

Stability of f.p.s of f^2 map in period-2 orbit

We need to know the slopes of period-2 points

$$\begin{cases} f(p) = rp(1-p) = q, \\ f(q) = rq(1-q) = p. \end{cases}$$

According to the chain rule it holds that

$$(f^2(x))' \equiv (f(f(x))' = f'(f(x)) \cdot f'(x).$$
 (13)

In our case

$$(f^{2}(p))' = f'(f(p)) \cdot f'(p) = f'(q) \cdot f'(p) (f^{2}(q))' = f'(f(q)) \cdot f'(q) = f'(p) \cdot f'(q)$$
 \Rightarrow $(f^{2}(p))' = (f^{2}(q))'.$ (14)

Above follows from the commutative property of multiplication.

The logistic map, period doubling

Even number periods.

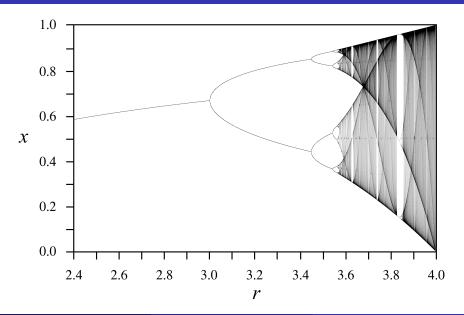
 r_n – bifurcation point, onset of stable period- 2^n orbit.

$r_1 = 3.0$	period-2
$r_2 = 1 + \sqrt{6} \approx 3.44949$	period-4
$r_3 \approx 3.54409$	period-8
$r_4 \approx 3.56441$	period-16
$r_5 \approx 3.56875$	period-32
$r_6 \approx 3.56969$	period-64
:	:
$r_{\infty} \approx 3.569946$	period- 2^{∞}

 r_{∞} – onset of chaos (the accumulation point).

$$\delta = \lim_{n \to \infty} \frac{r_{n-1} - r_{n-2}}{r_n - r_{n-1}} \approx 4.669201609... \tag{15}$$

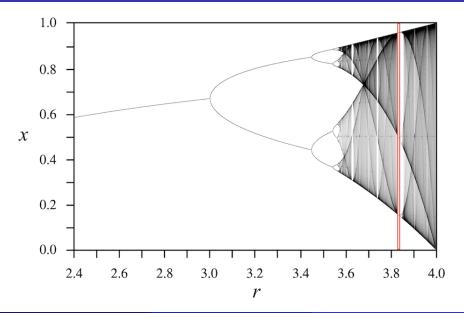
Orbit diagram and period doubling



Zooming into the logistic map, self-similarity

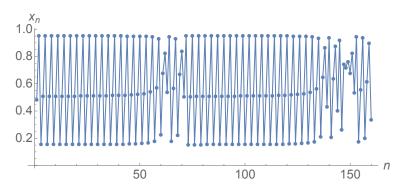
No embedded video files in this pdf

Orbit diagram, period-3 window



Intermittency³ and period-3 window

Transient chaos and intermittency in dynamical systems. Tangent bifurcation occurs at $r=1+\sqrt{8}\approx 3.8284$ (period-3 orbit).



Iterates of the logistic map shown for r = 3.8282 and $x_0 = 0.15$.

D. Kartofelev YFX1520 14 / 19

³See Mathematica .nb file uploaded to course webpage.

Universality of period doubling in unimodal maps

1-D sine map⁴. The sine map has the form

$$x_{n+1} = r\sin(\pi x_n), \quad x_0 \in [0, 1], \quad r \in [0, 1], \quad n \in \mathbb{Z}^+,$$
 (16)

where r is the control parameter.

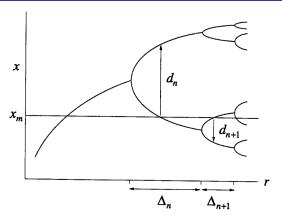
Read: Mitchell J. Feigenbaum, "Quantitative universality for a class of nonlinear transformations," *Journal of Statistical Physics* **19**(1), pp. 25–52, 1978, doi:10.1007/BF01020332

Read: Mitchell J. Feigenbaum, "Universal behavior in nonlinear systems," *Physica D: Nonlinear Phenomena* **7**(1–3), pp. 16–39, 1983, doi:10.1016/0167-2789(83)90112-4

D. Kartofelev YFX1520 15 / 19

⁴See Mathematica .nb file (cobweb diagram and orbit diagram) uploaded to the course webpage.

1-D unimodal maps and the Feigenbaum constants



$$\delta = \lim_{n \to \infty} \frac{\Delta_{n-1}}{\Delta_n} = \lim_{n \to \infty} \frac{r_{n-1} - r_{n-2}}{r_n - r_{n-1}} \approx 4.669201609... \tag{17}$$

$$\alpha = \lim_{n \to \infty} \frac{d_{n-1}}{d_n} \approx -2.502907875... \tag{18}$$

D. Kartofelev YFX1520 16 / 19

Conclusions

- The Lorenz map and unstable limit-cycles, graphical approach
- Connection between 3-D chaotic systems and 1-D maps
- Period-p points (period-p orbit)
- The logistic map
- Analysis and properties of the logistic map
- Sine map
- Period doubling bifurcation in unimodal maps
- Tangent bifurcation in unimodal maps
- Orbit diagram (or the Feigenbaum diagram) or fig tree diagram
- The Feigenbaum diagram
- Universal aspect of period doubling in unimodal maps
- Universal route to chaos
- ullet The Feigenbaum constants δ and α

Revision questions

- What is cobweb diagram?
- What is recurrence map or recurrence relation?
- What is 1-D map?
- How to find fixed points of 1-D maps?
- What is the Lorenz map?
- What is the logistic map?
- What is sine map?
- What is period doubling?
- What is period doubling bifurcation?
- What is tangent bifurcation?
- Do odd number periods (period-p orbits) exist in chaotic systems?
- Do even number periods (period-p orbits) exist in chaotic systems?

Revision questions

- Can maps produce transient chaos?
- Can maps produce intermittency?
- Can maps produce intermittent chaos?
- What is orbit diagram (or the Feigenbaum diagram)?
- What are the Feigenbaum constants?