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1 Linear homogeneous 2-D systems

1.1 Introduction

We continue our discussion on the second-order or 2-D systems in the form

~̇x = ~f(~x), (1)

where ~f = (f(x, y), g(x, y))T is a vector containing arbitrary given functions f and g, ~x = (x, y)T and
~x ∈ R2. The component form of Eq. (1) is the following:

{
ẋ = f(x, y),

ẏ = g(x, y).
(2)

A fixed point of (1) is defined as follows

~̇x = 0 ⇒ ~f(~x∗) = ~0, (3)

and for the component form (2) we write
{
ẋ = 0

ẏ = 0
⇒

{
f(x∗, y∗) = 0,

g(x∗, y∗) = 0.
(4)

Solving (3) or (4) for ~x∗ or x∗ and y∗ will give one the coordinate values of the fixed point.
In this lecture we will discuss second-order linear homogeneous systems with constant coefficients.

The following slide shows an example of a homogeneous differential equation and compares it to its non-
homogeneous and non-autonomous counterparts.

Slide: 3

Linear second-order differential equations

Homogeneous differential equation:

aẍ+ bẋ+ cx = 0 ⇔
{
ẋ = y

aẏ = −by − cx (1)

Nonhomogeneous differential equation:

aẍ+ bẋ+ cx = f(x) ⇔
{
ẋ = y

aẏ = −by − cx+ f(x)
(2)

Non-autonomous differential equation:

aẍ+ bẋ+ cx = g(t) ⇔
{
ẋ = y

aẏ = −by − cx+ g(t)
(3)

In cases (1) and (2) a, b, and c are the constant coefficients.
In case (3) a, b, and c may depend on time t but don’t have to.
Above functions f and g are arbitrarily selected and linear.
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The non-autonomous system was mentioned in Lecture 1.

1.2 2-D phase portrait plotting

As introduced in the previous lecture, phase portrait of second-order Sys. (2) is constructed by plotting
vector field ~̇x = (ẋ, ẏ)T = (f(x, y), g(x, y))T against independent variables x and y in xy-plane, as shown
in Fig. 1 and on Slide 4. A trajectory within the vector field represents a single solution of Sys. (2)
corresponding to an initial condition—a single point in the plane (x0, y0), where x0 = x(0), y0 = y(0).
Essence of the course (Henri Poincaré): Construction of phase portrait allows us to find all qualita-

tively different trajectories (solutions) of a system without solving the system itself explicitly (analytically).
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Figure 1: (Left) Phase portrait of a 2-D or a second-order problem. A trajectory is shown with the
continuous curve where t1 < t2 < t3 < t4. (Right) Idea behind construction of a 2-D phase portrait using
a computer. Plotting entire vector field for the shown ranges of variables x and y. The vector field vectors
are shown for points (x, y) placed in a uniform grid that is shown with the dashed lines.

Slide: 4
2-D phase portrait1

{
ẋ = f(x, y)

ẏ = g(x, y)
(4)

1See Mathematica .nb file uploaded to course webpage.
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An example of phase portrait plotting procedure and different visualisation styles of phase portraits are
shown in the following numerical file.

Numerics: nb#1
Vector field plotting. Integrated solution and phase portrait of the damped harmonic oscillator.

1.3 Why bother with linear homogeneous 2-D systems?

In nonlinear systems it is harder to determine the stability and type of fixed points, due to a possibility
of more complex dynamics present in the phase portraits. For this reason, in future lectures, we will
be linearising nonlinear systems and then studying the stability and dynamics of the corresponding
linearised systems with the aim to gain insight into the original nonlinear systems. The conditions under
which this approach is allowed and feasible will be discussed in the lectures to come. This means that we
need to familiarise ourselves with linear second-order systems and their dynamics.
The general form of linear homogeneous system is the following:

{
ẋ = ax+ by,

ẏ = cx+ dy,
(5)

where a, b, c, d ∈ R are the constant coefficients. By defining ~x = (x, y)T we rewrite Sys. (5) in the matrix
form

~̇x = A~x ≡
(
a b
c d

)
~x, (6)

where matrix A is the system or coefficient matrix of Sys. (5). Dynamics of linear systems is fully determined
by the system matrix A eigenvalues λi and eigenvectors ~vi where i = 1, 2 for 2-D systems.
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1.4 Examples

1.4.1 Harmonic oscillator

The harmonic oscillator is described by the linear system in the following form:

ẍ+ x = 0 ⇒
[
assuming
y = ẋ

]
⇒

{
ẋ = y,

ẏ = −x.
(7)

where x is the displacement. The matrix form of this system for ~x = (x, y)T and appropriately selected
system matrix A is

~̇x =

(
0 1
−1 0

)
~x. (8)

The solution and phase portrait of harmonic oscillation (7) are shown in the following numerical file.

Numerics: nb#1
Vector field plotting. Integrated solution and phase portrait of the damped harmonic oscillator.

1.4.2 Damped harmonic oscillator

The damped harmonic oscillator is described by the linear system in the following form:

ẍ+ x + ẋ︸︷︷︸
damping

= 0 ⇒
[
assuming
y = ẋ

]
⇒

{
ẋ = y,

ẏ = −x− y.
(9)

where x is the displacement and the last term on the right-hand side of the equation is the damping or
friction term. The matrix form of this system for ~x = (x, y)T and appropriately selected system matrix A
is

~̇x =

(
0 1
−1 −1

)
~x. (10)

The solution and phase portrait of damped harmonic oscillation (9) are shown in the following numerical
file.

Numerics: nb#1
Vector field plotting. Integrated solution and phase portrait of the damped harmonic oscillator.

2 Theory of 2-D linear systems

As stated above, fixed point dynamics of a linear 2-D system is determined by an eigenanalysis of its
system matrix A. The following is a short reminder of your linear algebra courses.

Slides: 6–9

2-D linear systems

Let’s consider 2-D linear system given in the form

~̇x = A~x, (7)

where

A =

(
a b
c d

)
, (8)

{a, b, c, d} ∈ R, and ~x = (x, y)T . The fixed point ~x∗ = ~0 and the
phase portrait near ~x∗ = ~0 are fully determined by the eigenvalues
and eigenvectors of system matrix A.

What are the eigenvalues and eigenvectors of a system? Following is
a short reminder of your linear algebra courses.
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2-D linear systems

We assume or seek a straight line solution in the following form:

~x(t) = ~veλt, (9)

where ~v is the eigenvector and λ is the eigenvalue.
Eqs. (7) and (9) yield

~̇x = ~vλeλt ⇔ A~x = A(~veλt), (10)

~vλeλt = A~veλt | ÷ eλt, (11)

λ~v = A~v, (12)

a useful relationship between the eigenvalues and eigenvectors of a
system.
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2-D linear systems

The (straight line) solution exists if one can find eigenvalues λi and
eigenvectors ~vi.
Eigenvalue λ is given by

det(A− λI) = 0⇒
∣∣∣∣
a− λ b
c d− λ

∣∣∣∣ = λ2 − τλ+ ∆ = 0 , (13)

where the boxed part is called the characteristic equation of a system
and where

τ = a+ d is the trace of matrix A (14)

and
∆ = ad− bc is the determinant of matrix A. (15)
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2-D linear systems

λ2 − τλ+ ∆ = 0

Algebraic form of two eigenvalues λi is the following:

λ1,2 =
τ ±
√
τ 2 − 4∆

2
. (16)

Additional nice properties of λi and ∆ are the following:

τ = λ1 + λ2, (17)

∆ = λ1λ2. (18)
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Dynamics of linear 2-D systems is determined by system matrix determinant ∆ and trace τ .

One can use a computer or even an Internet search engine to perform eigenanalysis of square matrices.
The following numerical file contains an example of eigenanalysis.

Numerics: nb#2
Calculation of matrix determinant, trace, eigenvalues and eigenvectors using computer. Classification
of fixed points in 2-D linear homogeneous systems.

3 Classification of fixed points in 2-D linear systems

All possible behaviours found in linear homogeneous second-order systems are presented here. The classi-
fication of fixed points is presented in terms of system matrix determinant ∆ and trace τ .

3.1 CASE 1: Saddle node (also called, saddle point or saddle)

Criterion for determining the fixed point:
∆ < 0. (11)

This criterion holds for real and distinct (not equal, different) eigenvalues and linearly independent (not
on the same line) eigenvectors. Since ∆ = λ1λ2, we must have λ1 ≶ 0 and λ2 ≷ 0. The determination of
saddle node fixed point does not depend on trace τ , (−∞ < τ < ∞). Figures 2 and 3 show the dynamics
of a saddle.
Stability: The fixed point ~x∗ = ~0 = (0, 0)T is always unstable, although the phase portrait has one stable
eigendirection (the other one is always unstable).
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Figure 2: Phase portrait of a saddle node fixed point, where eigenvalues λ1 > 0 and λ2 < 0.

General solution of the system:
~x(t) = C1e

λ1t~v1 + C2e
λ2t~v2, (12)

where Ci are the integration constants and ~vi are the eigenvectors. See Figs. 2 and 3.
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Numerics: nb#2
Calculation of matrix determinant, trace, eigenvalues and eigenvectors using computer. Classification
of fixed points in 2-D linear homogeneous systems.
An example of quantitatively accurate phase portrait of the dynamics shown in Fig. 2.
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Figure 3: Phase portrait and eigenvectors. Eigenvectors are shown with the red arrows. (Left) Saddle
node. (Right) Saddle node, different flow directions.

3.2 CASE 2a: Node

Criterion for determining the fixed point:

∆ > 0 and τ2 − 4∆ > 0. (13)

This criterion holds for real and distinct eigenvalues having the same sign, λ1, λ2 ≷ 0. Eigenvectors are
linearly independent. The criterion τ2 − 4∆ > 0 simply means that we are located outside the region
defined by τ2 − 4∆ = 0 shown in the overview plot in Fig. 18 and on Slide 10. Figures 4 and 5 show the
dynamics of a node.
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Figure 4: Phase portrait of a stable node where λ1 < λ2 < 0. As t → ∞ trajectories approach the fixed
point tangentially to the slower eigendirection.

Stability: The fixed point ~x∗ = ~0 may be either stable (attracting sink) or unstable (repelling source). If

τ < 0, (14)

then we have a stable node, and from (13) it also follows that λ1, λ2 < 0. If

τ > 0, (15)

then we have an unstable node, and from (13) it follows that λ1, λ2 > 0.
General solution of the system:

~x(t) = C1e
λ1t~v1 + C2e

λ2t~v2, (16)

where Ci are the integration constants and ~vi are the eigenvectors. See Figs. 4 and 5.
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Numerics: nb#2
Calculation of matrix determinant, trace, eigenvalues and eigenvectors using computer. Classification
of fixed points in 2-D linear homogeneous systems.
An example of quantitatively accurate phase portrait of the dynamics shown in Fig. 4.
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Figure 5: Phase portrait and eigenvectors. Eigenvectors are shown with the red arrows. (Left) Stable
node. (Right) Unstable node.

3.3 CASE 2b: Spiral

Criterion for determining the fixed point:

∆ > 0 and τ2 − 4∆ < 0. (17)

This criterion holds for complex and distinct eigenvalues that are complex conjugates of each other. The
criterion τ2 − 4∆ < 0 simply means that we are located inside the region defined by τ2 − 4∆ = 0 shown in
the overview plot in Fig. 18 and on Slide 10. Figures 6 and 7 show the dynamics of a spiral.
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Figure 6: Phase portrait of a stable spiral with complex eigenvalues λ± = µ± iω where µ < 0.

Physical interpretation of complex eigenvalues λ± = µ ± iω is the following: real parts µ are related to
decay rate (µ < 0) of the spiral, and imaginary parts ω are related to the rotation rate.
Stability: The fixed point ~x∗ = ~0 may be either stable (attracting sink) or unstable (repelling source). If

τ < 0, (18)

witch also implies that µ < 0, then we have a stable spiral. If

τ > 0, (19)

witch also implies that µ > 0, then we have an unstable spiral.
General solution of the system: A linear combination of

eµt cosωt, (20)

and
eµt sinωt. (21)
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Numerics: nb#2
Calculation of matrix determinant, trace, eigenvalues and eigenvectors using computer. Classification
of fixed points in 2-D linear homogeneous systems.
An example of quantitatively accurate phase portrait of the dynamics shown in Fig. 6.
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Figure 7: Phase portraits of two spirals with complex eigenvalues λ± = µ ± iω. (Left) Stable spiral
where µ < 1. (Right) Unstable spiral where µ > 1.

3.4 CASE 3: Center

Criterion for determining the fixed point:

∆ > 0 and τ = 0. (22)

This criterion holds for pure imaginary eigenvalues λ± = ±iω (complex conjugate pair). Figures 8 and 9
show the dynamics of a center.

i

i

Ii

Figure 8: Phase portrait of a Lyapunov stable center.

Stability: The fixed point ~x∗ = ~0 is said to be Lyapunov stable. The 2-D systems can feature a
new type of stability called the Lyapunov stability. A fixed point is said to be Lyapunov stable if trajecto-
ries starting near a fixed point stay near it for all time not just for t→∞ (note: a more rigorous definition
exists). The centers are Lyapunov stable because the real part of its eigenvalues µ = 0 and thus the decay
rate of the rotation is absent.
General solution of the system: A linear combination of

cosωt, (23)

and
sinωt. (24)

Numerics: nb#2
Calculation of matrix determinant, trace, eigenvalues and eigenvectors using computer. Classification
of fixed points in 2-D linear homogeneous systems.
An example of quantitatively accurate phase portrait of the dynamics shown in Fig. 8.
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Figure 9: Phase portrait. (Left) Center featuring clockwise rotation. (Right) Center featuring counter-
clockwise rotation.

Which way is vector field rotating? A spiral or center can rotate in clockwise or counter-clockwise
directions. This question is not an issue when one uses a computer to construct the phase portrait. But,
let’s say you need to sketch the portrait by hand. System matrix A does not explicitly give you the direction.
In order to determine the direction simply calculate one vector and the direction of the entire flow becomes
obvious.
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Figure 10: Determination of the rotation direction. The flow vector, calculated at coordinates (x, y)T =
(1, 0)T , is shown with the arrow. The phase portrait features a Lyapunov stable fixed point at its origin.

Example: We consider a simple case that was introduced above—the harmonic oscillator defined by Eq. (7)
{
ẋ = y,

ẏ = −x.

Let’s say we are interested in a vector located at ~x = (x, y)T = (1, 0)T . This vector is shown with the red
bullet in Fig. 10. The resulting vector is

{
ẋ = y = 0

ẏ = −x = −1
⇒ ~̇x =

(
ẋ
ẏ

)
=

(
0
−1

)
. (25)

This vector is shown on the phase portrait in Fig. 10. From here it is clear that the field is rotating in a
clockwise direction. The fixed point of harmonic oscillator shown in Fig. 10 is Lyapunov stable.

3.5 CASE 4a: Degenerate node (of the first type)

Criterion for determining the fixed point:

∆ > 0 and τ2 − 4∆ = 0. (26)

This criterion holds for real and repeated (equal) eigenvalues and for one uniquely determined eigenvector
(the other one can be anything). The criterion τ2 − 4∆ = 0 simply means that we are located on the line
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iffyit

Figure 11: Phase portrait of a stable degenerate node.

defined by τ2 − 4∆ = 0 shown in the overview plot in Fig. 18 and on Slide 10. Figures 11 and 13 show the
dynamics of this fixed point.
Stability: The fixed point ~x∗ = ~0 can be either stable or unstable. If

τ < 0, (27)

which also implies λ1 = λ2 < 0, then the fixed point is stable. If

τ > 0, (28)

which also implies λ1 = λ2 > 0, then the fixed point is unstable.
General solution: Omitted from this document.

iffyit
iffyit

Figure 12: (Left) Stable degenerate node as a failed stable spiral. The failed spirals are shown with the blue
dashed trajectories. (Right) Characteristics of a node. The blue trajectories can be mistaken for a node.

Degenerate nodes are borderline cases bordering spirals and nodes. In a certain sense they posses char-
acteristics of both. Figure 12 shows the spirals and nodal characteristics hidden within a degenerate node.

Numerics: nb#2
Calculation of matrix determinant, trace, eigenvalues and eigenvectors using computer. Classification
of fixed points in 2-D linear homogeneous systems.
An example of quantitatively accurate phase portrait of the dynamics shown in Fig. 11.
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Figure 13: Phase portrait and a non-unique eigenvector (unique one is coincidentally |~v| = 0). The
eigenvector is shown with the red arrow. (Left) Stable degenerate node. (Right) Unstable degenerate
node.

D.Kartofelev 10/15 K As of May 16, 2023

https://www.ioc.ee/~dima/mittelindyn/numerics_4b.nb


Lecture notes #4 Nonlinear Dynamics YFX1520

3.6 CASE 4b: Degenerate node (of the second type: star)

Criterion for determining the fixed point:

∆ > 0 and τ2 − 4∆ = 0. (29)

This criterion holds for real and repeated (equal) eigenvalues and for not uniquely determined eigenvectors
(both can be anything, every direction is an eigendirection). The criterion τ2 − 4∆ = 0 simply means that
we are located on the line defined by τ2 − 4∆ = 0 shown in the overview plot in Fig. 18 and on Slide 10.
Figures 14 and 15 show the dynamics of this fixed point.
Stability: The fixed point ~x∗ = ~0 can be either stable or unstable. If

τ < 0, (30)

which also implies λ1 = λ2 < 0, then the fixed point is stable. If

τ > 0, (31)

which also implies λ1 = λ2 > 0, then the fixed point is unstable.
General solution: Omitted from this document.
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Figure 14: Phase portrait of a stable degenerate node of the second type, a.k.a. a stable star.

Numerics: nb#2
Calculation of matrix determinant, trace, eigenvalues and eigenvectors using computer. Classification
of fixed points in 2-D linear homogeneous systems.
An example of quantitatively accurate phase portrait of the dynamics shown in Fig. 14.
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Figure 15: Phase portrait and non-unique eigenvectors. The eigenvectors are shown with the red
arrows. (Left) Stable star. (Right) Unstable star.

3.7 CASE 5a: Non-isolated fixed point, a line of fixed points

Criterion for determining the fixed point:

∆ = 0 and τ 6= 0. (32)

This criterion holds for real eigenvalues. On the overview plot, shown in Fig. 18 and on Slide 10, we are
located on the vertical τ -axis. Figures 16 and 17 show the dynamics of two non-isolated fixed points.
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Figure 16: Phase portrait of non-isolated fixed points. (Left) Stable non-isolated fixed point. (Right)
Unstable non-isolated fixed point.

Stability: The fixed points (a line) can be either stable or unstable. If

τ < 0, (33)

then the fixed point is stable. If
τ > 0, (34)

then the fixed point is unstable.
General solution of the system:

~x(t) = C1e
λ1t~v1 + C2e

λ2t~v2, (35)

where Ci are the integration constants and ~vi are the eigenvectors. See Figs. 16 and 17.

Numerics: nb#2
Calculation of matrix determinant, trace, eigenvalues and eigenvectors using computer. Classification
of fixed points in 2-D linear homogeneous systems.
An example of quantitatively accurate phase portrait of the dynamics shown in Fig. 16.
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Figure 17: Phase portrait and eigenvectors. The eigenvectors are shown with the red arrows. (Left)
Stable non-isolated fixed point. (Right) Unstable non-isolated fixed point.

3.8 CASE 5b: Non-isolated fixed point, a plane of fixed points

Criterion for determining the fixed point:

∆ = 0 and τ = 0. (36)

All points on the plane are fixed points. Nothing happens and nothing can happen! On the overview plot,
shown in Fig. 18 and on Slide 10, criterion (36) is located at the origin.

3.9 Summary overview

A nice and concise way of summarising the classification discussed in this lecture is shown on Slide 10 and
in Fig. 18.
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Slide: 10

Classification of fixed points in 2-D linear systems
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Figure 18: Classification of fixed points of linear homogeneous 2-D systems ~̇x = A~x where trace τ = λ1 +λ2
and determinant ∆ = λ1λ2 are determined by 2× 2 system matrix A.
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The presented classification can also be summarised by the following flowchart:

· if ∆ < 0:
Isolated fixed point
CASE 1: Saddle node

· if ∆ = 0:
Non-isolated fixed points
• if τ < 0:

CASE 5a: Line of stable fixed points
• if τ = 0:

CASE 5b: Plane of fixed points
• if τ > 0:

CASE 5a: Line of unstable fixed points
· if ∆ > 0:

Isolated fixed point
• if τ < −

√
4∆:

CASE 2a: Stable node
• if τ = −

√
4∆:

◦ if there is one uniquely determined eigenvector (the other is non-unique):
CASE 4a: Stable degenerate node
◦ if there are no uniquely determined eigenvectors (both are non-unique):

CASE 4b: Stable star
• if −

√
4∆ < τ < 0:

CASE 2b: Stable spiral
• if τ = 0:

CASE 3: Center
• if 0 < τ <

√
4∆:

CASE 2b: Unstable spiral
• if τ =

√
4∆:

◦ if there is one uniquely determined eigenvector (the other is non-unique):
CASE 4a: Unstable degenerate node
◦ if there are no uniquely determined eigenvectors (both are non-unique):

CASE 4b: Unstable star
• if
√

4∆ < τ :
CASE 2a: Unstable node

3.10 A note on degenerate nodes

E I
Figure 19: Comparison of a critically damped system solution time-series shown on the left to a damped
system solution time-series shown on the right.

The degenerate nodes rarely occur in engineering applications. They represent critically damped or over-
damped systems. We studied such system in the previous lecture where we performed a bifurcation analysis
of the over-damped bead on the hoop dynamics. These second-order systems achieve equilibrium without
being allowed to oscillate. Figure 19 compares a possible solution of a critically damped oscillator to a
solution of damped oscillator.
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4 Basin of attraction

The definition of the basin of attraction is given on Slide 13. The notion of basin of attraction will be used
and expanded upon in future lectures.

Slide: 13

Basin of attraction

Basin of attraction of a fixed point (or an attractor) is the region
of the phase space, over which integration (or iteration) is defined,
such that any point (any initial condition) in that region will
eventually be integrated into an attracting region (an attractor) or to
a particular stable fixed point.

In the case of linear systems with a stable fixed point, every point
in the phase space is in the basin of attraction of that system.
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The notions of iteration and attractor mentioned within the brackets will be explained in future lectures.

Revision questions

1. How to plot a 2-D phase portrait of a system?
2. What are 2-D homogeneous linear systems?
3. What are non-homogeneous systems?
4. Classification of fixed points in 2-D systems.
5. Sketch a saddle node fixed point.
6. Sketch a stable node fixed point.
7. Sketch an unstable node fixed point.
8. Sketch a stable spiral (fixed point).
9. Sketch an unstable spiral (fixed point).
10. Sketch a center (fixed point).
11. Sketch a stable non-isolated fixed point.
12. Sketch an unstable non-isolated fixed point.
13. What are 2-D homogeneous nonlinear systems?
14. What does it mean that a fixed point is Lyapunov stable?
15. Give an example of Lyapunov stable fixed point.
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