
Chapter 13

On Nonlinear Waves in Media with Complex

Properties

Jüri Engelbrecht, Andrus Salupere, Arkadi Berezovski, Tanel Peets, and Kert Tamm

Abstract In nonlinear theories the axiom of equipresence requires all the effects of
the same order to be taken account. In this paper the mathematical modelling of
deformation waves in media is analysed involving nonlinear and dispersive effects
together with accompanying phenomena caused by thermal or electrical fields. The
modelling is based on principles of generalized continuum mechanics developed by
G.A. Maugin. The analysis demonstrates the richness of models in describing the
physical effects in media with complex properties.

13.1 Introduction

The legacy of G.A. Maugin is huge and has an imprint on many studies on continuum
mechanics in the second half of the 20th century. His studies have cast light on many
fundamental problems of continua like the principle of virtual power, generalized
continuum mechanics, the concepts of internal variables and configurational forces,
propagation of waves and fronts – just to name a few (dell’Isola et al, 2014). His
sparkling ability to inspire his colleagues to collaborate and find new problems in the
field of fundamental understanding of the behaviour of materials has been realized
in numerous joint publications. In this paper the attention is paid to nonlinear wave
propagation. G.A. Maugin himself has studied waves in elastic crystals (Maugin,
1999), numerical methods used for the analysis of waves and fronts (Berezovski
et al, 2008) and published several overviews on waves (Maugin, 2011; Christov
et al, 2007).The cooperation with colleagues in Tallinn has resulted in describing
complexities of soliton theory (Salupere et al, 1994, 2001), in nerve pulse analysis
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(Maugin and Engelbrecht, 1994), in elaborating the concept of internal variables
(Berezovski et al, 2011a,b), etc. Here we shall present some fundamental ideas from
this cooperation and novel results developed recently. The basic problem is how to
describe real properties of materials and how these are reflected in wave propagation.
The importance of such an analysis is pointed out also by Maugin (2015).

In what follows, the problems in deriving the governing equations of nonlinear
wave motion for describing complicated properties of media (materials) and the
corresponding mathematical models are presented in Sect. 13.2. The physical effects
resulting from these governing equations are analysed in Sect. 13.3. Finally, in
Sect. 13.4 discussion is given together with ideas for the further research.

13.2 The Governing Equations

The governing equations for describing wave motion are based on the balance of
momentum. Besides classical linear wave equations, the Boussinesq-type models
are richer because they account also nonlinear and dispersive effects (Christov
et al, 2007). Like classical wave equations in the 1D setting, these equations have
bi-directional solutions. Another class of models describing nonlinear waves are
evolution equations like the Korteweg-de Vries (KdV) equation and its modifications.
Evolution equations describe uni-directional propagation and are usually derived
from complicated systems by the reductive perturbation method using the moving
frame of reference. Characteristically for both types of equations, the modelling
of nonlinear and dispersive effects permits to describe many interesting physical
phenomena. Below some results of modelling are briefly described. The 1D set-ups
are used in order to reach transparent models where it would be easy to trace the
influence of individual terms in models.

A typical form of a Boussinesq-type equation in terms of a displacement u is
(Christov et al, 2007):

utt − c2
0uxx − [F(u)]xx = (β1utt −β2uxx)xx , (13.1)

where c0 is the wave velocity, Fu is a polynomial and β1,β2 are physical constants.
As usual, x denotes space and t denotes time. Here and further, indices x and t denote
the differentiation with respect to the indicated variable. This equation can be found
as in solid mechanics as well as in fluids where it was derived originally. It must
be noted that the r.h.s. of Eq. (13.1) has often an order of O(ε) where ε is a small
parameter.

The general form of a KdV-type evolution equation in terms of v ∼ ux (or v ∼ ut )
is (Salupere et al, 2001)

vτ +[P(v)]ξ +D(v) = 0, (13.2)
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where τ is a scaled coordinate, ξ = c0t − x is the moving frame coordinate, P(v) is a
polynomial and D(v) is a dispersion operator including the odd derivatives of v with
respect to ξ only.

13.2.1 Boussinesq-Type Models

In modelling of microstructured solids, it is possible to distinguish macro- and
microstructure that must be taken into account in modelling the wave motion. Based
on the Mindlin (1964) micromorphic theory, the governing equations can be derived
for both coupled structures. The existence of the microstructure leads to dispersive
effects while nonlinearity is of the physical character. The free energy W is assumed
to have a form:

W =
ρ0c2

2
u2

x +A1ϕux +
1
2

Bϕ2 +Cϕ2
x +

1
6

Nu3
x +

1
6

Mϕ3
x , (13.3)

where ρ0 and c are the density and the sound velocity of the macrostructure, u is the
macrodisplacement, ϕ is the microdeformation in the sense of Mindlin (1964), and
A,B,C,N,M are material parameters. The kinetic energy K is

K =
ρ0

2
u2

t +
I
2
ϕ2

t , (13.4)

where I is the measure of microstructure inertia.
Then the governing equation in terms of the macrodisplacement u is (Engelbrecht

et al, 2005; Berezovski et al, 2013):

utt − (c2 − c2
A)uxx − 1

2
k1(u2

x)x = p2c2
A
(
utt − c2

1uxx
)

xx −
1
2

k2(uxx)xx, (13.5)

where c2
A = A2/ρ0B , c2

1 =C/I , p2 = I/B and k1,k2 are the coefficients of nonlin-
earities.

It must be stressed that Eq. (13.5) reflects the following: (i) the nonlinearities
are of the deformation-type as usually in solid mechanics; (ii) microinertia of the
microstructure is taken into account; (iii) the second wave operator at the r.h.s has
a parameter p2 which is usually small and therefore Eq. (13.5) is a hierarchical
equation. In addition, the velocity of the wave operator for the macrostructure at
the l.h.s is influenced by the properties of the microstructure. In such a way, the
governing equation reflects real properties of the microstructured material.

In case of a multiscale (the scale in the scale) microstructure, the governing
equation involves two wave operators reflecting the properties of microstructures
(Engelbrecht et al, 2007). In the linear case this equation is:
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where indices 1 and 2 denote the microstructures. The smaller scales bring in higher
order dispersive terms. Like the macrostructure, the level 1 microstructure is also
influenced by the level 2 microstructure. Two wave operators at the r.h.s. of Eq. (13.6)
indicate the hierarchical structure the governing equation. If internal variables are
considered to include nonlinearities in the microscale then the structure of governing
equations becomes even more complicated compared to Eq. (13.3) as shown by
Berezovski (2015).

The asymptotic analysis demonstrates also the hierarchies for waves in Cosserat
media and ferroelectrics, analysed by Maugin (1999). In the linear case, the governing
equations are similar to those for microstructured solids (Salupere and Engelbrecht,
2014).

In biomechanics, the character of nonlinearities can be different from what is
typical in solid mechanics. Based on experiments, it has been shown that in biomem-
branes where the microstructure is built up by lipid molecules, the nonlinearity of
mechanical waves can be accounted in the effective velocity (Heimburg and Jackson,
2005)

c2
e = c2

0 + pu+qu2, (13.7)

where c0 is the velocity in the unperturbed state and u is the density change along
the axis of the biomembrane, while p,q are material coefficients. Substituting c2

e into
the balance of momentum and the adding dispersive terms, the governing equation
for longitudinal waves in biomembranes takes the form

utt =
[(

c2
0 + pu+qu2)ux

]
x−h1uxxxx +h2uxxtt , (13.8)

where h1,h2 are constants. This equation was proposed by Heimburg and Jackson
(2005) with h2 = 0 and later improved by Engelbrecht et al (2015). This improvement
with h2 �= 0 is important because it accounts for the microstructure of the biomem-
brane made of lipids and removes the discrepancy that at higher frequencies the
velocities are unbounded. This is a physically admissible situation as stressed by Mau-
gin (1999). It must be stressed that as noted above, in Eq. (13.5) the nonlinearities
are of the deformation-type, then in Eq. (13.8) they are of the displacement-type.

13.2.2 Evolution-Type (KdV-Type) Models

These one-wave asymptotical models have gained wide attention because of the iconic
status of several nonlinear evolution equations like the KdV equation, Schrödinger
equation which permit in some cases also analytical solutions (for example, Maugin,
1999, 2011; Ablowitz, 2011). The classical KdV equation combines the quadratic
nonlinearity and cubic dispersion:
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vτ + vvξ +dvξξξ = 0, (13.9)

where d is the dispersion parameter. The numerical analysis of the KdV equation
has revealed many details including the behaviour of multi-recurrence of solitons
forming from a harmonic excitation (Salupere et al, 2002), the explanation of the
importance of hidden solitons (Salupere et al, 2003; Engelbrecht and Salupere, 2005)
and the influence of an additional force (Engelbrecht and Salupere, 2005). The
modifications of the KdV equations involve more physical effects. For example, for
martensitic-austenitic shape-memory alloys the governing equation takes the form
(Salupere et al, 2001):

vτ +[P(v)]ξ +dvξξξ +bv5ξ = 0, (13.10)

P(v) =−1
2

v2 +
1
4

v4, (13.11)

where d and b are the third- and the fifth-order dispersion parameters, respectively.
The quartic potential (13.11) corresponds to the two-well energy distribution which
has a direct influence on nonlinear effects. Equations (13.10), (13.11) are able to
describe several solitonic structures (Ilison and Salupere, 2006).

It is also possible to derive an evolution equation from the bi-directional
model (13.5). However, in this case the result is a modified KdV equation (Ran-
drüüt and Braun, 2010)

vτ +a1vvξ +d1vξξξ +a2(v2
ξ )ξξ = 0, (13.12)

where a1 describes the nonlinearity of the macrostructure, a2 ∼ O(ε) - the nonlin-
earity of the microstructure and d1 denotes the joint influence of dispersive terms
(cf. Eq. (13.5)). It means that both of the effects – inertia of the microstructure
(term uttxx in Eq. (13.5)) and elasticity of the microstructure (term uxxxx in Eq. (13.5))
are involved in the dispersive term in Eq. (13.12), reflected by the sign of d1 (Ran-
drüüt and Braun, 2010). More detailed analysis of nonlinearities in the microscale
demonstrates that also Benjamin-Bona-Mahoney or Camassa-Holm equations can be
derived (Berezovski, 2015).

Like for the Boussinesq-type equations, the evolution equations may also have a
hierarchical character reflecting the scale effects. This is the case of granular materials
when the evolution equation can be written in the form (Giovine and Oliveri, 1995):

vτ + vvς +α1vξξξ +β
(
vτ + vvξ +α2vξξξ

)
ξξ = 0, (13.13)

where α1 and α2 are macro- and microlevel nonlinearities and β is a parameter
involving the ratio of the grain size and the wavelength. The solutions of Eq. (13.13)
involve beside single solitons also soliton ensembles. This is a typical example of
two concurrent dispersive effects (Ilison and Salupere, 2009).
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13.2.3 Coupled Fields

Several physical situations need accounting for coupled fields. For example, in
mechanics of solids, the presence of heat sources lead to coupling of deformation
fields and temperature fields. For microstructured materials the processes in macro-
and microstructures are influenced by both fields. Besides the deformations of macro-
and microstructures, the temperature fields can also be divided: macrotemperature
and microtemperature (fluctuation of temperature in microstructural elements). The
corresponding governing equations can be derived by using the concept of internal
variables (Berezovski et al, 2011a,b). However, due to the complicated structure
of these equations, it is impossible to derive a single governing equation like it is
done for elastic waves in microstructured solids (see above). In this coupled case the
governing system of equations is (Berezovski et al, 2014):
balance of linear momentum:

utt − c2
ouxx = m1θx +m2ϕx +m3αxx; (13.14)

balance of energy:
θt = n(kθx)x +m4uxt + r1α2

t ; (13.15)

governing equation for microtemperature:

αtt − c2
d αxx = m5uxx − r2αt ; (13.16)

governing equation for microdeformation:

ϕtt − c2
t ϕxx =−m2ux −m3ϕ, (13.17)

where u is the macrodisplacement, ϕ - the microdeformation, θ - the macrotempera-
ture, α - the microtemperature; c0,cd ,ct denote velocities, k is the thermal conduc-
tivity and m1,m2,m3,m4, m5,r1,r2,n are coefficients. If conditions θ = const,α =
const are satisfied then Eqs. (13.14) and (13.16) can be reduced to the linear form
of Eq. (13.5). The full system of Eqs. (13.14) – (13.17) includes three hyperbolic
equations (Eqs. (13.14), (13.16), (13.17) and one parabolic equation (Eq. (13.15)).
The coupling of physical effects is complicated – microdeformation and microtem-
perature are not coupled but both are coupled to the balance of linear momentum
while macrostructure is affected by the macrodisplacement (like in the usual theory
of thermoelasticity) and microtemperature.

In biophysics, a theoretical model for nerve signal propagation including all the
physical effects is still a challenge calling “to frame a theory that incorporates all
observed phenomena in one coherent and predictive theory of nerve signal propaga-
tion” (Andersen et al, 2009). The phenomena are following: the action potential (the
electrical pulse) in a nerve fibre which carries the signal, generates also mechanical
waves in the axoplasm within a fibre and in the surrounding biomembrane. The
longitudinal wave in the biomembrane leads to the transverse displacement which is
measurable. Leaving aside the detailed description on the origin of physical effects
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and corresponding models, a possible mathematical model uniting all the processes
into one system has recently been proposed in the following form (Engelbrecht et al,
2016).

First, the action potential can be modelled by the simplified FitzHugh-Nagumo
(FHN) equation governing the propagation of an electrical pulse z (Nagumo et al,
1962):

ztxx = ztt +μ(1−a1z+a2z2)zt + z, (13.18)

where a1,a2,μ are parameters and z is the scaled voltage.
Second, the pressure wave in axoplasm may be governed by a 1D Navier-Stokes

model
ρ(Vt +VVx) =−px +μνVxx +F1(z), (13.19)

where V is the velocity, ρ – the density, p – the pressure and μν – the viscosity. The
force acting from the action potential is denoted by F1(z).

Third, the longitudinal wave in the biomembrane is modelled by Eq. (13.8)

utt =
[(

c2
0 + pu+qu2)ux

]
x−h1uxxxx +h2uxxtt +F2(z,V ), (13.20)

where F2(z,V ) is a force from other waves. The system of equations (13.18), (13.19),
(13.20) is solved for the initial condition

z
∣∣
t=0= f (x) (13.21)

and the transverse wave (horizontal displacement w of the biomembrane) is calculated
by

w =−krux, (13.22)

like in rods (Porubov, 2003). All the governing equations are nonlinear and demon-
strate explicitly the complexity of the process. The nature of forces F1(z),F2(z,V )
must be determined by experiments.

13.3 Physical Effects

The model equations described in Sect. 13.2 give an idea about how to account
for complicated physical effects reflecting the properties of nonlinear media. In
this Section, the most typical effects are described which have resulted from recent
studies (many in cooperation with G.A. Maugin). As typical for the complex world,
the interactions of effects lead to new phenomena.

Most of the mathematical models described above are the soliton-bearing systems.
The nonlinear Boussinesq-type model like Eq. (13.5) demonstrates the emergence
of soliton trains. Note that here the nonlinearity is of the deformation type. An
initial condition produces left- and right-propagating trains of deformation solitons
(Berezovski et al, 2013) where, as expected, the higher the amplitude, the faster the
soliton. The interaction of solitons governed by non-integrable equation (13.5), howe-
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ver, is not fully elastic and produces some radiation explained already by Maugin
(1999). Due to the nonlinearity at the microlevel, the emerging solitons are not fully
symmetric (Salupere et al, 2008). By solving the corresponding evolution equation
(13.12), the same effect is demonstrated (Randrüüt and Braun, 2010).

Another Boussinesq-type equation (13.8) involves displacement-type nonlineari-
ties. It possesses a soliton solution and from an initial input, the soliton trains can
be formed. Given the signs of the coefficients from experiments (p < 0) contrary to
the previous case, the soliton trains have an interesting property – the smaller the
amplitude, the faster is the soliton. The analysed improved model (13.8) demonstrates
clearly that the existence of the inertial term h2uxxtt leads to a narrower pulse which
is important in determining its value from experiments by measuring the width of the
pulse. The full analysis of Eq. (13.8) is given by Engelbrecht et al (2017) together
with the demonstration of the existence of periodical waves (cf cnoidal waves for the
KdV equation) governed by this equation. Like in the previous case, the interaction
of solitons is not fully elastic resulting in some radiation during interactions.

The existence of solitary solutions or the emergence of regular soliton trains are
like benchmarks of solitonics. However, due to complicated physics, the governing
equations are different from well-studied classical models and interest should also
be focused to the complicated solitonic structures. Such structures may emerge
in phase memory alloys (Eq. (13.10)), in granular media (Eq. (13.13)) and forced
KdV models. In order to understand properly the mechanisms of emerging solitonic
structures, one should determine the number of possible emerging solitons. This
depends on the energy sharing and redistribution between solitons. In general terms,
starting from the seminal paper by Zabusky and Kruskal (2014) this problem has
been analysed using various estimations (see references in Salupere et al, 2014). A
detailed analysis of interaction of solitons shows that besides visible solitons there
exist also hidden (or virtual) solitons (Salupere et al, 1996; Christov, 2012). The
hidden solitons can be detected from the changes they cause in trajectories of other
solitons during interactions and can be visible during the short time intervals due to
the fluctuations of the reference level. What is important, is that these hidden solitons
may serve as “energy pockets” which may become visible if an external force acts
in a system (Engelbrecht and Salupere, 2005). This effect has been analysed for the
KdV equation with the periodic external force (Engelbrecht and Salupere, 2005).
Depending on the strength of the force, several features were established: weak,
moderate, strong and dominating external fields. In the case of the weak field all
hidden and smaller visible solitons are suppressed; in the case of the moderate field
the resulting solitons include all visible and some hidden solitons; in the case of
the strong field the number of emerging solitons is higher than in the corresponding
conservative case; and in the dominating field no soliton complexes but wave packets
are formed. If the external force has a polynomial character with one maximum and
one minimum then a single soliton may be suppressed or amplified depending on its
amplitude (Engelbrecht and Khamidullin, 1988). This phenomenon could explain the
possible amplification of the precursors to seismic waves generated by earth-quakes.
The hierarchical KdV equation (13.13) governs beside a single soliton several types
of soliton complexes: a KdV soliton ensemble with or without a weak tail; a soliton
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with a strong tail; a solitary wave with a tail and wave packets (Ilison and Salupere,
2009; Salupere et al, 2014). Here the hidden solitons play a role in the emergence of
soliton complexes.

It is obvious that the soliton “menagerie” is rich and above only a part of phenom-
ena was described related to microstructured solids. For a more detailed review the
reader is referred to Maugin (2011).

Besides solitons and soliton complexes, the microstructured solids reveal other
interesting phenomena. In the case of multiscaled hierarchical microstructures
(see Eq. (13.6)) the effect of the negative group velocity may appear (Peets et al,
2013). This phenomenon is related to the coupling effects between the two scales.
In terms of dispersion analysis, this is a case when two optical branches of disper-
sion curves are very close to each other at certain frequencies. As far as the optical
modes represent non-propagating oscillations, such a situation can be considered as
a pre-resonant one.

The processes in thermoelastic microstructured solids are described by
Eqs. (13.14) – (13.17). The numerical simulation shows that even in the absence of
effects of the microdeformation, the wave propagation process is strongly influenced
by the microtemperature (Berezovski and Engelbrecht, 2013). Namely, although the
leading terms in the balance of energy (13.15) reflect the parabolicity as expected, the
macrotemperature is affected by the microtemperature changes (hyperbolic equation
(13.17)) and demonstrates the wave-like behaviour. This result casts surely more
light on the behaviour of microstructured solids.

The joint model of a nerve signal propagation (Eqs. (13.18) – (13.20)) is an
attempt to explain this fascinating process by including all the possible waves into an
ensemble where the nonlinearities play a decisive role. The waves in the ensemble
interact with each other through the coupling forces. Certainly, the description of
the electrical signal is here simplified because the FHN model takes into account
only one (generalized) ionic current. This current plays a crucial role in the energy
balance of the electrical pulse dictating its asymmetric shape. It would better to
account for specified currents of Na and K ions but the more complicated models
like the Hodgkin-Huxley model (Hodgkin and Huxley, 1952) taking these ionic
currents into account need many more physical parameters. So at this stage we limit
ourselves to the simple FHN equation (13.18). The pressure wave in the axoplasm is
described by the classical Navier-Stokes equation. Finally, the longitudinal waves in
the surrounding biomembrane are described by a recently derived equation (13.20).
To make this model work, two important physical phenomena must be properly
understood:

i) the mechanisms of opening the ion channels;
ii) the nature of coupling forces.

It means that in Eq. (13.18) the parameters a1 and a2 should be carefully estimated
and the forces F1(z) and F2(z,V ) determined. This work is in progress. A special
challenge is to understand the synchronization of velocities and the possible phase-
shifts between the waves in an ensemble.
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13.4 Discussion

What has been described above, is the description of complexity in wave motion.
Indeed, the main features of complex systems are (Érdi, 2008):

i) complex systems are comprised of many different constituents which are con-
nected in multiple ways;

ii) complex systems produce global effects including emergent structures generated
by local interactions;

iii)complex systems are typically nonlinear;
iv)emergent structures may occur far from the equilibrium.

The need for the inevitable introduction of complexity in the mechanics of real
materials has been suggested also by Maugin (2015). The list of effects in nonlinear
wave motion includes many fundamental phenomena such as the balance of nonlinear
and dispersive effects, scale effects and hierarchies, coupling of different fields, etc.
As a result, special wave structures could emerge and the interaction of waves may
lead to amplification, instability and energy redistribution. The coupling of several
fields like in thermoelasticity and biophysics leads to completely novel physical
effects which can explain the behaviour of materials or systems in a more informative
way. In general terms, the corresponding mathematical models are non-integrable
(Maugin, 2011) and that is why numerical methods are used in the analysis. Most of
the results described above are obtained either by using the finite volume (Berezovski
et al, 2008) or the pseudospectral (Salupere, 2009) methods. A special attention is
paid to the accuracy and convergence of numerical simulations.

The analysis of complexity of wave motion demonstrates clearly that the mechan-
ical behaviour (stresses, velocities, deformation, temperature) of continua depends
on the interactions of constituents and fields. From another point of view, the waves
are the carriers of information and energy reflecting so the interaction processes. By
measuring the physical properties of waves (amplitudes, velocities, spectra, shapes),
this information can be used for the determining the properties of fields or internal
structures, i.e. for solving the inverse problems (Janno and Engelbrecht, 2011).

There are many unsolved problems in the complexity of wave motion. One could
ask about the soliton management, soliton tunability (generation of solitons with
predetermined amplitudes or spectral densities), soliton turbulence (self-organization
into spatially localized solitonic structures), etc. An interesting question is whether
intuitively well understood microtemperatures in microstructured materials can be
measured. Metamaterials and nanomaterials need more attention because of their
properties which must be reflected also in wave motion.

The impact of G.A. Maugin in generating novel ideas is enormous.
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