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Abstract In this paper, elastic wave propagation in a one-dimensional micromor-
phic medium characterized by two internal variables is investigated. The evolution
equations are deduced following two different approaches, namely using: i) the
balance of linear momentum and the Clausius-Duhem inequality and, ii) an as-
sumed Lagrangian functional (including a gyroscopic coupling) together with a
variational principle. The dispersion relation is obtained and the possibility of the
emerging band gaps is shown in such microstructured materials. Some numerical
simulations are also performed in order to highlight the dispersive nature of the
material under study.

Keywords Micromorphic media · wave propagation · internal variables

1 Introduction

Elastic wave dispersion is very often an indicator of the presence of a microstruc-
ture in a solid. The study of the wave dispersion in bodies with regular microstruc-
tures goes back to Newton and Euler (see [15] for the historical background). This
line of research resulted in crystal lattice theory [13], and is come back in fashion in
recent years due to the possibility of manufacturing materials with a microstruc-
ture which is very finely controlled by means of computer-aided methods [49,25,
22,58].
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Irregular or natural microstructures require different treatment due to their
stochastic character. Among the proposed approaches, homogenized, generalized,
and microstructural descriptions are able to take into account a microstructural in-
fluence on the macro-motion. Classical homogenization uses “effective” (averaged)
quantities without changes in governing equations [52,54]. The main task here is
to find the appropriate values of “effective” material properties. Wave dispersion
does not appear here.

Asymptotic homogenization is more sophisticated. Here, governing equations
include additional high-order terms (general reference on higher-order continua are
[24,2,10]) which provide the wave dispersion [17,33,4,38]. The advantage of the
asymptotic homogenization is the possibility of the prediction of additional mate-
rial parameters, althiugh they usually require more advanced mathematical tech-
niques [14,48]. Computational homogenization [36,57,41,51] includes multiscale
treatment. Recently, it was demonstrated that computational homogenization can
result in the micromorphic microelasticity [11].

The micromorphic microelasticity theory [50,28] postulates the existence of a
micromotion in addition to a macromotion. This theory predicts both acoustical
and optical branches of a dispersion curve, which is not the case for more simplified
gradient models [6,34]. The disadvantage of the micromorphic microelasticity is in
a certain amount of additional material parameters depending on the complexity
of the microstructure under consideration. Therefore, some kind of the reduction
of the micromorphic theory can be useful [53].

The micromorphic microelasticity theory is a particular case of the general
microstructural approach [16,42,27,3,35], which introduces a set of directors for
the description of microstructure. This approach can be useful in deterministic as
well as in stochastic contexts, as exemplified by the well-known Ising and Potts
models [55,19,40]. However, evolution equations for these directors, as well as
boundary conditions for them, are not straightforward.

Another particular case of the general microstructural approach is presented
by theory of internal variables [47,45]. The recent extension of this theory recover
the micromorphic microelasticity theory [9] and provides the evolution equations
for internal variables as the consequence of the second law of thermodynamics [59].
It was shown that the dual internal variables approach unifies all known models
for the elastic wave dispersion [8]. However, this was demonstrated on particular
examples, while it is much more difficult to analyze the general case.

In what follows, the quadratic dependence of free energy on dual internal vari-
ables is used in the one-dimensional setting after the reminder of the structure
of evolution equations for these variables. Then, the complete dispersion relation
is derived and studied. Numerical simulations of pulse propagation through a mi-
crostructured solid confirm the possibility of stop bands predicted theoretically.

2 Theoretical background

A motion of a body is considered as a time-parametrized sequence of mappings
χ between the reference configuration and the actual configuration: x = χ(X, t),
where t is time, X represents the position of a material point in the reference
configuration, and x is its position in the actual configuration. The deformation
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gradient is defined by
F = ∂χ/∂X|t = ∇Rχ. (1)

If the constitutive relation for free energy has the form W = W (F, ...,X, t), then
the first Piola-Kirchhoff stress tensor T is defined by

T =
∂W

∂F
. (2)

In the so-called Piola-Kirchhoff formulation local balance laws of mass, phys-
ical (linear) momentum, and energy for sufficiently smooth fields at any regular
material point X in the body read (cf. [44]):

∂ρ0
∂t

∣∣∣∣
X

= 0, (3)

∂(ρ0v)

∂t

∣∣∣∣
X

−DivRT = f0, (4)

∂(K + E)

∂t

∣∣∣∣
X

−∇R · (T · v −Q) = f0 · v, (5)

where ρ0 is the mass density in the reference configuration, v = ∂χ/∂t|X is the
physical velocity, f0 is a body force per unit reference volume, K = ρ0v

2/2 is
the kinetic energy, E is the internal energy per unit reference volume, Q is the
material heat flux, d/dt = ∂/∂t|X or a superimposed dot denotes the material
time derivative.

The second law of thermodynamics is written as [45, e.g.]

∂S

∂t

∣∣∣∣
X

+∇R · S ≥ 0, S = (Q/θ) + K, (6)

where S is the entropy density per unit reference volume, θ is the absolute tem-
perature, S is the entropy flux, and the “extra entropy flux” K vanishes in most
cases, but this is not a basic requirement.

The canonical form of the energy conservation has the form [45]

∂(Sθ)

∂t

∣∣∣∣
X

+∇R ·Q = hint, hint := T : Ḟ− ∂W

∂t

∣∣∣∣
X

, (7)

where the right-hand side of Eq. (7)1 is formally an internal heat source.
Correspondingly, the canonical (material) momentum conservation equation is

obtained as [45]
∂P

∂t

∣∣∣∣
X

−DivRb = f int + fext + f inh, (8)

where the material momentum P, the material Eshelby stress b, the material inho-
mogeneity force f inh, the material external (or body) force fext, and the material
internal force f int are defined by

P := −ρ0v · F, b = − (LIR + T · F) , L = K −W, (9)

f inh :=
∂L

∂X

∣∣∣∣
expl

≡ ∂L

∂X

∣∣∣∣
fixed fields

=

(
1

2
v2

)
∇Rρ0 −

∂W

∂X

∣∣∣∣
expl

, (10)

fext := −f0 · F, f int = T : (∇RF)T − ∇RW
∣∣
impl

. (11)
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Here the subscript notations expl and impl mean, respectively, the material gra-
dient keeping the fields fixed (and thus extracting the explicit dependence on X),
and taking the material gradient only through the fields present in the function,
IR is the unit matrix in the reference configuration.

3 Single internal variable. One-dimensional case

Up to now the microstructure was not specified. In the framework of the phe-
nomenological continuum theory it is assumed that the influence of the microstruc-
ture on the overall macroscopic behavior can be taken into account by the intro-
duction of an internal variable ϕ which we associate with the integral distributed
effect of the microstructure. The idea of internal variables has a long history [46].
The theory of a single internal variable is well established [45]. It is instructive to
remind the reader how it works on the example of one-dimensional case.

The free energy W is specified as the general sufficiently regular function of
the strain, temperature, the internal variable, and its space gradient [45]

W = W (ux, θ, ϕ, ϕx). (12)

The corresponding equations of state define not only the stress and entropy, but
also the ”microstress” η and interactive ”force” τ

σ =
∂W

∂ux
, S = −∂W

∂θ
, τ := −∂W

∂ϕ
η := − ∂W

∂ϕx
. (13)

Following the scheme originally developed by [43] for materials with diffusive dis-
sipative processes described by means of internal variables of state, we chose the
non-zero extra entropy flux K in the form

K = −θ−1ηϕ̇. (14)

In this case, the ”internal” material force and heat source each split in two terms
according to

f int = f th + f̃ intr, hint = hth + h̃intr, (15)

where the thermal sources and the ”intrinsic” sources are given by [45]

f th := S
∂

∂x
θ, hth := Sθ̇,

f̃ intr := τ̃
∂ϕ

∂x
, h̃intr := τ̃ ϕ̇,

(16)

so that we have the following consistent canonical equations of momentum and
energy:

∂P

∂t
− ∂b̃

∂x
= f th + f̃ intr, (17)

∂(Sθ)

∂t
+
∂Q̃

∂x
= hth + h̃intr, (18)

with dissipation

Φ = h̃intr −
(
Q− ηϕ̇

θ

)
∂θ

∂x
≥ 0, (19)
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where the new definitions are introduced [45]:

τ̃ ≡− δW

δϕ
:= −

(
∂W

∂ϕ
− ∂

∂x

(
∂W

∂ϕx

))
= τ − ηx,

b̃ =− (ρ0v
2/2−W + σux − ηϕx).

(20)

In the isothermal case, dissipation inequality (19) is automatically satisfied if

τ̃ = kϕ̇

with k ≥ 0 since

Φ = kϕ̇2 ≥ 0. (21)

The fully non-dissipative case corresponds to k = 0.
To be more specific, we consider a simple free energy dependence as a quadratic

function

W =
ρ0c

2

2
u2x +Aϕxux +

1

2
Bϕ2 +

1

2
Cϕ2

x, (22)

where c is the elastic wave speed in the medium without microstructure, and con-
stant parameters A,B, and C depend on the material. The corresponding stresses
are calculated as follows:

σ =
∂W

∂ux
= ρ0c

2ux +Aϕx, η = − ∂W
∂ϕx

= −Aux − Cϕx, (23)

and the interactive internal force τ is, respectively,

τ = −∂W
∂ϕ

= −Bϕ. (24)

Consequently, the balance of linear momentum is rewritten as

utt = c2uxx +
A

ρ0
ϕxx, (25)

and the evolution equation for the internal variable in the fully non-dissipative
case (with k = 0) reduces to

Cϕxx −Auxx −Bϕ = 0. (26)

Evaluating the second space derivative of the internal variable from the last equa-
tion

ϕxx =
C

B
ϕxxxx −

A

B
uxxxx, (27)

and its fourth space derivative from eqn. (25)

A

ρ0
ϕxxxx =

(
utt − c2uxx

)
xx
, (28)

we will have, inserting the results into the balance of linear momentum

utt = c2uxx +
C

B

(
utt − c2uxx

)
xx
− A2

ρ0B
uxxxx. (29)
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Equation (29) is the most general model for the dispersive wave motion provided
by the single internal variable theory [8, cf.].

If coefficient C vanishes then we arrive at the strain gradient model

ϕ =
A

B
uxx, (30)

which results in the equation of motion of the form

ρutt = ρc2uxx +
A2

B
uxxxx. (31)

As it is shown in [8], dispersive wave equation (29) does not describe the optical
branch of dispersion curve. To go further, we need to introduce one more internal
variable following [59].

4 Dual internal variables. One-dimensional case

For a more general description of wave dispersion we need to use the extension
of the internal variable theory onto the case of dual internal variables [59]. Let
us consider the free energy W as a (sufficiently smooth) function of two internal
variables ϕ,ψ and their space derivatives

W = W (ux, θ, ϕ, ϕx, ψ, ψx). (32)

In this case the equations of state are given by

σ :=
∂W

∂ux
, S := −∂W

∂θ
, τ := −∂W

∂ϕ
, η := − ∂W

∂ϕx
, (33)

ξ := −∂W
∂ψ

, ζ := − ∂W
∂ψx

. (34)

The non-zero extra entropy flux is included into consideration similarly to the case
of single internal variable

K = −θ−1ηϕt − θ−1ζξt. (35)

The canonical equations of momentum and energy keep their form

∂P

∂t
− ∂b̃

∂x
= f th + f̃ intr, (36)

∂(Sθ)

∂t
+
∂Q̃

∂x
= hth + h̃intr, (37)

with the modified Eshelby stress tensor

b̃ = −
(

1

2
ρv2 −W + σux − ηϕx − ζψx

)
(38)

and intrinsic source terms

f̃ intr := τ̃ϕx + ξ̃ψx, h̃intr := τ̃ϕt + ξ̃ψt. (39)
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In the above equations the following definitions are used

τ̃ ≡ −δW
δϕ

:= −
(
∂W

∂ϕ
− ∂

∂x

(
∂W

∂ϕx

))
= τ − ηx, (40)

ξ̃ ≡ −δW
δψ

:= −
(
∂W

∂ψ
− ∂

∂x

(
∂W

∂ψx

))
= ξ − ζx, (41)

S̃ = θ−1Q̃, Q̃ = Q− ηϕ̇− ζψ̇, (42)

which are similar to those in the case of single internal variable.
The corresponding dissipation is determined by

Φ = h̃intr − S̃θx = τ̃ϕt + ξ̃ψt − S̃θx ≥ 0. (43)

In the isothermal case, the dissipation inequality reduces to the intrinsic part
depending only on internal variables

Φ = h̃intr = τ̃ϕt + ξ̃ψt = (τ − ηx)ϕt + (ξ − ζx)ψt ≥ 0. (44)

It is easy to see that the choice

ϕt = R(ξ − ζx), ψt = −R(τ − ηx), (45)

where R is an appropriate constant, leads to zero dissipation. Therefore, the dis-
sipation inequality (44) is satisfied automatically with the choice (45). The latter
two evolution equations express the duality between internal variables: one internal
variable is driven by another one and vice versa.

5 Microstructure description

Now we return to the description of a microstructure. The free energy function is
constructed here as the sum of two similar contributions of internal variables

W =
ρ0c

2

2
u2x +A1ϕ1ux +A′1(ϕ1)xux +

1

2
B1ϕ

2
1 +

1

2
C1(ϕ1)2x

+A2ϕ2ux +A′2(ϕ2)xux +
1

2
B2ϕ

2
2 +

1

2
C2(ϕ2)2x.

(46)

The corresponding stresses are determined as

σ =
∂W

∂ux
= ρ0c

2ux +A1ϕ1 +A′1(ϕ1)x +A2ϕ2 +A′2(ϕ2)x,

η1 = − ∂W

∂(ϕ1)x
= −C1(ϕ1)x −A′1ux,

η2 = − ∂W

∂(ϕ2)x
= −C2(ϕ2)x −A′2ux,

(47)

as well as the interactive internal forces

τ1 = −∂W
∂ϕ1

= −A1ux −B1ϕ1, τ2 = −∂W
∂ϕ2

= −A2ux −B2ϕ2. (48)
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Accordingly, the balance of linear momentum results in

ρ0utt = ρ0c
2uxx +A1(ϕ1)x +A′1(ϕ1)xx +A2(ϕ2)x +A′2(ϕ2)xx, (49)

and evolution equations for internal variables (45) have the form

(ϕ1)t = R(τ2 − (η2)x), (ϕ2)t = −R(τ1 − (η1)x), (50)

or, in terms of internal variables

(ϕ1)t = R(C2(ϕ2)xx +A′2uxx −A2ux −B2ϕ2), (51)

(ϕ2)t = −R(C1(ϕ1)xx +A′1uxx −A1ux −B1ϕ1). (52)

The obtained evolution equations are coupled with the balance of linear momen-
tum (49).

6 Deduction of evolution equations via a variational principle

The variational principle can be alternatively used to derive the evolution equa-
tions derived in the previous sections, by using the D’Alembertian postulation
instead of the postulation based on balance equations and Clausius-Duhem in-
equality. This methodological choice can be regarded as preferable by somebody
for its conciseness and efficacity (see e.g. [23,30,31,32,29,7,20,21]). In order to
do this, following the standard procedure due to Hamilton [60], we introduce a
Lagrangian density function composed by kinetic and potential energies as follows

T =
1

2
ḋ ·M ḋ +G, (53)

W =
1

2
d ·Kd +

1

2
dx ·Kxdx + d ·Adx, (54)

where M is the mass parameter, G is the additional gyroscopic term

G =
1

2

(
ḋ ·Bd− d ·Bḋ

)
, (55)

(56)

where d and dx consist of internal variables and their gradients, respectively,

d =

uϕ
ψ

 and dx =

uxϕx
ψx

 , (57)

and where B, K, Kx, and A are material parameters,

K =

Kuu Kuϕ Kuψ

Kuϕ Kϕϕ Kϕψ

Kuψ Kϕψ Kψψ

 , Kx =

Kuu
x Kuϕ

x Kuψ
x

Kuϕ
x Kϕϕ

x Kϕψ
x

Kuψ
x Kϕψ

x Kψψ
x

 , A =

Auu Auϕ Auψ

Aϕu Aϕϕ Aϕψ

Aψu Aψϕ Aψψ

 .
(58)

The previous assumption needs some clarifying comments:
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1) The choice of a Lagrangian is the first step in the D’Alembertian postulation.
Very often the supporters of balance postulation ask why a specific Lagrangian
is “true”. To these supporters one should ask why balance laws are true and
why constitutive equations are true and why Clausius-Duhem inequality must be
true. We believe that the two approaches can be always treated in such a way
that they are equivalent. Indeed, it is very well known that every scientific theory
must be based on postulates which are basic assumptions whose validity can be
proven only a posteriori. It is worth noticing that this is a particular case of an
epistemological phenomenon that has been investigated by Pierre Duhem himself:
that of underdetermination of a scientific theory (see [26]). A class of phenomena,
indeed, does not uniquely determine the theoretical model which is able to describe
it; on the contrary, the same phenomena can be “saved” by different models, and
asking which one of these is “true” is often times pointless.

2) We will prove that the Euler-Lagrange equations deduced from the previ-
ous Lagrangian density functions are a generalization of the evolution equations
found in the previous sections. We leave to anybody to decide which approach is
preferable.

3) In particular, we underline that the role of the gyroscopic terms is very well
known in Lagrangian mechanics. We found particularly interesting the treatment
found in [39,5,12]. When one has a pair of Lagrangian parameters, whichever is
their physical meaning, in order to have an exchange of energy between these
two degrees of freedom, without dissipation, it is necessary to introduce a term in
the kinetic energy as those we postulated in the expressions in G. Even if in the
Euler-Lagrange equations one will find a term depending on first derivatives of
Lagrange parameters, so that one of them may appear to be non-conservative, all
together they will be conservative: Hamiltonian is constant along their solutions.
Physically speaking, the energy disappearing from one degree of freedom reap-
pears in another degree of freedom without loss. Many examples have been found
in various applications exploiting gyroscopic coupling [1,56,37]: the name of the
coupling being simply related to the first occurrence in the equations of the heavy
top. Here, we want to explicitly cite the suggestive and careful book by Crandall
[18].

The next step consists in writing the principle of minimum action as follows:

δ

∫ t

t0

∫ +∞

−∞
L dx dt = δ

∫ t

t0

∫ +∞

−∞
(W − T ) dx dt = 0, (59)

where L is the Lagrangian density function, and we will assume a Hamiltonian
structure for it, involving potential and kinetic energies. The first one will not
depend on time derivatives, while the second one will be either quadratic or linear
in these derivatives, in formulae

L(d, ḋ,dx) = W (d,dx)− T (d, ḋ) = W (d,dx)−
(
T1ḋ +

1

2
ḋ · T2ḋ

)
, (60)

where T1 and T2 are linear functions of the Lagrangian coordinates d.
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The first variation of each term in the Lagrangian density function is obtained
as follows:∫ t

t0

∫ +∞

−∞
δW dx dt =

∫ t

t0

∫ +∞

−∞

(
∂W

∂d
δd +

∂W

∂dx
δdx

)
dx dt

=

∫ t

t0

∫ +∞

−∞

[
∂W

∂d
δd +

∂

∂x

(
∂W

∂dx
δd

)
− ∂

∂x

(
∂W

∂dx

)
δd

]
dx dt

=

∫ t

t0

∫ +∞

−∞

[
∂W

∂d
− ∂

∂x

(
∂W

∂dx

)]
δd δx δt,∫ t

t0

∫ +∞

−∞
δT dx dt =

∫ t

t0

∫ +∞

−∞

(
∂T

∂d
δd +

∂T

∂ḋ
δḋ

)
dx dt

=

∫ t

t0

∫ +∞

−∞

[
∂T

∂d
− ∂

∂t

(
∂T

∂ḋ

)]
δd dx dt.

Then, by imposing that the condition given in Eqn. (59) is valid for every δd, we
get 1

∂W

∂d
− ∂

∂x

(
∂W

∂dx

)
− ∂T

∂d
+
∂

∂t

(
∂T

∂ḋ

)
= 0, (61)

where we used a compact vector form. Finally, by substituting the following pre-
viously calculated expressions

∂W

∂d
= Kd +Adx,

∂W

∂dx
= Kxdx +ATd,

∂T

∂d
= −1

2

(
B1 −BT1

)
ḋ,

∂T

∂ḋ
= M ḋ +

1

2

(
B1 −BT1

)
d,

into Eqn. (61), the linear evolution equations (linearity being a consequence of the
assumed quadratic form of Lagrangian density functions) are obtained as

Kd + (A−AT )dx −Kxdxx +M d̈ + (B −BT )ḋ = 0. (62)

Now, substuting the following particular choice of the matrices involved in the
definition of Lagrangian,

M =

ρ0 0 0
0 0 0
0 0 0

 , K =

0 0 0
0 B1 0
0 0 B2

 , Kx =

ρ0c2 A′1 A′2A′1 C1 0
A′2 0 C2

 ,
1 We remark here that also in the mechanics of metamaterials the visionary statement found

in Lagrange preface to analytical mechanics is true: “No figures will be found in this work. The
methods I present require neither constructions nor geometrical or mechanical arguments, but
solely algebraic operations subject to a regular and uniform procedure. Those who appreciate
mathematical analysis will see with pleasure mechanics becoming a new branch of it and hence,
will recognize that I have enlarged its domain.”
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A =

 0 −A1

2
−A2

2
A1

2 0 0
A2

2 0 0

 , B =

0 0 0
0 0 − 1

2R

0 1
2R 0

 ,
the final form of evolution equations, resulting to be equal to those obtained in
the previous sections, is

ρ0ü = ρ0c
2uxx +A′1ϕ1xx +A′2ϕ2xx +A1ϕ1xA2ϕ2x , (63)

− ϕ̇2

R
= C1ϕ1xx +A′1uxx −A1ux −B1ϕ1, (64)

ϕ̇1

R
= C2ϕ2xx +A′2uxx −A2ux −B2ϕ2. (65)

It should be noted that this equivalence holds due to the absence of dissipation in
the considered case.

7 Dispersion relation

In order to study dispersive effects, we derive the dispersion relations by assuming
the solutions in the form of harmonic waves

u(x, t) = ûei(kx−ωt), ϕ1(x, t) = ϕ̂1e
i(kx−ωt), ϕ2(x, t) = ϕ̂2e

i(kx−ωt), (66)

where k is the wavenumber, ω is the frequency, and i2 = −1.
It should be noted that time derivatives of evolution equations

(ϕ1)tt = R(C2(ϕ2)txx +A′2utxx −A2utx −B2(ϕ2)t), (67)

(ϕ2)tt = −R(C1(ϕ1)txx +A′1utxx −A1utx −B1(ϕ1)t), (68)

can be rearranged by means of Eqs. (51) and (52) as follows

(ϕ1)tt =−R2C2(C1(ϕ1)xx +A′1uxx −A1ux −B1ϕ1)xx +A′2Rutxx −A2Rutx+

+B2R
2(C1(ϕ1)xx +A′1uxx −A1ux −B1ϕ1),

(69)

(ϕ2)tt =−R2C1(C2(ϕ2)xx +A′2uxx −A2ux −B2ϕ2)xx −A′1Rutxx +A1Rutx+

+B1R
2(C2(ϕ2)xx +A′2uxx −A2ux −B2ϕ2).

(70)

Substituting relations (66) into Eqs. (49), (69), and (70) we get

− ρ0ûω2 = −ρ0c2ûk2 +A1ϕ̂1(ik)−A′1ϕ̂1k
2 +A2ϕ̂2(ik)−A′2ϕ̂2k

2, (71)

−ϕ̂1ω
2 =−R2C2[−C1ϕ̂1k

2 −A′1ûk2 −A1û(ik)−B1ϕ̂1](−k2) +A′2Rû(iω)k2−

−A2Rûωk +B2R
2[−C1ϕ̂1k

2 −A′1ûk2 −A1û(ik)−B1ϕ̂1],

(72)

−ϕ̂2ω
2 =−R2C1[−C2ϕ̂2k

2 −A′2ûk2 −A2û(ik)−B2ϕ2](−k2)−A′1Rû(iωk2)+

+A1Rûωk +B1R
2[−C2ϕ̂2k

2 −A′2ûk2 −A2û(ik)−B2ϕ̂2].

(73)
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The same can be represented in the matrix formρ0c2k2 − ρ0ω2 −iA1k +A′1k
2 −iA2k +A′2k

2

G1 F1 0
G2 0 F2

 û
ϕ̂1

ϕ̂2

 = 0, (74)

where

G1 = A′1R
2C2k

4+A1R
2C2(ik3)−A′2R(iω)k2+A2Rωk+A′1B2R

2k2+A1B2R
2(ik),

F1 = R2C2C1k
4 +B1R

2C2k
2 +B2R

2C1k
2 +B1B2R

2 − ω2,

G2 = A′2R
2C1k

4+A2R
2C1(ik3)−A′1R(iω)k2+A1Rωk+A′2B1R

2k2+A2B1R
2(ik),

F2 = R2C1C2k
4 +B2R

2C1k
2 +B1R

2C2k
2 +B2B1R

2 − ω2,

In order to get nontrivial solutions the determinant of this system must vanish,
i.e.,

(ρ0c
2k2 − ρ0ω2)F1F2 + (iA1k −A′1k2)G1F2 + (iA2k −A′2k2)F1G2 = 0. (75)

Since F1 = F2, the latter equation is slightly simplified

(ρ0c
2k2 − ρ0ω2)F1 + (iA1k −A′1k2)G1 + (iA2k −A′2k2)G2 = 0, (76)

and its explicit form can be reduced to

ρ0c
2k2(RC2C1k

4 +B1RC2k
2 +B2RC1k

2 +B1B2R− ω2/R)

− ρ0ω2(RC2C1k
4 +B1RC2k

2 +B2RC1k
2 +B1B2R− ω2/R)

−A1A1RC2k
4 +A1A

′
2ωk

3 + iA1A2ωk
2 −A1B2RA1k

2

−A′1A′1RC2k
6 + iA′1A

′
2ωk

4 −A′1A2ωk
3 −A′1A′1B2Rk

4

−A2A2RC1k
4 +A′1A2ωk

3 + iA2A1ωk
2 −A2A2B1Rk

2

−A′2A′2RC1k
6 + iA′2A

′
1ωk

4 −A′2A1ωk
3 −A′2A′2B1Rk

4 = 0.

Real and imaginary parts should be equal to zero separately, which demands for
the imaginary part

A1A2ωk
2 +A′1A

′
2ωk

4 +A2A1ωk
2 +A′2A

′
1ωk

4 = 0 (77)

or

A1A2 +A′1A
′
2k

2 = 0 (78)

The obtained condition can be satisfied for arbitrary k in following cases:

1. A1 = A′1 = 0;
2. A2 = A′2 = 0;
3. A1 = A′2 = 0;
4. A2 = A′1 = 0;
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Due to the symmetry of the adopted free energy with respect to internal variables,
it is sufficient to consider only cases 2 and 3.

In the case 2, dispersion relation (76) is reduced to

ρ0c
2k2(C2C1k

4 +B1C2k
2 +B2C1k

2 +B1B2 − ω2/R2)

− ρ0ω2(C2C1k
4 +B1C2k

2 +B2C1k
2 +B1B2 − ω2/R2)

−A1A1C2k
4 −A1A1B2k

2 −A′1A′1C2k
6 −A′1A′1B2k

4 = 0,

while in the case 3 we have

ρ0c
2k2(C2C1k

4 +B1C2k
2 +B2C1k

2 +B1B2 − ω2/R2)

− ρ0ω2(C2C1k
4 +B1C2k

2 +B2C1k
2 +B1B2 − ω2/R2)

−A′1A′1C2k
6 −A′1A′1B2k

4 −A2A2C1k
4 −A2A2B1k

2 = 0.

Introducing a characteristic frequency ω0 and a characterisric wavenumber k0, we
can represent the dispersion relation in the non-dimensional form

(ρ0c
2k20k

2 − ρ0ω2
0ω

2)(C2C1k
4
0k

4 +B1C2k
2
0k

2 +B2C1k
2
0k

2 +B1B2 − ω2
0ω

2/R2)

−A1A1C2k
4
0k

4 −A1A1B2k
2
0k

2 −A′1A′1C2k
6
0k

6 −A′1A′1B2k
4
0k

4 = 0

The natural choice for the connection between the characteristic frequency and
the characteristic wavenumber is ω0 = ck0 = R. For the convenience, we denote
C2k

2
0 = c2, C1k

2
0 = c1, which leads to

(k2 − ω2)(c2c1k
4 +B1c2k

2 +B2c1k
2 +B1B2 − ω2)

− A1A1c2k
2
0

ρ0c2
k4 − A1A1B2k

2
0

ρ0c2
k2 − A′1A

′
1c2k

4
0

ρ0c2
k6 − A′1A

′
1B2k

4
0

ρ0c2
k4 = 0.

Now we introduce

A1A1k
2
0

ρ0c2
= a21,

A′1A
′
1k

4
0

ρ0c2
= a′

2
1

and have finally a quadratic equation for k2 − ω2

(k2 − ω2)2 + (k2 − ω2)(c2c1k
4 +B1c2k

2 +B2c1k
2 +B1B2 − k2)

− a11c2k4 − a11B2k
2 − a′11c2k6 − a′

1
1B2k

4 = 0,
(79)

which has the standard solution

(ω2 − k2) = 0.5(c2c1k
4 +B1c2k

2 +B2c1k
2 +B1B2 − k2)

±
√

0.25(c2c1k4 +B1c2k2 +B2c1k2 +B1B2 − k2)2 + a21c2k
4 + a21B2k2 + a′21c2k

6 + a′21B2k4.

(80)
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Fig. 1: Variation of dispersion curves depending on values of the dimensionless
parameter c1

8 Band gaps in microstructured materials

In this section, we investigate the effects of different parameters on dispersion
curves and band gaps in microstructure. As can be seen from Eq. (80) there are
6 independent material parameters, and in order to analyse their roles, we start
with c2 = 0, which coincides with the unified microstructure model [8]

(ω2 − k2) = 0.5(B2c1k
2 +B1B2 − k2)

±
√

0.25(B2c1k2 +B1B2 − k2)2 + a21B2k2 + a′21B2k4.
(81)

We choose the starting point of the optical branch in such a way that it corresponds
to a unit frequency. Therefore, we have B1B2 = 1, as it follows from Eq. (81) and
we begin with investigating the effects of c1 on the dispersion curves by choosing
the following parameters: B1 = 1, c2 = 0, a1 = 0.4, and a′1 = 0.16. As can be
seen from Fig. 1, while the optical branch, in the considered case, changes slightly
with different c1 values, the acoustic branch varies significantly, and a band gap is
observed with the lower values of c1. In Figs. 2 and 3, we present the effects of the
dimensionless parameters a1 and a′1 on the band gap obtained with c1 = 0.025 in
the previous considered case. It is clearly seen that the band gap expands when
the value of a1 increases. However, the band gap does not change significantly
with different a′1 values, and here, we again observed that the optical branch is
not considerably affected by different values of a1 and a′1.

The influence of dimensionless parameters c2 is studied in Fig. 4. It is clear
that the band gap disappears with increasing c2 values, and the optical branch
varies slightly. We also studied the effects of the dimensionless parameter B1 on
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Fig. 2: Variation of dispersion curves depending on values of the dimensionless
parameter a1

Fig. 3: Variation of dispersion curves depending on values of the dimensionless
parameter a′1

the band gap. In Fig. 5, we observe that the lower values of B1, especially the
values less than 1, may affect not only the band gap but also the optical branch,
the widest band gap is obtaned with B1 = 0.2. On the other hand, higher values
of B1 (the values greater than 1) do not significantly affect the dispersion curves,
and so the band gap.
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Fig. 4: Variation of dispersion curves depending on values of the dimensionless
parameter c2

Fig. 5: Variation of dispersion curves depending on values of the dimensionless
paramater B1

We also elaborated an efficient code to systematically look for band gaps in
the plots of frequency dependence on wave numbers in planar waves. In our code,
we consider full dispersion relation Eq. (80) with B2 = 1

B1
. This is a novel situa-

tion with respect to the ones considered previously in the literature. Indeed, the
existence of two internal variables (ϕ1, ϕ2) implies the existence of two possible
internal elastic stiffnesses (B1, B2), which because of gyroscopic effect influence
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the derivative of the other internal degree of freedom. Now, we want to find which
band gaps exist in the dispersion relationships within some determined ranges
for the parameters B1, c1, c2, a1, and a′1. In order to do this we conceived a
computational procedure which adopts the following flowchart

Algorithm 1 Band Gaps

1. Choose the ranges for B1, c1, c2, a1, a′1 to be examined
2. Calculate the corresponding range of B2

3. Choose a tolerance, TOL > 0
4. Start a for loop over parameter ranges

– Calculate ω+ (optical branch) and ω− (acoustic branch)
– if ω+ − ω− > TOL and imag(ω+) = 0 and imag(ω−) = 0
– then store the corresponding B1, B2, c1, c2, a1, a′1 values, and the thickness of the

band gap.
– End the for loop

5. Find the maximum band gap thickness

We remark that we did not explicitly state our condition for the existence
of a energy conservation principle for the family of Lagrangian density functions
introduced in Eq. (60). However, we have imposed that the plane waves propagate
in the considered material without being neither damped nor forced so that for a
given wave number the frequency must be assumed to be real.

The influence of dimensionless parameters B1 and c2 is studied in Figs. 4 and
5. It is clear that the band gap contracts slightly with increasing c2 values while
it is expanded with lower values of B1.

We conclude this section by observing that the described algorithm allows us
to determine some values of the constitutive parameters for which the band gap
has as amplitude the value 0.8622 which seems to us to be close to the optimal
one. More investigation about this point is postponed to further investigation. The
value of the parameters calculated and the shape of the dispersion formulae are
shown in the following figure.

9 Propagation of wave trains in conceived metametarial

In this section, the behaviour of the internal variables is investigated by solving
the partial differential equations given by Eqs. (63), (64), and (65) with COM-
SOL Multiphysics R© considering a one-dimensional domain with a length of 20 m,
density ρ0 = 1, and the coefficients determined by the condition of maximality
of band gap amplitude. The simulation has been performed with the standard
package Weak Form PDE and therefore we do not need to describe it. We have
imposed for a very long slab of metamaterial on the left side boundary conditions
fixing equal to zero the value of all fields and we left free their derivatives. On
the other hand, on the right boundary an imposed displacement is assigned as a
function of time as specified in Fig. 7,

u(t) = A0 sech (κ [−αTs + t]) tanh (κ [−αTs + t]) +R0 (82)
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Fig. 6: Optimal band gap
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Fig. 7: Time-varying displacement boundary condition on the right side of the slab

where t ∈ [0, Ts], and Ts is the total simulation time which is 20 s in this study, α
is 0.1, κ is 6 s−1, A0 is 10−5 m and R0 is a constant to impose that u(0) vanishes.
The internal variables are again assigned to be zero at the right side, with all
derivatives being left arbitrary.

Finally, we have chosen as constitutive parameters those for which the band gap
is the widest possible (B1 = 0.5, c1 = 0.25, c2 = 0.05, a1 = 0.7, a′1 = 0.5). We are
aware that a complete Fourier analysis is needed of the incoming signal to describe
how the band gap cuts some of the frequencies contained in the Fourier spectrum
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(a) t = 4 s (b) t = 8 s

(c) t = 12 s (d) t = 20 s

Fig. 8: Displacement progress without internal variables

of incoming signal, and we are also aware that standing evanescent waves may
arise inside the slab varying periodically with time: we also postpone this analysis
to later investigations where we will more carefully consider the meaning of the
equations discussed after Eq. (78). In Fig. 8, we show how the displacement signal
progresses inside the slab when it is not coupled to the internal variables (R = 0).

This simulation will give us a benchmark for estimating the attenuation ca-
pacity of the designed metametarial. Indeed, with the optimal parameters already
found, in Fig. 9, we show how, in the considered slab, the excitation of the vibra-
tions of internal parameters is able to attenuate the amplitude and slow down the
progressing speed of the displacement wave.

Finally, in Fig. 10, the total energy is plotted as a function of time to verify
that there is no dissipation and so the system is conservative as it is expected.

10 Conclusion

The results presented in this paper are both theoretical and numerical. Indeed, we
proved that Lagrangian variational principles and Clausius-Duhem thermodynam-
ics give consistent predictions and exactly the same evolution equations also for
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(a) t = 4 s (b) t = 8 s

(c) t = 12 s (d) t = 20 s

Fig. 9: Displacement progress with internal variables

microstructured metametarials with two internal variables. On the other hand, we
have shown how one can optimize the constitutive parameters of a precise class of
metametarials to get a numerically optimized band gap for plane non-evanescent
waves. It is a remarkable observation the one which we obtained at the end of the
previous section: a slab of optimized metametarial, even in the absence of damping
and dissipation, can slow down a progressing displacement wave. Many questions
were left open for later investigations which did not appear of relevance before. We
list few of them: 1) It has to be cleared up the role of evanescent standing waves
and their relation with the conditions after Eqn (78), 2) boundary conditions for
finite slab and their influence in attenuation of displacement waves must be care-
fully considered, 3) non-linearities and damping must be included in the modeling,
4) inertia for internal variables must be generalized with a mass matrix M which
is positive definite and its influence on wave phenomena has to be investigated, 5)
the evolution equations deduced from the most complete Lagrangian, including all
gyroscopic effects, have to be studied and optimized, probably showing even more
effective band gaps.
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Fig. 10: Total energy as a function of time

Acknowledgements AB was supported by the EU through the European Regional Develop-
ment Fund and by the Estonian Research Council grant PUT434. DS is supported by a grant
from the Government of the Russian Federation (contract No. 14.Y26.31.0031).

References

1. Alessandroni, S., dell’Isola, F., Porfiri, M.: A revival of electric analogs for vibrating me-
chanical systems aimed to their efficient control by PZT actuators. International Journal
of Solids and Structures 39(20), 5295–5324 (2002)

2. Alibert, J.J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy
depending on higher displacement gradients. Mathematics and Mechanics of Solids 8(1),
51–73 (2003)

3. Altenbach, H., Eremeyev, V.A.: On the constitutive equations of viscoelastic micropolar
plates and shells of differential type. Mathematics and Mechanics of Complex Systems
3(3), 273–283 (2015)

4. Andrianov, I.V., Bolshakov, V.I., Danishevs’kyy, V.V., Weichert, D.: Higher order asymp-
totic homogenization and wave propagation in periodic composite materials. Proceed-
ings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
464(2093), 1181–1201 (2008)

5. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics. Springer Science & Business
Media (2013)

6. Askes, H., Metrikine, A.V., Pichugin, A.V., Bennett, T.: Four simplified gradient elasticity
models for the simulation of dispersive wave propagation. Philosophical Magazine 88(28-
29), 3415–3443 (2008)

7. Auffray, N., dell’Isola, F., Eremeyev, V.A., Madeo, A., Rosi, G.: Analytical continuum
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