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Abstract

Application of internal variables to the description of the influence of a microstructure on the overall behavior
of solids is presented and discussed. It is demonstrated on the one-dimensional example that capabilities of
strain gradient models are much less than those provided by internal variables.
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1. Introduction

Solid mechanics is the well established theory for
homogeneous bodies. Unfortunately, bodies are ho-
mogeneous only in the first approximation. Inho-
mogeneities of various size, distribution, and pro-
perties compose a microstructure in real materials.
The effect of the microstructure on overall response
of the body may not be necessarily small even if the
length scale of the microstructure is much smaller
than the length scale of the body. This is why the
influence of the microstructure should be taken into
account in the macroscopic material description.
The detailed description of a microstructure is

beyond the framework of solid mechanics. For sta-
tic problems it is often sufficient to use homoge-
nization methods of micromechanics (Mura, 1987;
Nemat-Nasser and Hori, 1993) for the determina-
tion of averaged properties of ”effective” media.
More sophisticated asymptotic (Chen and Fish,
2001; Awrejcewicz et al., 2012) or computational
(Geers et al., 2010) homogenization methods are
elaborated for dynamic and nonlinear problems.
The contemporary state of the art in this direction
is reviewed in (Matouš et al., 2017).
A more broad and universal description of the

microstructural influence is provided by generali-
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zed continuum theories (see overview by Maugin
(2011)). In these theories, material elements are
equipped by certain additional independent kine-
matic fields like the microrotation in a Cosserat
material or the microdeformation in the sense of
Mindlin (1964), who considered the material ele-
ment as a cell able to deform independently of the
rest of the body. In such micromorphic theory
(Eringen and Suhubi, 1964) the overall deformation
is composed by the macroscopic continuous defor-
mation and the internal microscopic deformation
of the inner structure. This is the most successful
top-down formulation of a two-level continuum mo-
del (Forest, 2013) It should be noted that the ma-
croscopic and microscopic balance laws are postula-
ted separately (Mindlin, 1964; Eringen and Suhubi,
1964). This poses a problem with suitable boun-
dary conditions at the microscopic level.

One more possibility provides the introduction
of internal variables to characterize the influence
of a microstructure on the global behavior of a
material (Coleman and Gurtin, 1967; Rice, 1971;
Maugin and Muschik, 1994a). However, only the
extension of the formalism of internal variables
(Ván et al., 2008) ensures thermodynamically con-
sistent hyperbolic evolution equations of internal
variables (Engelbrecht and Berezovski, 2013, 2015).
This extension is based on ideas of Gérard Mau-
gin (Maugin, 1990; Maugin and Muschik, 1994a;
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Maugin, 2006). In what follows, these ideas are
presented systematically and results are compared
with strain gradient models.

2. Historical remarks

A long history of the concept of internal varia-
bles is described in (Maugin, 2015). We point out
here only basic steps. In the opinion of Truesdell
(1984), Duhem was the first who introduced what
are now called internal state variables. A large scale
thermodynamic parameter of state was proposed
by Bridgman (1943) in 1940s. Meixner and Reik
(1959) introduced internal variables in the context
of solid mechanics. Coleman and Gurtin (1967)
presented the thermodynamic theory of internal va-
riables of state with presupposed first-order evo-
lution equations for the internal variables and
without inclusion of their gradients. The inter-
nal variable theory was well formalized in 1970s
(Kratochvil and Dillon Jr, 1969; Kestin and Rice,
1970; Rice, 1971; Valanis, 1972; Lubliner, 1973).
The introduction of the local accompanying state
concept (Bataille and Kestin, 1979; Germain et al.,
1983; Bampi and Morro, 1984; Müller, 1985) enlar-
ges the interest to internal variables. This con-
cept was elaborated by Muschik (1990); Maugin
(1990); Muschik (1991, 1993) and Kestin (1992,
1993) in 1990s. The clear distinction between in-
ternal variables of state and dynamic degrees of
freedom was emphasized by Maugin and Muschik
(1994a,b) in their seminal review. The general
single internal variable theory enriched by the ex-
tra entropy flux is presented recently by Maugin
(2006). Contemporary view on the internal varia-
ble theory can be found in (Müller and Weiss, 2012;
Voyiadjis and Faghihi, 2014; Maugin, 2015).

The contribution of Professor Maugin to the ad-
vancement of the theory of internal variables can-
not be overestimated. He proposed the efficient se-
lection of the extra entropy flux (the concept intro-
duced by Müller (1967)) in order to eliminate diver-
gence term in the dissipation inequality (Maugin,
1990). The exposition of the theory of internal va-
riables in (Maugin and Muschik, 1994a,b) and in
(Maugin, 1999) were real landmarks for researchers.
He finalized the weakly nonlocal thermomechani-
cal theory with single internal variable in (Maugin,
2006).

3. Thermomechanical single internal varia-

ble theory

The internal variable theory supposes the exten-
sion of the state space by means of an internal va-
riable (and its gradient of the internal variable in
a weakly nonlocal theory). The internal variable ϕ
is considered here as a second-order tensor. Then
the free energy per unit volume W is specified as a
sufficiently regular function of the deformation gra-
dient F, temperature θ, and internal variable and
its gradient

W =W (F, θ,ϕ,∇Rϕ), (1)

where ∇R denotes the gradient operator in the re-
ference configuration.
Accordingly, the first Piola-Kirchhoff stress ten-

sor T, the entropy S, and affinities A and A are
introduced by equations of state

T =
∂W

∂F
, S = −

∂W

∂θ
,

A = −
∂W

∂ϕ
, A = −

∂W

∂∇Rϕ
.

(2)

Following Maugin (2006), we represent the canoni-
cal balance equations of momentum and energy in
the absence of body forces in the form

∂P

∂t

∣∣∣∣
X

−DivRb̃ = f th + f̃ intr, (3)

∂(Sθ)

∂t

∣∣∣∣
X

+∇R · Q̃ = hth + h̃intr , (4)

with the material momentum

P = −ρ0vF, (5)

the modified Eshelby stress tensor

b̃ = −(L1R +TF−A : (∇Rϕ)
T ), (6)

thermal sources

f th = S∇Rθ, hth = Sθ̇, (7)

and intrinsic source terms

f̃ intr := Ã : (∇Rϕ)
T , h̃intr := Ã : ϕ̇. (8)

Here, as in (Maugin, 2006), ρ0 is the matter density
(in the reference configuration), v is the physical
velocity, DivR denotes the divergence operator in
the reference configuration,

Ã = A−DivRA, L = K −W, (9)

and K is the kinetic energy per unit volume.
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3.1. Dissipation inequality

The balance equations are complemented by se-
cond law of thermodynamics

∂S

∂t

∣∣∣∣
X

+∇R · S ≥ 0, S = (Q/θ) +K, (10)

which can be presented in the form of the dissipa-
tion inequality

(A− (DivRA)) : ϕ̇− S · ∇Rθ ≥ 0, (11)

if the extra entropy flux K is selected as (Maugin,
1990)

K = −θ−1
A : ϕ̇. (12)

3.2. Simple evolution equation for internal variable

It is clear that in the isothermal case dissipation
inequality (11) is reduced to

h̃intr := Ã : ϕ̇ ≥ 0. (13)

The simplest choice for the evolution equation for
the internal variable ϕ providing the satisfaction of
inequality (13) is the following:

ϕ̇ = LÃ, (14)

with the appropriate tensor L. The dissipation in-
equality will be satisfied with positive definiteness
of L

h̃intr = Ã : (LÃ) ≥ 0. (15)

It is remarkable that evolution equation (14) takes
the typical Ginzburg-Landau (or Allen-Cahn) form

ϕ̇ = −L

(
∂W

∂ϕ
−DivR

∂W

∂(∇Rϕ)

)
. (16)

Such type of an evolution equation is commonly
used in the phase field theory (Giorgi, 2009, e.g.).
It can be generalized to the Cahn-Hilliard-type as
well (Giorgi, 2009).

4. Strain gradient model in one dimension

Now we consider a simple one-dimensional ex-
ample. The quadratic free energy function in one
dimensional setting is

W =
ρc2

2
u2
x
+Aϕxux +

1

2
Bϕ2 +

1

2
Cϕ2

x
, (17)

where ρ is the density, c is the elastic wave speed in
the medium without microstructure, and constant
parameters A,B, and C depend on the material.
The corresponding stresses are calculated as fol-

lows:

σ =
∂W

∂ux
= ρc2ux +Aϕx, (18)

η = −
∂W

∂ϕx

= −Aux − Cϕx, (19)

and the interactive internal force τ is, respectively,

τ = −
∂W

∂ϕ
= −Bϕ. (20)

The balance of linear momentum takes the form

ρutt = ρc2uxx +Aϕxx, (21)

and the evolution equation for the internal varia-
ble in the fully non-dissipative case (with Ã = 0)
reduces to

τ − ηx = Cϕxx +Auxx −Bϕ = 0. (22)

By means of Eq. (21) the latter relation can be
represented in the form

ϕ =
C

B

(
ρutt − ρc2uxx

)
+
A

B
uxx. (23)

If coefficient C vanishes then we arrive at the strain
gradient model

ϕ =
A

B
uxx, (24)

which results in the equation of motion of the form

ρutt = ρc2uxx +
A2

B
uxxxx. (25)

It should be noted that in the terms of stresses the
first-order strain gradient model (24) coincides with
the second-order strain gradient model in the spirit
of Aifantis (Askes and Aifantis, 2011), since, follo-
wing (18) and (24),

σ = ρc2ux +
A2

B
uxxx. (26)

Accordingly, in the case of a non-zero value of the
coefficient C the more general model is obtained
(Berezovski et al., 2011a)

utt = c2uxx+
C

B

(
utt − c2uxx

)
xx

+
A2

ρB
uxxxx. (27)

Thus, the strain gradient model is a restricted case
in the single internal variable theory.
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5. Dual internal variables

As we have seen, the single internal variable the-
ory does not include microinertia. This theory is
applicable to dissipative processes only (Maugin,
2006). The generalisation of the internal variable
theory (Ván et al., 2008) unifies internal variables
of state and dynamic degrees of freedom. The ex-
tension uses the theory with a single internal vari-
able as the pattern.
Introducing two internal variables ϕ and ψ we

will consider them as second-order tensors like in
the case of the single internal variable. The state
space is enlarged correspondingly and we have for
the free energy per unit volume W

W =W (F, θ,ϕ,∇Rϕ,ψ,∇Rψ). (28)

Additional affinitiesB and B appear in equations of
state in the comparison with the case of the single
internal variable

T =
∂W

∂F
, A = −

∂W

∂∇Rϕ
, A = −

∂W

∂ϕ
,

S = −
∂W

∂θ
, B = −

∂W

∂ψ
, B = −

∂W

∂∇Rψ
.

(29)

Similarly to the case of single internal variable, the
canonical equations of momentum and energy keep
their form (Berezovski et al., 2011b)

∂P

∂t
−DivRb̃ = f th + f̃ intr , (30)

∂(Sθ)

∂t
+∇R · Q̃ = hth + h̃intr, (31)

with the modified Eshelby stress tensor

b̃ = −(L1R +TF).−

− (.A : (∇Rϕ)
T )−B : (∇Rψ)

T ),
(32)

and intrinsic source terms

f̃ intr := Ã : ∇Rϕ+ B̃ : ∇Rψ,

h̃intr := Ã : ϕ̇+ B̃ : ψ̇.
(33)

As in the case of single internal variable, the follo-
wing notation is used

Ã = A−DivRA, (34)

B̃ = B−DivRB, (35)

S̃ = θ−1Q̃, Q̃ = Q−A : ϕ̇−B : ψ̇. (36)

5.1. Evolution equations for internal variables

Accounting for expression of the internal heat
source (33), the dissipation inequality is rewritten
as follows:

(A− (DivRA)) : ϕ̇+ (B− (DivRB)) : ψ̇+

+∇R ·

(
A : ϕ̇+B : ψ̇ + θK

)
−

− S̃ · ∇Rθ ≥ 0.

(37)

We select the extra entropy flux in the form similar
to that in the case of the single internal variable

K = −θ−1
A : ϕ̇− θ−1

B : ψ̇, (38)

to eliminate the divergence term in the dissipation
inequality. Then the resulting dissipation inequa-
lity

h̃intr − S̃∇Rθ ≥ 0, (39)

is simplified in the isothermal case to

h̃intr = Ã : ϕ̇+ B̃ : ψ̇ ≥ 0. (40)

The general form of a linear solution of dissipation
inequality (40) can be represented as

(
ϕ̇

ψ̇

)
=

(
L11 L12

L21 L22

)(
Ã

B̃

)
, (41)

where components L11, ...,L22 of the linear ope-
rator L are dependent on state variables (Gurtin,
1996).

The specific form of the evolution equations for
the internal variables ϕ and ψ depends on the va-
lues of components of the linear operator L.

5.2. Non-dissipative case

To avoid dissipative effects, we are forced to use
the skew-symmetric case (L11 = L22 = 0 and L12 =
−L21). In this case, evolution equations for the two
internal variables are fully coupled

ϕ̇ = L12
B̃, ψ̇ = −L12

Ã, (42)

and the dissipation h̃intr vanishes. It should be
noted that the evolution of one internal variable
is driven by another one that means the duality
between the internal variables.
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6. Microstructure model in one dimension

As an example, let us consider one-dimensional
case. Specifically, we can derive a microstruc-
ture model having the evolution equations for in-
ternal variables in the non-dissipative case. We
start with a quadratic free energy dependence
(Berezovski et al., 2011a)

W =
ρc2

2
u2x +Aϕxux +

1

2
Bϕ2 +

1

2
Cϕ2

x +
1

2
Dψ2,

(43)
where, as before, A,B,C, and D are material pa-
rameters characterizing microstructure influence.
For simplicity, only the contribution of the second

internal variable itself is included. Then we can
calculate stresses

σ =
∂W

∂ux
= ρc2ux +Aϕx,

η = −
∂W

∂ϕx

= −Aux − Cϕx, ζ = −
∂W

∂ψx

= 0,

(44)

and the interactive internal force τ

τ = −
∂W

∂ϕ
= −Bϕ. (45)

The affinity with respect to the dual internal vari-
able is, respectively,

ξ = −
∂W

∂ψ
= −Dψ. (46)

In the isothermal case, the dissipation inequality
reduces to the intrinsic part depending only on in-
ternal variables

h̃intr = (τ − ηx)ϕt + (ξ − ζx)ψt ≥ 0. (47)

It is easy to see that the choice

ϕt = R(ξ − ζx), ψt = −R(τ − ηx), (48)

where R is an appropriate constant, leads to zero
dissipation. Therefore, dissipation inequality (47) is
satisfied automatically with choice (48). In the non-
dissipative case, evolution equation for the internal
variable ϕ (48)1 can be presented as

ϕt = −RDψ. (49)

Making the time differentiation of Eq. (49) and
taking into account the evolution equation for the

dual internal variable (48)2 we arrive at the hyper-
bolic equation for the internal variable ϕ

ϕtt = R2D(τ − ηx). (50)

Now we can represent the equations of motion both
for macroscale and microscale in the form, which
includes the internal variable ϕ only

ρutt = ρc2uxx +Aϕxx, (51)

Iϕtt = Cϕxx +Auxx −Bϕ, (52)

where I = 1/(R2D).
The constructed model describing the influence

of microstructure by means of dual internal varia-
bles is non-dissipative. Equations of motion at both
macro- and micro-levels are hyperbolic. The hyper-
bolicity of the equation of motion at the microlevel
is a direct consequence of the non-dissipativity re-
quirement.

6.1. Single dispersive wave equation

It is possible to obtain a single wave equation
from Eqs. (51) and (52). To do that we determine
the second space derivative of the internal variable
from Eq. (52)

ϕxx = −
I

B
ϕttxx +

C

B
ϕxxxx +

A

B
uxxxx, (53)

and its fourth derivatives from Eq. (51)

A

ρ
ϕxxxx =

(
utt − c2uxx

)
xx
,

A

ρ
ϕttxx =

(
utt − c2uxx

)
tt
.

(54)

Inserting the results into balance of linear momen-
tum (51), we obtain the fourth-order equation

utt = c2uxx +
C

B

(
utt − c2uxx

)
xx

−

−
I

B

(
utt − c2uxx

)
tt
+
A2

ρB
uxxxx.

(55)

This is a general dispersive wave equation for the
Mindlin-type model of the microstructure influence
(Berezovski et al., 2011a).

6.2. Remark on strain gradient models

Since the strain gradient has not its own iner-
tia, the coefficient I vanishes if the internal varia-
ble ϕ is identified with the strain gradient. In such
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a case, the remaining part of Eq. (55) coincides
with Eq. (27) obtained in the case of a single inter-
nal variable. This means that the strain gradient
models are constrained having only some limited
nonlocality due to the appearance of an internal
length scale. Moreover, as it is noted by Chen et al.
(2003), ”classical continuum theory, the gradient
theories, and the couple stress theories do not stem
from the considerations of microstructure or micro-
motion and as a consequence, would break down if
the micromotion and/or the microstructure become
too significant to be neglected.”

7. Conclusions

The use of internal variables for the description
of the influence of a microstructure on the overall
behavior of solids is not new idea. However, for
a long time internal variables of state have been
used for the accounting of internal dissipation in
contrast to dynamic degrees of freedom, which pos-
sess their own balances. The introduction of dual
internal variables unifies the treatment both inter-
nal variables of state and dynamic degrees of free-
dom (Ván et al., 2008). Both parabolic evolution
equations for dissipative internal variables and hy-
perbolic evolution equations in the absence of dis-
sipation are covered by the extension of the theory
of internal variables. Evolution equations for inter-
nal variables follow from the dissipation inequality
and, therefore, are thermodynamically consistent.
The structure of well known evolution equations for
the Cosserat microrotation and for the micromor-
phic microdeformation is recovered in the frame-
work of the proposed approach (Berezovski et al.,
2011b; Ván et al., 2014). This approach is more
flexible and powerful than less sophisticated and
therefore more popular phase field and strain gra-
dient models.

The given description of the dual internal va-
riables is constrained by non-dissipative proces-
ses. The complete dual internal variables the-
ory comprising thermal effects can be found in
(Berezovski and Ván, 2017). It should be empha-
sized once more that the dual internal variables
theory is a direct extension and continuation of
the single internal variable theory accomplished by
Maugin (2006).
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