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Abstract
The paper is devoted to evolving discontinuities in elastic solids. A discontinuity
is represented as a singular set of material points. Evolution of a discontinuity is
driven by the configurational force acting at such a set. The main attention is paid
to the determination of the velocity of a propagating discontinuity. Martensitic phase
transition front and brittle crack are considered as representative examples.
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Introduction

In the framework of continuum mechanics, a discontinuity can be idealized as a surface
of discontinuity in 3D and a line defect in 2D (Maugin (2000)). Among various
possible discontinuities in elastic solids, propagating discontinuities hold a special
place due to their theoretical complexity and practical importance. Dynamics of such
discontinuities is determined by two factors, i.e., by the driving force acting at the
discontinuity and by the discontinuity velocity. Both the driving force and the velocity
of discontinuity have been subjects of intensive research in the case of phase transition
fronts (Abeyaratne and Knowles(2006)) and crack dynamics (Freund(1990); Broberg
(1999); Ravi-Chandar(2004)). The driving force acting at discontinuity is a specific
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example of the well established concept of configurational forces (Maugin (1995);
Kienzler and Herrmann(2000); Gurtin (2000); Maugin (2011)). However, the velocity
of a discontinuity cannot be uniquely determined in the standard continual framework. A
possibility of the computation of the value of the velocity of a discontinuity is discussed
in the paper on the basis of the thermodynamically consistent finite-volume algorithm
(Berezovski et al.(2008)).

Discontinuities in elastic solids attracted the attentionof Prof. Maugin for
decades. His main contribution in this field was the advancement of the concept
of driving (configurational) forces acting at a discontinuity. The formulation of the
principle of virtual power for media presenting singular surfaces and interfaces
(Daher and Maugin(1986)) can be considered as the starting point. At the next step,
this formulation was applied for nonlinear electroelasticsolids and extended on the
case of shocks (Ani and Maugin(1988, 1989)). Various representations of the balance
of linear momentum in nonlinear inhomogeneous elasticity were critically examined
to demonstrate their similarity and distinction (Maugin and Trimarco(1992); Maugin
(1993)).

The field theoretic formulation of nonlinear anistropic inhomogeneous elasticity
capturing the essential material properties uses notions of pseudomomentum, Eshelby
stress, and inhomogeneity force. This formalism has been applied to the case of an elastic
body containing a crack of finite extent, following in the notion of suction force acting
at the tip of the crack (Dascalu and Maugin(1993); Maugin(1993)). The J-integral and
energy-release rates in dynamical fracture were analyzed in terms of material formulation
for magnetoelastic (Maugin (1994)), electroelastic (Dascalu and Maugin(1994)),
piezoelectric (Dascalu and Maugin(1995)), and ferromagnetic (Sabir and Maugin
(1996)) finitely deformable materials with cracks.

Another example of the discontinuity is provided by phase-transition fronts in
thermoelastic solids. The transition of a thermoelastic phase into another one
with different symmetry is viewed as the progress of a material inhomogeneity
(Maugin and Trimarco(1995a,b)). This progress is intimately related to the canonical
formulation of balance laws, which determines the jump relations that must hold at
a coherent phase-transition front. All these findings were summarized by unifying the
notion of material force for all types of inhomogeneities inelastodynamics, fracture,
defect mechanics, and in the propagation of phase transition fronts (Maugin (1995)).
The developed formalism has been extended then on thermoelastic ferromagnets
(Fomethe and Maugin(1997)), thermoelectroelastic crystals (Maugin and Trimarco
(1997)), and hard ferromagnets (Fomethe and Maugin(1998)).

As a logical consequence, the canonical formalism that considers simultaneously the
second law of thermodynamics and the balance of canonical momentum is used to
incorporate the case of shock waves among those singularitysets whose dissipation
is in fact related to the power expanded by a driving force in an irreversible motion
of the singularity set (Maugin (1997, 1998)). It was shown that the formal expression
of the driving force acting on a one- dimensional or two-dimensional singular set of
material points (crack tip in fracture, phase-transition front or shock wave) and of
the accompanying dissipation in an irreversible progress of the set is independent of
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the precise material behavior at regular points (Maugin and Berezovski(1999); Maugin
(2000); Maugin and Trimarco(2001)).

The material symmetry of the physical system is broken by thepresence of a field
singularity of a given dimensionality (point, line, surface, volume). Usually all these
domains were studied separately but a general framework (Eshelbian mechanics) was
developed in a somewhat synthetic form. In this framework, all configurational forces
appear as forces of a non-Newtonian nature, acting on the material manifold (the set
of points building up the material whether discrete or continuous) and not in physical
space which remains the realm of Newtonian forces. That is, configurational forces
acquire a true physical meaning only in so far as they contribute to the global dissipation
(Maugin and Trimarco(2001); Maugin(2003)).

Configurational forces are thermodynamic conjugates to irreversible material body
evolutions such as extension of cracks, progress of phase-transition fronts, movement
of shock waves, etc. They do correspond to a change of material configuration. Various
configurational forces such as those appearing in inhomogeneous bodies, at the tip
of a propagating crack, at the surface of a propagating phase-transition front, or of
a shock wave, and those due to local structural rearrangements (plasticity, damage,
growth), were unified and examined from the point of view of their dissipated power
(Maugin and Berezovski(2008); Maugin(2011)).

Theoretical elaboration was complemented by numerical simulation of moving
discontinuities. It was provided in a series of papers devoted to stress-induced martensitic
phase-transition front propagation (Berezovski and Maugin(2002a); Berezovski et al.
(2002, 2003); Berezovski and Maugin(2003, 2005c); Berezovski et al.(2006)). The
results were summarized in the book byBerezovski et al.(2008).

While the configurational driving force acting at the phase boundary can be calculated
by means of standard numerical methods, the velocity of the phase transition front or
the crack tip depends on an unknown stress jump at the discontinuity. The problem
cannot be resolved theoretically without an additional assumption regarding a kinetic law
(Truskinovsky(1987); Abeyaratne and Knowles(1990); Maugin and Trimarco(1995b)).
Fortunately, it has an algorithmic solution based on thermodynamic consistency
(Maugin and Berezovski(2003); Berezovski and Maugin(2004)) in the case of singular
surfaces (Berezovski and Maugin(2005a,b); Maugin and Berezovski(2009)). In what
follows, the review of our main results in the discontinuity dynamics and their
unification is presented. The attention is paid for basic ideas following from the
material description of inhomogeneities in elastic solidsproposed by Prof. Maugin.
First, we describe the numerical algorithm in detail on example of martensitic phase-
transition front propagation.Then a more sophisticated consideration is given for
the dynamics of straight-through brittle crackfollowing (Berezovski et al.(2007);
Berezovski and Maugin(2007b, 2010)).

Martensitic phase-transition front

The most clear example of an evolving discontinuity in elastic solids is a stress-
induced phase-transition front between martensite and austenite phases in a shape
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memory material, because its continuum description can be considered in one-
dimensional setting (Abeyaratne and Knowles(2006)). Martensitic transformations are
first order, diffusionless, shear solid state structural changes (Christian (1965)). The
propagation of phase interfaces in shape-memory alloys under applied stress is
an experimentally observed phenomenon, which provides a hysteretic behaviour of
shape-memory materials (Shaw and Kyriakides(1997)). At the continuum level of
description, the phase-transition front is represented bya surface of discontinuity of
zero thickness separating the different homogeneous austenite and martensite phases
(Abeyaratne and Knowles(2006)).

The simplest formulation of the stress-induced phase-transition front propagation
problem is given in the case of an isothermal uniaxial motionof a bar. Consider an
isothermal motion of a bar with a unit cross-section. The baroccupies the interval
0 < x < L in a reference configuration and assumed to be long compared to its diameter
so it is under uniaxial stress state and the stressσ(x, t) depends only on the axial position
and time. The density of the materialρ is assumed constant.

Let u(x, t) be the displacement of a pointx at timet in the reference configuration.
Then strain and velocity fields are given by

ε(x, t) =
∂u

∂x
, v(x, t) =

∂u

∂t
, (1)

respectively. Away from a phase boundary, balance of linearmomentum and kinematic
compatibility require that

ρ
∂v

∂t
=

∂σ

∂x
, (2)

∂ε

∂t
=

∂v

∂x
, (3)

where the functionσ(ε) specifies the stress-strain relation.
The velocity and strain fields subject to the following initial and boundary conditions:

ε(x, 0) = v(x, 0) = 0, for 0 < x < L, (4)

v(0, t) = v0(t), ε(L, t) = 0, for t > 0, (5)

wherev0(t) is a given time-dependent function.
Suppose now that an isolated strain discontinuityS propagates along the bar with a

velocity V . On the discontinuityS the balance laws reduce to the Rankine-Hugoniot
jump conditions

V [[ε]] + [[v]] = 0, (6)

V [[ρv]] + [[σ]] = 0, (7)

where
[[A]] = A+ −A− (8)

denotes the jump of the enclosure at discontinuity, andA± denote the uniform limits of
A in approaching the discontinuity from the± side.
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It is well understood that the martensitic phase transformation is a dissipative process
that involves entropy change (Abeyaratne and Knowles(2006)). The strain discontinuity
that occurs across a propagating phase boundary is a source of dissipation. The
energy dissipation at moving martensitic phase boundariesexplains the experimentally
observed hysteresis. Irreversibility due to the dissipation leads one to the notion
of the driving force on a phase boundary (Heidug and Lehner(1985); Truskinovsky
(1987); Abeyaratne and Knowles(1990); Maugin and Trimarco(1995b)). Therefore,
jump relations (6), (7) must be supplemented by the entropy inequality in the form

fSV ≥ 0. (9)

where

fS = −[[W ]] + 〈σ〉[[ε]], (10)

is the associated configurational driving force,W is free energy per unit volume,
〈σ〉 = (σ+ + σ−)/2.

The macroscopic jump conditions do not provide enough information to specify the
velocity of the phase boundaryV uniquely. The uniqueness of the solution is provided
by the introduction of two supplementary constitutive-like relationships: a kinetic law
for a driving force that establishes the speed of the transformation front and a nucleation
criterion (Abeyaratne and Knowles(2006)). The constitutive theory of kinetic relations
is not completely established yet. However, the velocity ofthe phase boundary can be
determined algorithmically in spite of the absence any kinetic relation. The main idea is
based on the relation

V 2 =
[[σ]]

ρ[[ε]]
, (11)

which follows from jump relations (6) and (7) since the densityρ is constant in the
considered case. The only question is in the accuracy of the determination of the stress
(or strain) jump at the interface. Fortunately, the stress jump can be accurately determined
algorithmically.

Finite volume interpretation

Averaged and excess quantities

Numerical methods deal with approximated values of field variables. In finite volume
methods such an approximation is achieved by simple averaging over the computational
cell (Eymard et al.(2000)). This means that the value of any extensive quantityA is the
sum of its averaged counterpartĀ and its excess partAex,

A = Ā+Aex. (12)

In the case of elasticity

σ = σ̄ +Σ v = v̄ + V . (13)
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Here overbars still denote averaged quantity andΣ andV are the corresponding excess
quantities. However, the introduced excess quantities areuseless (and even superfluous)
until the rules of their treatment are specified.

Let us introduce a computational grid of cellsCn = [xn, xn+1] with interfacesxn =
n∆x and time levelstk = k∆t. For simplicity, the grid size∆x and time step∆t are
assumed to be constant.

Integrating the balance of linear momentum (2) over the computational cell gives:

ρ
∂

∂t

∫ xn+1

xn

vdx = σ+
n − σ−

n = σn +Σ+
n − σn − Σ−

n = Σ+
n − Σ−

n , (14)

where superscripts ”+” and ”-” denote values of the quantities at right and left boundaries
of the cell, respectively. Similarly, the kinematic compatibility ( 2) leads to

∂

∂t

∫ xn+1

xn

εdx = v+n − v−n = vn + V+
n − vn − V−

n = V+
n − V−

n . (15)

The definition of averaged quantities

ρvn =
1

∆x

∫ xn+1

xn

ρ(x, tk)v(x, tk)dx, εn =
1

∆x

∫ xn+1

xn

ε(x, tk)dx, (16)

allows us rewrite a first-order Godunov-type scheme in termsof excess quantities(c.f.
Berezovski and Maugin(2001))

(ρv)k+1
n − (ρv)kn =

∆t

∆x

(

(Σ+
n )

k − (Σ−
n )

k
)

, (17)

ε̄k+1
n − ε̄kn =

∆t

∆x

(

(V+
n )k − (V−

n )k
)

. (18)

Here the superscriptk denotes time step and the subscriptn denotes the number of
computational cell. Now we need to compute the values of excess quantities.

Excess quantities in the bulk
Though the excess quantities are determined formally everywhere inside computational
cells, we need to know their values only at the boundaries of the cells, where they play the
role of numerical fluxes. The boundaries between computational cells represent regular
material points and therefore the total stress should be continuous across the boundary
between cells

[[σ̄ +Σ]] = 0. (19)

The same condition follows from the jump relation for the linear momentum, because
the boundary between computational cells does not move. Jump relation (19) can
be considered as thecontinuity of genuine unknown fieldat the boundaries between
computational cells(Berezovski et al.(2008)).
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Similarly, the jump relation following from the kinematic compatibility reads

[[v̄ + V ]] = 0. (20)

It is instructive to represent jump relations (19) and (20) in the numerical form

(Σ+

n−1)
k − (Σ−

n )
k = (σ̄n)

k − (σ̄n−1)
k, (21)

(V+

n−1)
k − (V−

n )k = (v̄n)
k − (v̄n−1)

k. (22)

The values of excess stresses and excess velocities at the boundaries between
computational cells are not independent. Using the conservation of Riemann invariants
(Berezovski(2011)), we have for excess quantities

ρncn(V
−
n )k + (Σ−

n )
k ≡ 0, (23)

ρn−1cn−1(V
+

n−1)
k − (Σ+

n−1)
k ≡ 0, (24)

wherec denotes the velocity of elastic wave.
Eqs. (21)-(24) composethe system of linear equations for the determination of excess

quantities. This system of equations can be solved exactly for each boundary between
computational cells. After that the field quantities can be updated for the next time step
by means of numerical scheme (17)-(18).

Excess quantities at the phase boundary
To determine the values of excess stresses at the moving phase boundary, we keep
the continuity of excess stresses across the phase boundary(Berezovski et al.(2008);
Berezovski and Maugin(2010))

[[Σ]] = 0, (25)

which yields
(

Σ+

p−1

)k
−
(

Σ−
p

)k
= 0, (26)

where phase boundary is placed between elements(p− 1) and(p).
The last jump relation can be interpreted as theconservation of the genuine jump at

the phase boundaryin the numerical calculations(Berezovski et al.(2008)) because (25)
means that

[[σ]] = [[σ̄ +Σ]] = [[σ̄]]. (27)

To be consistent, we require the conservation of the genuinejump also for velocity

[[V ]] = 0. (28)

We still keep the relations between excess stresses and excess velocities (23), (24). This
means that in terms of excess stresses Eq. (28) yields

(Σ+

p−1)
k

ρp−1cp−1

+
(Σ−

p )
k

ρpcp
= 0. (29)
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It follows from conditions (26) and (29) that the values of excess stresses vanish at the
phase boundary

(Σ+
p−1)

k = (Σ−
p )

k = 0. (30)

Similarly, due to relations (23), (24)

(V+
p−1)

k = (V−
p )k = 0. (31)

Now all the excess quantities at the phase boundary are determined, and we can update
the state of elements adjacent to the phase boundary. Due to the conservation of the stress
jump at the phase boundary, we can apply now relation (11) for the determination of the
velocity of the phase boundary.

Thus, the supplementary constitutive information needed to avoid the non-uniqueness
of the solution of the boundary-value problem is provided bymeans of non-equilibrium
jump relations at the moving phase boundary, which are formulated in terms of excess
quantities. The same excess quantities are used in the construction of a finite-volume
numerical scheme (Berezovski and Maugin(2001, 2002b)) that coincides with the
conservative wave propagation algorithm in the absence of phase transformation. The
continuity of the excess quantities at the phase boundary leads to the conservation
of genuine jumps at the phase boundary. As a result, a closed system of governing
equations and jump relations can be solved numerically. Results of such calculations
are presented in (Berezovski and Maugin(2002a); Berezovski et al.(2002, 2003);
Berezovski and Maugin(2003, 2005c); Berezovski et al.(2006, 2008)).

Straight brittle crack

Dynamic crack propagation is the subject of numerous articles and books due to its
practical importance. The main difficulty in the theoretical description of the crack
dynamics is the singularity of stress distribution in the vicinity of the crack tip in the
framework of linear elasticity (Freund(1990); Broberg(1999); Ravi-Chandar(2004)). In
practice, the singularity is avoided by means of various ways, such as the introduction
of a nonlinear zone ahead of the crack tip (cohesive zone (Barenblatt(1959); Dugdale
(1960)), plastic flow (Drugan et al.(1982))) or phase field models (Francfort and Marigo
(1998)). The indicated models consider the velocity of the crack as given. This is,
probably, the consequence of the result of the scaling analysis byFineberg and Marder
(1999) for a straight brittle crack

VC = cR

(

1−
l0
l

)

, (32)

whereVC is the crack tip velocity,cR is the Rayleigh wave speed,l is the length of the
crack, andl0 is the critical length. This result is coincided with that for thin plates under
tension (Freund(1990)). It is concluded that the equation of motion for simple crack is
correct, as long as a crack remains simple (Fineberg and Bouchbinder(2015)). However,
results of numerical simulations of the crack velocity predicted by various methods can
differ by three times in value (Braun and Fernández-Sáez(2014)), and all of them remain
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Figure 1. Model problem for a crack in a plate.

remarkable less than the Rayleigh wave speed. This means that the determination of the
crack velocity is still under question even for simple cracks.

Mode I fracture in thin plate
The simplest formulation of the crack propagation problem corresponds to mode I
fracture in thin plates. We consider the crack propagation in a thin cracked plate subjected
to a load as shown in Figure1.

Neglecting both geometrical and physical nonlinearities,we can write the bulk
equations of linear elasticity in a homogeneous isotropic body in the absence of body
force as follows:

ρ
∂vi
∂t

=
∂σij

∂xj

, (33)

∂σij

∂t
= λ

∂vk
∂xk

δij + µ

(

∂vi
∂xj

+
∂vj
∂xi

)

, (34)

wheret is time,xj are spatial coordinates,vi are components of the velocity vector,σij

is the Cauchy stress tensor,ρ is the density,λ andµ are the Lamé coefficients.
In the case of thin plates, the problem can be simplified by means of the plane stress

approximation (thin strip geometry,σi3 = 0, i = 1, 2, 3). Corresponding solutions stress
and strain fields can be found elsewhere (cf.,Freund(1990); Ravi-Chandar(2004)).

For the irreversible process of crack propagation we shouldtake into account the
inequality of Clausius-Duhem

∂S

∂t
+

∂(Qi/θ)

∂xi

≥ 0, (35)

whereQi is the heat flux,S is the entropy per unit volume, andθ is temperature.
The crack front in the thin plate problem is a straight line inx1 − x3 plane, propagating

in thex1 direction. This is illustrated in Fig2. The jump relation across crack frontC
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Figure 2. Crack front

corresponding to the balance of linear momentum (33) reads

VC [[ρvi]] +Nj [[σij ]] = 0. (36)

HereVC is the material velocity of the crack front along normalNj .
The corresponding jump relation for the entropy should exhibit a source term

VC [[S]]−Nj [[Qj/θ]] = σC ≥ 0, (37)

whereσC is unknown scalar. The driving force and crack velocity are constrained to
satisfy the second law of thermodynamics at the crack frontC such that (Maugin(1997))

fiVi = θCσC ≥ 0. (38)

However, the jump relations are useless until we determine the value of the velocity of
the crack front.

Velocity of the crack in mode I
For given stress and strain fields we cantry to estimate the velocity of the crack by
means of the jump relation for linear momentum (36). However, we are not able to
determine exact values of the stress components at the cracktip due to the square-root
singularity.To avoid this difficulty, we again apply the finite-volume representation
with averaging variables over cells.

In the small strain approximation, the material velocityVj is connected with the
physical velocityvi by (Maugin(1993))

v̄i = −(δij +
∂ūi

∂xj

)Vj . (39)

Here overbars denote the values averaged over a finite-volume cell. Inserting the
latter relation into Eq. (36), we have

VC

[[

ρ(δij +
∂ūi

∂xj

)Vj

]]

−Nj [[σ̄ij +Σij ]] = 0. (40)
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Here Σij is the excess stress tensor.The projection on the normal to the crack front
reduces the last expression to

VC [[ρ(1 + ε̄11)V1]]− [[σ̄11 +Σ11]] = 0, (41)

whereσ̄11 is the component of the averaged stress tensor normal to the crack front. Since
we have no material behind the crack front, jumps are equal tovalues of quantities in
front of the crack front which leads to

V 2
C =

σ̄11 +Σ11

ρ(1 + ε̄11)
. (42)

To be able to go further, we apply the non-equilibrium jump relation as in the case of the
phase transition front (Berezovski and Maugin(2004))

[[

σ̄11 +Σ11 + θ

(

∂S̄

∂ε11

)

σ

]]

= 0. (43)

It follows from Eq. (43) that the value of the normal stress at the crack front is determined
by the corresponding entropy derivative

σ̄11 +Σ11 = −θ

(

∂S̄

∂ε11

)

σ

. (44)

Taking into account the entropy jump at a discontinuity (Eq.(37) ) and the expression for
entropy production (38), we see that in the isothermal case the entropy at the crack front
is dependent only on the driving force

S̄ =
fC
θ
. (45)

Calculating the entropy derivative on the right hand side ofEq. (44) we have

σ̄11 +Σ11 = −θ

(

∂S̄

∂ε11

)

σ

=
fC
θ

(

∂θ

∂ε11

)

σ

−

(

∂fC
∂ε11

)

σ

. (46)

This means that the normal stress at the crack front can be expressed in terms of the
driving force as follows:

σ̄11 +Σ11 = fC
2(λ+ µ)

θα(3λ + 2µ)
−

(

∂fC
∂ε11

)

σ

, (47)

whereα is the thermal expansion coefficient.
It is commonly accepted that the driving force acting at the crack tip can be

calculated by means of the path-independentJ-integral, which has the physical meaning
of the energy release rate. The dynamicJ-integral for a homogeneous cracked body
(Atkinson and Eshelby(1968); Kostrov and Nikitin (1970); Freund (1972); Maugin
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(1994)) can be expressed in the case of mode I straight crack as follows:

J = lim
Γ→0

∫

Γ

(

(W +K)δ1j − σij

∂ui

∂x1

)

njdΓ. (48)

Herenj is the unit vector normal to an arbitrary contourΓ pointing outward of the
enclosed domain. The kinetic energy density,K, is given by

K =
1

2
ρv2. (49)

In the two-dimensional case, the driving force is related tothe value of theJ-integral
(48) as follows:

fC =
J

a
, (50)

wherea is a scaling factor which has dimension of length.
Summing up, we can represent thenormal stress at the crack front as

σ̄11 +Σ11 =
AJ

a
−

(

∂fC
∂ε11

)

σ

, (51)

with

A =
2(λ+ µ)

θα(3λ + 2µ)
.

Classical kinetic relation
Let us check the consistency of theaveragedvalue of the normal stress at the crack front
with existing estimations. In the simplest case, we can assume that

Σ11 +

(

∂fC
∂ε11

)

σ

= 0, (52)

which reduces Eq. (51) to

σ̄11 =
AJ

a
. (53)

In the framework of the linear theory, we can expect a linear stress-strain relation between
theaveragedstress,̄σ11, and theaveragedstrain,ε̄11,

σ̄11 = Bε̄11. (54)

Inserting Eq. (54) into Eq. (42), we have

V 2
C =

σ̄11

ρ (1 + σ̄11/B)
. (55)

The value of the coefficientB is determined from the condition that the velocity of the
crack front should approach the Rayleigh wave velocitycR at high values of̄σ11. In such
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a case, we have

lim
σ→∞

V 2
C = c2R =

B

ρ
. (56)

Taking into account relations (53) and (56), we can represent Eq. (55) in the form

V 2
C

c2R
=

(

1 +
ρc2Ra

AJ

)−1

. (57)

This means that for sufficiently small values ofρc2Ra/AJ we have in the first
approximation

V 2
C

c2R
≈ 1−

ρc2Ra

AJ
. (58)

Extracting the root from both sides of the last expression, we obtain

VC

cR
≈

√

1−
ρc2Rl

AJ
≈ 1−

ρc2Ra

2AJ
. (59)

Actually this is another form of the classical relation for the crack velocity (32). Thus, the
use of the averagedvalue of the stress at the crack front does not contradict to existing
estimates.

Non-classical kinetic relation
Certainly, there are other possibilities in the choice of the value of theaveragedstress at
the crack front.As the next approximation, we can suppose

Σ11 +

(

∂fC
∂ε11

)

σ

= Dσ̄11. (60)

In such a case, we have the following expression for the velocity of the crack front

V 2
C =

σ̄11(1 +D)

ρ (1 + σ̄11/B)
. (61)

Consequently,

lim
σ→∞

V 2
C =

B

ρ

(

1 + lim
σ→∞

Σ11

σ̄11

)

= c2R (1 +D) . (62)

As one can see, here the limiting value of the velocity of the crack front is different from
the value of the Rayleigh wave velocity. Denoting the limiting value of the velocity of
the crack front asVT , we can represent the expression for the velocity of the crack front
as follows:

V 2
C = V 2

T

(

1 +
ρc2Ra

AJ

)−1

= V 2
T

(

1−

(

1 +
AJ

ρc2Ra

)−1
)

. (63)
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To be able to compare the obtained relation with experimental data, we note that the
value of theJ-integral is proportional to the square of the stress intensity factorKI in
the considered problem. Therefore, we can rewrite the last expression in terms of the
stress intensity factor

V 2
C = V 2

T

(

1 +
Ma

K2
I

)−1

= V 2
T

(

1−

(

1 +
K2

I

Ma

)−1
)

, (64)

where the coefficientM depends on properties of the material.
Thus, the derived kinetic relation contains two model parameters: the limiting velocity

VT , which directly corresponds to the condition taken for the excess stress at the crack
front, and the characteristic length scalea. Both model parameters may by adjusted to fit
experimental data.

It should be noted that the expression (64) is applied only for the valuesKI > KIc,
whereKIc is the critical value of the stress intensity factor (fracture toughness). The
’averaged’KI − VC relationship suggested byRavi-Chandar(2004) is based on the
experimental observations (Ravi-Chandar and Knauss(1984)), where the crack velocity
remained constant in each individual experiment. It is easyto see that for sufficiently
small values ofMa in Eq. (64), we will have a practically constant crack velocity. Its
limiting valueVT appears to be dependent on the conditions of experiment.

One can suppose that the characteristic lengtha may be taken to be similar to the
process zone length

a ∼
K2

Ic

σ2
∗

. (65)

In the thin strip geometry, it is possible to relate the values of σ∗ and J
(Hauch and Marder(1998)), which leads to

a ∼
K2

Ic

J
. (66)

In this case we arrive at an expression for the velocity of thecrack front in the form

V 2
C = V 2

T

(

1 +
M ′K2

Ic

K4
I

)−1

= V 2
T

(

1−

(

1 +
K4

I

M ′K2
Ic

)−1
)

, (67)

whereM ′ is another material constant.
As the comparison of theoretical relations (Eqs. (64) and (67) ) with experimental data

shows (Berezovski and Maugin(2007a, 2010)), a good fit of the experimental curves is
obtained by adjusting values of the limiting velocity and ofthe characteristic length.

Conclusions

The prediction of the location of a propagating discontinuity is important from both
theoretical and practical points of view. Theoretically, the existence of a propagating
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discontinuity leads to an incompleteness of the continual description expressed in the
indeterminacy of the velocity of such a discontinuity. In practice, this indeterminacy
results in the necessity of an additional experimental work.

As it is shown in the paper, the indeterminacy of the velocityof a propagating phase-
transition front can be avoided in computations implementing the conservation of the
genuine jump at the phase boundary, at least in the simple one-dimensional situation.
In principle, the kinetic relation can be extracted from this condition under suitable
assumptions (Berezovski and Maugin(2005b, 2010)).

Computation of the crack tip velocity needs, however, the knowledge of the kinetic
relation in advance (because of the singularity at the cracktip). Proposed kinetic relations
are still dependent on experimentally determined materialparameters, but with the
reduced corresponding work.

The criterion for crack growth or for martensitic phase boundary propagation
is not determined in the applied algorithmic approach. It is still needed to be
imposed. However, the velocity of a propagating discontinuity can be calculated
numerically (at least approximately) using the standard constitutive information,
thermodynamic consistency, and numerical finite-volume technique.
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