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Abstract

The formalism of the internal variables theory is applied to extend
Navier–Stokes equations. The internal variables theory provides a thermo-
dynamically consistent derivation of constitutive relations and equations
of motion without a priory specification of the nature of the variables.
Both single and dual internal variables cases are considered in detail. The
similarity and differences of the approaches are clearly indicated. In the
single internal variable framework, the elimination of the internal variable
provides Maxwell-type constitutive relations and hyperbolic equations of
motion. The dual internal variable approach allows us to obtain even more
complicated models of fluid flow, which contain coupled equations for fluid
motion and internal variable evolution.

1 Introduction
The Navier–Stokes equations constitute the cornerstone of computational fluid
dynamics [1–3]. As for every good mathematical model, these equations are valid
for idealized processes. For more complex situations the Navier–Stokes equations
need to be extended. Various methods have been used for such an extension,
as it is reviewed in books by Joseph [4], Beris and Edwards [5], and Deville
and Gatski [6]. It should be noted that any extension of the Navier–Stokes
equations is associated with the introduction of additional variables. For instance,
Brenner [7, 8] taken mass diffusion into account, Peshkov and Romenski [9]
introduced elastic distortion, Hu and Racke [10] applied Maxwell’s relaxation,
fluxes are used as additional independent state variables in extended irreversible
thermodynamics [11] and in rational extended thermodynamics [12]. Application
of internal variables is natural in this context. The use of internal variables
for the extension of Navier–Stokes equations has a long history. Kluitenberg
[13, 14] called the corresponding variables as ”internal degrees of freedom”.
Lebon [15] allowed the dependence of the Gibbs equation on ”extra variables”
though the notion of internal variables was already well known [16]. ”Hidden
variables” in a viscous fluid model appeared in papers by Morro [17] and Bampi
and Morro [18]. Dashner and VanArsdale [19] used an ”internal deformation
tensor”, and additional state variables were introduced by Grmela [20, 21] for
the generalization of hydrodynamic equations. Internal variables per se were
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used by Maugin and Drouot [22–24] for the modelling of complex fluids flow.
Fluids with internal degrees of freedom were considered in [25, 26] from the
point of view of the extended irreversible thermodynamics. A comprehensive
review of the application of internal variables to fluid flows was given in the
paper by Maugin and Muschik [27] and in the book by Beris and Edwards [5].
An auxiliary variable related to irreversible changes on the microstructure was
introduced in [28, 29] to formulate constitutive models for fluids.

It should be noted that the standard internal variable theory [30–32] provides
a thermodynamically consistent description of the influence of a possible material
microstructure. Recently, the internal variables approach was generalized ex-
ploiting the further enlargement of the thermodynamic state space [33–35]. The
dual internal variable concept was successfully applied for generalized elasticity
and heat conduction description [34, 36, 37]. It is worth, therefore, to employ
the full internal variables framework for the extension of classical equations of
fluid motion. This framework is based on the exploitation of the dissipation
inequality. Though only linear solution of the dissipation inequality is considered
in the paper, it is demonstrated that the elimination of internal variable in
the single internal variable theory recovers existing Maxwell-type constitutive
models which are commonly postulated in advance. The main result of the paper
follows from the application of the dual internal variable concept resulting in the
derivation of coupled equations for fluid motion and internal variable evolution.

The paper starts with the reminder of basic balance laws and constitutive
relations for classical hydrodynamics (Sect. 2). The single internal variable
theory is applied to the hydrodynamic description in Sect. 3. The specific case
of the independence of the free energy density of the gradient of the internal
variable is considered in Sect.4. It is shown that the elimination of the internal
variable provides Maxwell-type constitutive relations and hyperbolic equations of
motion. The dual internal variable approach presented in Sect. 5 allows to obtain
even more complicated models of fluid flow, which contain coupled equations
for fluid motion and internal variable evolution. Conclusions are formulated in
Sect.6.

2 Background: balance laws and constitutive
relations

The motion of a continuous medium is characterized by balance laws. In the
Eulerian (spatial) representation, the local balance laws can be represented as
follows (cf. [38]):

• conservation of mass
ρt + ρdiv v = 0, (1)

where ρ is the density field, v is the velocity field, subscript t denotes the
material time derivative.
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• balance of linear momentum

ρvt − div σ = ρf , (2)

where σ is the Cauchy stress tensor, f is a body force.

• balance of angular momentum

σT = σ, (3)

where upper index T denotes transposition.

• balance of energy
ρet − σ : D − div q = ρh, (4)

where e is the internal energy density, θ is temperature field, D is the
strain rate tensor, q is heat flux, and h is a heat body source.

The balance laws are complemented by the entropy inequality

ρηt + div
(q
θ

)
− ρ

h

θ
≥ 0, (5)

where η is the entropy density field.
For fluids, the free energy density ψ = e− ηθ depends on matter density ρ,

the strain rate tensor D, temperature θ, and its gradient ∇θ

ψ = ψ(ρ,D, θ,∇θ). (6)

Constitutive relations should satisfy the Clausius–Duhem inequality (no body
sources) [39]

−ρψt − ρηθt − q
θ

· ∇θ + σ : D ≥ 0. (7)

The standard consideration leads to the definition of entropy

η = −∂ψ

∂θ
, (8)

and to the independence of the free energy density of the strain rate tensor and
the temperature gradient

∂ψ

∂D = 0, ∂ψ

∂∇θ
= 0. (9)

The thermodynamic pressure p is defined by [39]

p = ρ2 ∂ψ

∂ρ
. (10)

The constitutive relation for the stress in a compressible, linearly viscous (New-
tonian) fluid has the form

σ = −pI + 2µD + λ(trD)I, (11)
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with the dilatational viscosity, λ and the shear viscosity, µ. In general, the
viscosity coefficients may depend on the density and temperature. In this paper,
these coefficients are considered as constants.

Equations of motion follow from balances of mass and momentum (in the
absence of body sources) [2]

ρt = ρdiv v, (12)
ρvt = −∇p+ µ∆v + (λ+ µ)∇(div v). (13)

These equations are generally referred to as the compressible Navier–Stokes
equations. Thermal contribution is governed by the Fourier law

q = −k∇θ, k ≥ 0, (14)

where k is the thermal conductivity.

3 Single internal variable framework
The Navier–Stokes equations are valid for homogeneous isotropic fluids. To
include into consideration more complicated cases, we apply the internal variable
formalism. In the single internal variable theory, the state space is expanded by
means of an internal variable α and its gradient ∇α [40, cf.]. This means that
the free energy density depends on the density ρ, temperature θ, the internal
variable α, and its gradient ∇α

ψ = ψ(ρ, θ,α,∇α). (15)

The nature of the internal variable is not prescribed in advance. Nevertheless, it
is possible to derive an evolution equation of the internal variable in a general
form using the dissipation inequality (7). In fact, the material time derivative of
the free energy density is calculated using the chain rule

ψt = ∂ψ

∂ρ
ρt + ∂ψ

∂θ
θt + ∂ψ

∂α
αt + ∂ψ

∂∇α
(∇α)t. (16)

Introducing the definitions

A := −∂ψ

∂α
, A := − ∂ψ

∂∇α
, (17)

we can rewrite Clausius–Duhem inequality (7) as follows:

−ρ∂ψ
∂ρ

ρt + A : αt + A : (∇α)t − q
θ

· ∇θ + σ : D ≥ 0. (18)

Taking into account the material time derivative of the density

ρt = −ρI : D, (19)
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and using pressure relation (10), we represent dissipation inequality (7) in the
form of a linear combination of products of thermodynamic fluxes and forces

(pI + σ) : D + A : αt + A : (∇α)t − q
θ

· ∇θ ≥ 0. (20)

The obtained dissipation inequality is the basis for the derivation of the evolution
equation for the internal variable. Different approaches are used to exploit the
dissipation inequality [41]. The most known is the Coleman-Noll procedure
[42]. In this procedure, the Clausius-Duhem inequality is presumed to hold
for any choice of the time rate of the state variables. For any fixed state, it is
supposed that the time rates are chosen arbitrarily. Due to the arbitrariness and
independency of D, αt, and (∇α)t,

σ = pI, A = A = 0, (21)

i.e., the free energy density must be independent of α.
It should be noted that the assumption of arbitrariness and independency

between D and αt is not applicable in the case of internal variables of state
because they are ”observable but not controllable” according to the Bridgman–
Kestin insight [32, 43, 44]. The arbitrariness and independence is true for
internal degrees of freedom which, in contrast to internal variables of state, are
measurable and controllable by means of corresponding applied forces in volume
and at surfaces [32, 44].

Another method of the exploitation of the dissipation inequality was proposed
by Liu [45]. The difference between Coleman–Noll and Liu procedures is based
on the definition of the entropy flux [46]. The Coleman–Noll and Liu procedures
are equivalent in simple systems [47], but not equivalent if the material is not
simple [41, 48]. The Liu procedure has been applied successfully to weakly
non-local thermomechanical theory [49–53]. However, the Liu procedure is also
based on the arbitrariness and independence of state variables [45].

Fortunately, in case of internal variables it is possible to derive the complete
evolution equations using thermodynamic forces and fluxes relationships [41, 54].
Keeping in mind the extension of the internal variables theory [33], we apply
the Onsager procedure for the solution of the Clausius-Duhem inequality.

3.1 Isothermal case
To be as simple as possible we consider the isothermal case. In this case,
dissipation inequality (20) is reduced to

(pI + σ) : D + A : αt + A : (∇α)t ≥ 0, (22)

and the thermodynamic fluxes and forces are identified as presented in Table 1.
The linear solution of dissipation inequality (22) is given bypI + σ

αt

(∇α)t

 (23)
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Flux Force
Mechanical pI + σ D
Internal αt A
Internal (∇α)t A

Table 1: Thermodynamic fluxes and forces in the isothermal case.

i.e.,
pI + σ = M11D +M12A +M13A, (24)

αt = M21D +M22A +M23A (25)
(∇α)t = M31D +M32A +M33A (26)

where components Mij of the matrix M are considered as constants for sim-
plicity. The nonnegativity of the entropy production results in the positive
semidefiniteness of the symmetric part of the matrix M, which requires [55, 56]

M11 ≥ 0, M22 ≥ 0, M11M22 − (M12 +M21)2

2 ≥ 0. (27)

The symmetry of coefficients in the Onsagerian matrix M is not necessary [53].
Relationships (24) and (25) determine thermodynamically consistent constitutive
relation and the evolution equation for the internal variable, respectively. These
relationships are not prescribed a priory or phenomenologically, but they are
consequences of the dissipation inequality in the framework of the single internal
variable theory.

The next step is the specification of the dependence of the free energy density
on the internal variable and its gradient. In the case of a quadratic dependence

ψ(...,α,∇α) = ...+ B

2 α2 + C

2 (∇α)2, (28)

the contribution of the internal variable in the right-hand side of Eqs. (24)–(25)
is

A − divA = −Bα + C∆α. (29)
This leads to the Ginzburg–Landau-type equation for the evolution of the internal
variable

αt = M21D +M22 (−Bα + C∆α) . (30)
The internal variable α still remains unspecified.

3.2 Elimination of internal variable
Remarkably, there is no need to set the internal variable explicitly, because it
can be eliminated from the solution of the dissipation inequality. In fact, after
the rearrangement of Eq. (25) using (24), we have

αt = M21D + M22

M12
(pI + σ −M11D) . (31)
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The material time derivative of relation (24) results in

ptI + σt = M11Dt +M12 (−Bαt + C∆αt) . (32)

Substituting the time derivative of internal variable (31) into relationship (32),
we obtain after some algebra(
pI + σ − detM

M22
D

)
+ 1
M22B

(ptI + σt −M11Dt) = C

B
∆

(
pI + σ − detM

M22
D

)
.

(33)

The elimination of the internal variable represents the solution of the dissipation
inequality as the combination of three clearly distinctive parts. The influence
of the internal variable manifests itself in the structure of the relationship (33)
and in the values of coefficients B and C in the quadratic dependence of the
free energy density (28). It is instructive to consider limit cases of values of the
coefficients.

3.3 Limit cases
3.3.1 Case 1: B = 0.

In this case, the free energy density is independent of the internal variable α.
This independence results in the constitutive relation for the stress tensor in the
form

ptI + σt −M11Dt = CM22∆
(
pI + σ − detM

M22
D

)
. (34)

The obtained relationship corresponds to the parabolic evolution of the constitu-
tive relation.

3.3.2 Case 2: B → ∞.

High values of B lead to the simple constitutive relation

pI + σ − detM
M22

D = 0, (35)

which match with that for the classical Newtonian fluid.

3.3.3 Case 3: C → ∞.

In this case, the Laplacian of the previous relationship is zero, which does not
give an essential generalization

∆
(
pI + σ − detM

M22
D

)
= 0. (36)
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3.3.4 Case 4: C = 0.

The free energy density is independent of the gradient of the internal variable
in this case that leads to the extension of the classical constitutive relation for
Newtonian fluids(

pI + σ − detM
M22

D
)

+ 1
M22B

(ptI + σt −M11Dt) = 0. (37)

This case deserves a more detailed consideration.

4 Independence from the gradient of the internal
variable

If the free energy is independent of the gradient of the internal variable, then

A = −Bα. (38)

Representing each tensor in the sum of hydrostatic and deviatoric components,
we note that their contributions into the dissipation inequality are orthogonal
since Ah : Bd = 0 for arbitrary symmetric tensors. It follows that the solution
of dissipation inequality (22) should be taken separately for the hydrostatic part
(with the upper index h)

pI + σh = Mh
11Ds +Mh

12Ah, (39)

αh
t = Mh

21Dh +Mh
22Ah, (40)

and for the deviatoric part (marked by the upper index d)

σd = Md
11Dd +Md

12Ad, (41)

αd
t = Md

21Dd +Md
22Ad. (42)

The elimination of the internal variable from the solution of the dissipation
inequality in the hydrostatic case results in

pI + σh + 1
BMh

22

(
ptI + σh

t

)
= Mh

11
BMh

22
Dh

t + detMh

Mh
22

Dh. (43)

Similarly, for the deviatoric case the elimination of the internal variable gives

σd + 1
BMd

22
σd

t = Md
11

BMd
22

Dd
t + detMd

Md
22

Dd. (44)
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4.1 Limit case B → ∞.
It is easy to see that in the limit case B → ∞ relationships (43) and (44) are
reduced to

pI + σh = detMh

Mh
22

Dh, (45)

and
σd = detMd

Md
22

Dd. (46)

The sum of the last two equations

pI + σ =
(

detMh

Mh
22

− detMd

Md
22

)
Dh + detMd

Md
22

D, (47)

can be represented in the form of constitutive equation (11) for the Cauchy stress

σ = −pI + 2µD + λ(trD)I, (48)

after the identification of the values of coefficients as
detMd

Md
22

= 2µ,
(

detMh

Mh
22

− detMd

Md
22

)
= 3λ,

since 3Dh = (trD)I by definition. It is clear that the Navier–Stokes equations
correspond to the considered limiting case.

4.2 Maxwell fluids
Now it is possible to see how the Navier–Stokes equations can be extended due
to the presence of the internal variable. To simplify the matter, we set

Md
22 = Mh

22 = M22, τ = 1
BM22

.

Combining Eqs. (43) and (44) we have

pI + σ − detMh

M22
Dh − detMd

M22
Dd − τ

(
ptI + σt −Mh

11Dh
t −Md

11Dd
t

)
. (49)

This relationship can be represented as

pI + σ − 2µD − λtr(D)I = −τ (ptI + σt − 2µ1Dt − λ1tr(D)tI) , (50)

with the evident notation Md
11 = 2µ1, M

h
11 −Md

11 = λ1. Resolving Eq. (50) for
the stress

σ + τσt = −pI + 2µD + λtr(D)I − τ (ptI − 2µ1Dt − λ1tr(D)tI) , (51)

we arrive at a generalization of the constitutive equation for Maxwell fluids which
has a more complex structure in the comparison with early models [57, 58] as
well as with recent research [10, 59–62]. Any invariant material time derivative
can be used in Eq. (51) [4].
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4.3 Equations of motion
The balance of linear momentum

ρvt = div σ, (52)

requires the calculation of the divergence of the stress tensor. Applying divergence
operator to Eq. (51)

div σ + τdiv σt = −∇p+ 2µ∆v + (λ+ µ)∇(div v)−
− τ (∇pt − 2µ1∆vt − (λ1 + µ1)∇(div v)t) ,

(53)

we obtain a hyperbolic version of the Navier–Stokes equation (c.f. [63, 64])

ρvt + τρvtt = −∇p+ 2µ∆v + (λ+ µ)∇(div v) − τ (∇pt − 2µ1∆vt − (λ1 + µ1)∇(div v)t) .
(54)

4.3.1 Small relaxation time

For small values of τ , the stress can be represented in the form of an asymptotic
expansion

σ = σ0 + τσ1 + τ2σ2 + . . . . (55)
In zero approximation, the classical constitutive relation holds

σ0 = −pI + 2µD + λ(trD)I. (56)

The first approximation determines

σ1 = 2(µ1 − µ)Dt + (λ1 − λ)tr(D)tI. (57)

The corresponding divergences read

div σ0 = −∇p+ µ∆v + (λ+ µ)∇(div v), (58)

div σ1 = (µ1 − µ)∆vt + (λ1 − λ+ µ1 − µ)∇(div vt). (59)

4.3.2 Incompressible fluid

As a simple example, we consider the case of incompressible fluids. The incom-
pressibility condition

div v = 0, (60)
reduces the relationships for divergences to

div σ0 = −∇p+ µ∆v, (61)

and, keeping the order of approximation,

div σ1 = (µ1 − µ)∆vt = (µ1 − µ)∆
(

1
ρ

(−∇p+ µ∆v)
)
. (62)
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Appeared equation of motion

ρvt = −∇p+ µ∆v + τ(µ1 − µ)∆
(

1
ρ

(−∇p+ µ∆v)
)
, (63)

can be compared with the gradient model by Aifantis [65]

ρvt = −∇p+ µ(∆v − l2∆2v), (64)

and the hyperstress model [66]

ρvt = −∇p+ µ∆v − ζ∆∆v. (65)

Again, the internal variable approach results in a more sophisticated equation of
motion.

The obtained extended models of fluid motion are thermodynamically con-
sistent because they follow from the solution of the dissipation inequality. As
usual, the internal variable is introduced to take into account the influence of
motions at a microscale which cannot be accounted for explicitly.

However, the possibilities of internal variables are not exhausted yet.

5 Dual internal variables
The dual internal variable approach is the generalization of the single internal
variable theory [33–35]. In the framework of this concept, it is supposed that the
free energy density depends on internal variables α,β, and their space gradients

ψ = ψ(ρ, θ,α,∇α,β,∇β). (66)

Correspondingly, the equations of state are given by

η = −∂ψ

∂θ
, A := −∂ψ

∂α
, A := − ∂ψ

∂∇α
, B := −∂ψ

∂β
, B := − ∂ψ

∂∇β
, (67)

with additional conjugate quantities B and B.
The Clausius-Duhem inequality keeps its form (??)

−ρψt − ρηθt −
(q
θ

+ K
)

· ∇θ + σ : D + div(θK) ≥ 0. (68)

The time derivative of the free energy is calculated then using of the functional
dependence of the free energy (66) and equations of state (67)

ψt = ∂ψ

∂ρ
ρt + ∂ψ

∂θ
θt + ∂ψ

∂α
αt + ∂ψ

∂∇α
∇αt + ∂ψ

∂β
βt + ∂ψ

∂∇β
∇βt. (69)

Accordingly, the dissipation inequality reads

− ρ
∂ψ

∂ρ
ρt + σ : D + (A − divA) : αt + (B − divB) : βt+

+ div (A : αt + B : βt + θK) −
(q
θ

+ K
)

· ∇θ ≥ 0.
(70)
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As before, we eliminate the divergence term in the dissipation inequality following
Maugin [67]

K = −θ−1(A : αt + B : βt). (71)

This reduces the dissipation inequality to the sum of products of thermodynamic
fluxes and forces taking into account Eq. (10)

(pI + σ) : D + (A − divA) : αt + (B − divB) : βt−

− 1
θ

(q − A : αt − B : βt) · ∇θ ≥ 0.
(72)

As previously, the solution of dissipation inequality (72) will follow from the repre-
sentation thermodynamic fluxes as linear functions of conjugated thermodynamic
forces.

5.1 Isothermal case
In the isothermal case the dissipation inequality is even more simple

(pI + σ) : D + (A − divA) : αt + (B − divB) : βt ≥ 0. (73)

The linear solution of the dissipation inequality is obtained similarly to that in
the case of single internal variablepI + σ

αt

βt

 = L

 D
(A − divA)
(B − divB)

 , (74)

where

L =

L11 L12 L13
L21 L22 L23
L31 L32 L33

 , (75)

with the same condition of the positive semidefiniteness of the matrix L as for
single internal variable case. It follows that the constitutive relation for the
stress is represented as

pI + σ = L11D + L12(A − divA) + L13(B − divB). (76)

Evolution equations for internal variables α and β have the form

αt = L21D + L22(A − divA) + L23(B − divB), (77)

βt = L31D + L32(A − divA) + L33(B − divB). (78)

The evolution equations are coupled with one another as well as with the
constitutive relation (76). Equations (77) and (78) indicate the duality between
the internal variables α and β.
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5.2 Quadratic free energy
In the case of a quadratic dependence of the free energy density on internal
variables and their gradients

ψ(...,α,∇α,β,∇β) = ...+ B

2 α2 + C

2 (∇α)2 + D

2 β2 + F

2 (∇β)2, (79)

contributions of internal variables to evolution equations can be represented as

A − divA = −Bα + C∆α, B − divB = −Dβ + F∆β. (80)

One of the dual internal variables can be eliminated. Due to symmetry, we can
choose the elimination of β. To do this, we make time differentiation of Eq. (77)

αtt = L21Dt + L22(−Bαt + C∆αt) + L23(−Dβt + F∆βt), (81)

and then write expressions for βt and ∆βt in terms of α using the relation

L23(−Dβ + F∆β) = αt − L21D − L22(−Bα + C∆α), (82)

which follows from Eq. (77). We will have

βt = L31D + L32L23 − L22L33

L23
(−Bα + C∆α) + L33

L23
(αt − L21D), (83)

∆βt = L31∆D + L32L23 − L22L33

L23
(−B∆α + C∆∆α) + L33

L23
(∆αt − L21∆D).

(84)

Substituting equalities (83) and (84) into Eq. (81), we obtain the evolution
equation of the internal variable α in its own terms

αtt = L21Dt + L22(−Bαt + C∆αt) −D(L31L23D + (L32L23 − L22L33)(−Bα + C∆α))−
−DL33(αt − L21D) + F (L31L23∆D + (L32L23 − L22L33)(−B∆α + C∆∆α))+
+ FL33(∆αt − L21∆D).

(85)

Constitutive relation (76) can be also rewritten using the internal variable α
only

pI + σ = L11D + L12(−Bα + C∆α) + L13

L23
(αt − L21D − L22(−Bα + C∆α)).

(86)

The last equation can be resolved for αt

αt =L23

L13
(pI + σ) − (L11L23 − L13L21)

L13
D − (L12L23 − L13L22)

L13
(−Bα + C∆α),

(87)
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which provides another expression for the evolution equation of the internal
variable α

αtt =L23

L13
(pI + σ)t − (L11L23 − L13L21)

L13
Dt − (L12L23 − L13L22)

L13
(−Bαt + C∆αt).

(88)

Comparing Eqs. (85) and (88), we arrive at the solution of the dissipation
inequality in the form

(pI + σ)t − L11Dt − L12(−Bαt + C∆αt) = −D(L13L31D + L32L13(−Bα + C∆α))−
−DL33 ((pI + σ) − L11D − L12(−Bα + C∆α)) + F (L13L31∆D + L32L13(−B∆α + C∆∆α))+
+ FL33 ((∆pI + ∆σ) − L11∆D − L12(−B∆α + C∆∆α)) .

(89)

Equations (85) and (89) constitute the most general evolution equation for the
internal variable α and the constitutive relation for fluid flow in the dual internal
variable approach.

5.3 Simplifications
The obtained relationships are too complicated and need to be simplified. The
first step in the simplification is to eliminate higher-order space derivatives by
the choice C = 0, which means, as in the case of the single internal variable, the
independence of the free energy density of the gradient of the internal variable α

(pI + σ)t − L11Dt − L12(−Bαt) = −D(L13L31D + L32L13(−Bα))−
−DL33 ((pI + σ) − L11D − L12(−Bα)) + F (L13L31∆D + L32L13(−B∆α))+
+ FL33 ((∆pI + ∆σ) − L11∆D − L12(−B∆α)) .

(90)

Accordingly, evolution equation for the internal variable α (85) reads

αtt = L21Dt + L22(−Bαt) −D(L31L23D + (L32L23 − L22L33)(−Bα))−
−DL33(αt − L21D) + F (L31L23∆D + (L32L23 − L22L33)(−B∆α))+
+ FL33(∆αt − L21∆D).

(91)

Continuing the removal of higher-order derivatives, we assume that L33 = 0
which results in

(pI + σ)t − L11Dt − L12(−Bαt) = −D(L13L31D + L32L13(−Bα))−
+ F (L13L31∆D + L32L13(−B∆α)),

(92)

and, correspondingly,

αtt = L21Dt + L22(−Bαt) −D(L31L23D + (L32L23)(−Bα))+
+ F (L31L23∆D + (L32L23)(−B∆α)).

(93)

14



The next step is to substitute the expression for αt into Eq. (92) using relation-
ship (87)

(pI + σ)t − L11Dt + L12BL23

L13
((pI + σ) − L11D + L12Bα) =

= −L12B (−L21D + L22Bα) −D(L13L31D + L32L13(−Bα))+
+ F (L13L31∆D + L32L13(−B∆α)).

(94)

A big amount of coefficients impedes the analysis but provides a lot of possibilities
for modeling. As an example let us consider the situation characterizing by
values D = 0 and BL12 = 1. Constitutive relation (94) reduces to

(pI + σ)t − L11Dt + L23

L13
((pI + σ) − L11D + α) −

− (−L21D + L22Bα) = F (L13L31∆D + L32L13(−B∆α)),
(95)

and evolution equation for the internal variable (93) reads, accordingly,

αtt = L21Dt + L22(−Bαt) + F (L31L23∆D + (L32L23)(−B∆α)). (96)

Denoting L13 = τ we rearrange constitutive relation (95) to the form

τ(pI + σ)t − τL11Dt + L23 ((pI + σ) − L11D + α) +
+ τ (L21D − L22Bα) = Fτ2(L31∆D − L32(B∆α)).

(97)

It is clear that for small values of τ we have almost classical constitutive relation,
but with the contribution of the internal variable

(pI + σ) − L11D + α = 0. (98)

In the absence of internal variables it reduces to the classical case.

5.4 Equations of motion
As in the case of the single internal variable, the divergence of σ follows from
Eq. (97)

τ(∇p+ div σ)t − τL11∆vt + L23 ((∇p+ div σ) − L11∆v + div α) +
+ τ (L21∆v − L22Bdiv α) = Fτ2(L31∆div v − L32(B∆div α)).

(99)

Substituting the divergence into the balance of linear momentum, we arrive at

ρvt + τ

L23
ρvtt = −∇p+ L11∆v − div α − τ

L23
(∇p)t + τL11

L23
∆vt−

− τ

L23
(L21∆v − L22Bdiv α) + F

τ2

L23
(L31∆div v − L32(B∆div α)).

(100)
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As one can see, there exist different modes of flow depending on the value of τ .
If τ is small, a fluid motion (at least in the first approximation) is governed by

ρvt = −∇p+ L11∆v − div α. (101)

This equation looks similarly to the Navier–Stokes equation of motion. However,
the last term in the right hand side depends on the divergence of the internal
variable α, whose evolution is determined by Eq. (96) which is a hyperbolic
equation if coefficients L32 and L23 have alternate signs.

For big values of τ , the fluid motion satisfies a hyperbolic equation (for
negative values of L21)

ρvtt = −(∇p)t + L11∆vt − (L21∆v − L22Bdiv α) + Fτ(L31∆div v − L32(B∆div α)).
(102)

To keep the same order of value for all terms, it is convenient to set F = 1/τ .
The evolution equation for the internal variable α is still hyperbolic equation
(96). As before, any invariant material time derivative can be used in equations
of motion.

6 Conclusions
The internal variables theory provides a framework for accounting the influence
of processes at a microscale which cannot be described explicitly. Based on
the exploitation of the Clausius–Duhem inequality, the internal variable theory
produce the extension of the Navier–Stokes equations even in the case of the
linear solution of the dissipation inequality for isothermal situation. Remarkable
is that the single internal variable can be eliminated from the consideration if the
dependence of the free energy density on the internal variable is quadratic. Ob-
tained constitutive relations and equations of motion confirm the thermodynamic
consistency of existing Maxwell-type models.

The dual internal variables concept provides new possibilities to formulate
more complicated models of fluid motion. An essential part of the theory is
the hyperbolic evolution equation for the internal variable, which is coupled
with the equation of motion. An intriguing feature of the extended model is the
opportunity to distinguish two specific modes of flow depending on values of
coefficients. It is difficult to say that these two types of flow can be associated
with laminar and turbulent motion. However, there are so many aspects of
turbulent flows [68, e.g.] that various models can be valid in specific cases.

The alternative approach to take the effect of a microstructure into account
[69, 70] is based on the concept of morphological descriptors [71]. This notion
is more general than the internal variable one. However, the evolution equa-
tions for the descriptors follow from variational principles and, therefore, they
are applicable to conservative systems. Dissipative effects (like viscosity) are
introduced additionally and need special consideration.
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