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Abstract

In the paper, two-dimensional wave propagation in an aluminium strip is
examined experimentally, analytically, and numerically. Experimentally, the
high-frequency pulse is generated by a piezoelectric transducer, and the ve-
locity component normal to the strip edge is measured by the non-contact
vibrometer system on the opposite side. The analytical method used for
the investigation of two-dimensional in-plane waves propagated under plane
stress conditions is based on the combination of Laplace and Fourier trans-
forms. The main question is the suitability of numerical procedures to repre-
sent the transient wavefield observed in the experiment. In two-dimensional
numerical solutions, explicit variants of the finite element and finite volume
solvers are utilized. It is demonstrated that standard finite volume and fi-
nite element algorithms conform analytical results and the numerical results
are in a good agreement with experiment for time observation including sev-
eral wave reflections from upper and bottom boundaries. The experimental,
analytical, and numerical results presented in this study can be used as a
benchmark data for the investigation of transient waves in a two-dimensional
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elastic medium to validate other numerical or semi-analytical methods.

Keywords: wave propagation, elastic strip, experimental measurement,
finite element method, finite volume method, analytical solution, plane
stress problem

1. Introduction

The simplest possible scheme of ultrasonic nondestructive testing (such
as presented in Fig. 1) suggests that the signal issued by a transmitter is
recorded by a receiver. The difference in the shape and phase between initial
and reflected signals can be interpreted as the existence of a defect inside the
specimen.

 

 

 

Figure 1: Transmitter – receiver scheme for structural health monitoring.

As a rule, the exciting signal is a windowed wave packet centered at cer-
tain frequency (Rose, 2014, e.g.), and only first recorded reflection is consid-
ered. Much longer records at the receiver are used if a time-reversal procedure
is expected (Givoli, 2014, e.g.). In an ideal situation, the wave propagates
with constant velocity and its propagation from the transmitter to the sensor
is straight and can be interrupted only by the investigated defect. However,
even if we restrict ourselves to a two-dimensional strip setting, we cannot find
the analytical solution for wave propagation in a finite homogeneous strip.
The exact analytical approach is feasible only in the case of an infinite strip
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as shown by Valeš and Šebková (1976) for a strip with distributed transver-
sal excitation and by Brock (1986) for a suddenly applied transversal point
force. Numerical studies dealing with two-dimensional strip problems are
more common. One can mention for instance the work (Červ et al., 1993)
where the propagation of acoustic emission signal is investigated using the
finite element approach.

It should be noted that the strip geometry is closely related to propaga-
tion of Lamb waves in thin plates (Lee and Staszewski, 2007; Barouni and
Saravanos, 2016), which are widely applied to structural health monitoring
problems (Croxford et al., 2007). Modeling of Lamb waves with the desired
accuracy, reliability, and efficiency is a valuable part of the methodology,
software, and hardware for non-destructive evaluation and structural health
monitoring (Willberg et al., 2015). Various numerical methods have been
used for their simulations (Lee and Staszewski, 2007; Sundararaman and
Adams, 2009; Kluska et al., 2013; Maio et al., 2015; Barouni and Saravanos,
2016, e.g). However, as it is demonstrated in (Leckey et al., 2018), the ex-
isting computational packages (ANSYS, COMSOL, ABAQUS) are unable to
represent wavefield in laminates adequately. The reason is that the commer-
cial software use one-step time schemes which are not able to prescribe wave
propagation in heterogeneous media accurately due to spatial dispersion and
transmission/reflection effects on interfaces.

It is, therefore, highly desired to have correct descriptive and computa-
tional tools for the prediction of wave propagation in a basic setting. The
paper presents the results of the experimental, theoretical, and computational
study of the propagation of transient elastic waves from a localized source
in a homogeneous aluminium strip. The main goal is to examine and verify
the suitability of numerical procedures to represent the transient wavefield
observed during the experiment. Section 2 is devoted to the description of
the experimental setup and procedure. Governing equations corresponding
to linear elasticity are presented in Section 3. Analytical solution and numer-
ical methods are shortly described in Section 4. In Section 5, the comparison
of analytical, numerical, and experimental results are presented. Conclusions
and discussion are included in the last Section.

2. Experimental setup

Measurements of wave propagation in an elastic strip of finite length
were done in the Laboratory of Non-Destructive Testing of the Institute of
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Material Density Young modulus Poisson Longitudinal Shear speed
ρ (kg/m3) E (GPa) ratio ν speed cp (m/s) cs (m/s)

Al alloy 2770 72 0.333 5401 3126
D16-ATV

Table 1: Material properties of the strip under investigation.

Thermomechanics of the Czech Academy of Sciences. The elastic strip was
made from a homogeneous isotropic Al alloy D16-ATV. Material parameters
that are necessary for wave investigation in such a medium are summarized
in Table 1. The value of longitudinal speed cp corresponds to plane stress
conditions.

Dimensions of the strip suspended on thin UHMWPE Dyneema filaments
were 399×50×1.35 mm. To induce a loading pulse, the piezoelectric trans-
ducer Dakel IDK09 of diameter 6 mm was glued in the middle of the strip
from the bottom side (see Fig. 2). The NI PXI test system includes NI PXI
5105 digitizer and NI PXI 5412 generator connected with a custom power
pulse amplifier. For the non-contact vibration record, the Polytec vibrome-
ter system was used. The OFV-5000 controller decodes the sensor OVF-505
head’s signals in real time. The automated ultrasonic Starmans scanning
stage DIO 200 system was applied for the signal inspection. The mentioned

Figure 2: Experimental setup.
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Figure 3: Shape of ideal and real loading pulses.

device enabled the lengthwise scanning along the upper edge at points of a
regular grid with the step of 1 mm. The response measured up to 750 µs was
represented by 15 000 samples at frequency 20 MHz, i.e. the sampling time
step was ∆t = 5 · 10−8 s.

The input signal to the transducer causing the strip loading corresponds
to a smooth pulse of duration t0 = 9 µs with maximal amplitude σ0 =
0.72 MPa. Its amplitude changes according to cosine train 333 kHz with
0.25 cosine window. This pulse can be expressed as

σ(t) =


σ0
2

cos
(
πt
30

) (
1− cos

(
πt
22

))
for t ≤ 23∆t,

σ0 cos
(
πt
30

)
for 23∆t ≤ t ≤ 157∆t,

σ0
2

cos
(
πt
30

) (
1− cos

(
π(180−t)

22

))
for 157∆t ≤ t ≤ 180∆t,

0 for t ≥ 180∆t.

The time history of this input signal is shown in Fig. 3 (curve Ideal pulse).
The more precise experimental investigation shows that the input signal

does not correspond to the real signal exciting the strip (see Fig. 3, curve
Real pulse). This real pulse is the result of the normal velocity measurement
in the center of the transducer surface using a vibrometer. The difference
between the ideal pulse (input electric signal into the transducer) and real
pulse (corresponding to the normal velocity measured on the transducer sur-
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Figure 4: Sketch of the problem.

face) is due to complex wave processes inside the transducer, piezo-electric
response, and piezo-electric/mechanical coupling. The shape of the real pulse
cannot be represented as a mathematical expression. Moreover, the informa-
tion about the time history of the normal velocity on the transducer surface
can be implemented into the finite element model as a time-varying Dirichlet
boundary condition. In parallel, the normal stress loading will be applied
via Neumann boundary conditions. In reality, one has to think also about
a non-ideal connection between the transducer and the strip under investi-
gation. This effect is neglected both in numerical and analytical solutions of
the problem, so an ideal connection between the transducer and the strip is
assumed.

3. Model description and mathematical formulation

The problem lies in the investigation of the transient response of an elastic
strip to a transversal loading, as mentioned previously. The sketch of the
model corresponding to the described measured problem is shown in Fig. 4.

According to the introduced coordinate system and to the experiment
description given in Section 2, the stress loading p(x, t) is nonzero only
for y = −d/2 and x ∈ [−h/2, h/2]. It will be approximated by p(x, t) =
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(H(x+ h/2)−H(x− h/2))σ(t), where H(x) denotes the Heaviside function
in x and σ(t) stands for the ideal or real pulse from Fig. 3. The problem was
solved as the symmetric one and the evaluation of vertical velocity compo-
nent up to time tmax = 750 µs was primarily made at points A, B, and C for
comparison with experimental data. The position of these points is shown
in Fig. 4 and the distance between them is 13.5 mm each.

The problem is considered in the framework of small strain elasticity
theory. For thin strip, we use the plane stress approximation suggesting
that stress normal to the strip plane and appropriate shear stresses can be
neglected, i.e.,

σi3 = 0, i = 1, 2, 3. (1)

The governing equations of homogeneous linear isotropic elasticity in the
absence of body forces specialized to plane stress conditions have the form

ρ
∂v1
∂t

=
∂σ11
∂x

+
∂σ12
∂y

, (2)

ρ
∂v2
∂t

=
∂σ21
∂x

+
∂σ22
∂y

, (3)

where t is time, vi are the components of the velocity vector, σij is the Cauchy
stress tensor and ρ is the density.

Accordingly, compatibility conditions for strains are represented as

∂ε11
∂t

=
∂v1
∂x

, (4)

∂ε12
∂t

=
1

2

(
∂v1
∂y

+
∂v2
∂x

)
, (5)

∂ε22
∂t

=
∂v2
∂y

. (6)

The Hooke law defining the stress-strain relation is modified as follows:

σ11 = (λ+ 2µ)ε11 + λε22, (7)

σ12 = σ21 = 2µε12, (8)

σ22 = (λ+ 2µ)ε22 + λε11, (9)
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where λ = 2µλ/(λ+2µ) and λ and µ are the Lamé coefficients. Compatibility
conditions (4)–(6) allow to eliminate strains in time derivatives of stress-
strain relations

∂σ11
∂t

= (λ+ 2µ)
∂v1
∂x

+ λ
∂v2
∂y

, (10)

∂σ22
∂t

= λ
∂v1
∂x

+ (λ+ 2µ)
∂v2
∂y

, (11)

∂σ12
∂t

=
∂σ21
∂t

= µ

(
∂v1
∂y

+
∂v2
∂x

)
. (12)

Together with the balance of linear momentum (2)–(3), latter equations form
the system of equations, which is convenient for the solution.

4. Solution methods

4.1. Analytical solution

As mentioned in Section 1, there exists the analytical solution of an infi-
nite elastic strip problem derived by (Valeš and Šebková, 1976). In our study,
we generalized this solution to an arbitrary type of external loading and use
the evaluation procedure similar to that presented in the work (Adámek and
Valeš, 2015). This two-step procedure involves the inverse Laplace transform
and the evaluation of Fourier integral. The latter one issue is addressed by
classical Simpson’s rule with a regular integration grid while the first one
is resolved by the application of an algorithm based on fast Fourier trans-
form and Wynn’s epsilon accelerator. The precision and the stability of this
procedure is discussed in detail in (Adámek et al., 2017).

4.2. Finite volume computations

Among finite volume methods, the most suitable for our purpose is the
wave propagation algorithm (LeVeque, 2002). Its two-dimensional imple-
mentation is applied for the simulation of wave propagation in the finite
elastic strip. The thermodynamically consistent version of the algorithm
(Berezovski et al., 2008) is employed with values of the Courant number
close to unity. The applied method is second-order accurate on smooth solu-
tions (Bale et al., 2003). Boundary conditions are imposed using ghost cells
following (LeVeque, 2002).
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4.3. Finite element computations

In the finite element computations based on an in-house code, we use
the displacement formulation with linear shape functions (Hughes, 2000),
which are preferred in explicit time integration with the lumped mass ma-
trix. The central difference method for direct time integration is employed,
therefore the stability limit according to the Courant–Friedrichs–Lewy con-
dition should be satisfied, see (Courant et al., 1928). For evaluation of the
stiffness matrix, the one-Gauss point integration with the hourglass stabiliza-
tion (Belytschko and Bachrach, 1986) is utilized. For the maximum frequency
contained in the loading pulse, the length of the finite element edge is set
to 0.25 mm due to the spatial dispersion of the finite element method (Kol-
man et al., 2016). The time step size corresponds to the Courant number
Co = 0.97.

5. Infinite strip

To validate the accuracy of both numerical methods, it is instructive to
start with the problem of an infinite strip for which the analytical solution
exists. According to the experimental setup, the time step ∆t = 5 ·10−8s and
the ideal pulse of duration t0 = 180 ∆t = 9 µs are used at first. Space step
for explicit schemes corresponds to the Courant number Co = 1 determined
by the maximum of longitudinal velocity in material. In the case of Al
alloy D16-ATV, the longitudinal wave velocity is equal to 5401 m/s which
means that ∆x = cp · ∆t = 0.27 mm. It follows then that the strip width
d = 50 mm = 185 ∆x and the loading length h = 6 mm = 22 ∆x.

Using these values, the computation of wave propagation in the strip
under ideal loading via the normal stress shown in Fig. 3 was performed
analytically and by finite volume and finite element methods. Results of nu-
merical simulations and analytical solution are compared at all three points.
The comparison at point A that corresponds to the middle of the strip is pre-
sented in Fig. 5. As one can see, the results of simulations by finite volume
and finite element methods are almost coinciding with the analytical solution
up to 2000 time steps (100 µs), i.e., at early stages of the signal propaga-
tion. Similar results have been obtained also for points B and C. After 2000
time steps, the results start to diverge due to the influence of lateral vertical
boundaries of the strip used in numerical models. Based on this comparison,
we can conclude that the chosen finite element and finite volume methods
are suitable for the elastic wave propagation problem in the strip.
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Figure 5: The response to the ideal pulse: analytical solution vs numerical simulations.

The same coincidence between the analytical and numerical solutions was
achieved also for the real pulse excitation. Making such verification of applied
approaches, the obtained results can be compared with the measured strip
response to the real pulse. This comparison is presented in Fig. 6 - 8 for all
three studied points. Due to the mentioned coincidence between analytical
and numerical solutions, only analytical and experimental results are shown.

It is seen that the very good agreement with the measured data occurs
for the first 1000 time steps (i.e. up to time 50 µs), especially at point B
(see Fig. 7). Considering the time history for the vertical velocity at point C
(Fig. 8), we cannot say that the agreement with the experiment is as good
as at the previous points even for the short time simulations. Also for longer
times, the dispersion properties of the real strip and the real structure of the
strip material make the differences between both responses more significant
at all three points.

The application of the Dirichlet boundary condition for the normal veloc-
ity is also checked in the finite element simulations. The results of the time
history of the normal velocity at the point B are depicted in Fig. 9 as an
example. One can see that the results for Dirichlet and Neumann boundary
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Figure 6: The response to the real pulse at point A: analytical and numerical solution vs
experimental data.
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Figure 7: The response to the real pulse at point B: analytical and numerical solution vs
experimental data.
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Figure 8: The response to the real pulse at point C: analytical and numerical solution vs
experimental data.

conditions are very close to each other. So it can be said that both types
of boundary conditions can be used for correct representation of transducer
loading.

Having the verified analytical and numerical models for short time re-
sponse of the real strip, one can use these models to visualize the wavefield
the consequences of which have been measured at the strip edge. For this
purpose, the snapshots of the mean velocity

√
v21 + v22 at various time in-

stants obtained by the analytical solution are shown in Fig. 10. This picture
demonstrates how the wave field is varied due to reflections from upper and
bottom boundaries and internal interferences. A clear separation between the
longitudinal wave and the pattern of remaining wave interference is observed.

6. Finite strip

In the case of finite strip, we need to take into account the reflections
from the lateral vertical boundaries. It requires computations for a longer
time. The comparison of experimental data with analytical solution and
numerical results obtained by the finite element method is shown in Fig.
11. The results of finite volume simulation are not presented because they
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Figure 9: The response to the real pulse at point B obtained by the stress and velocity
loading.

Figure 10: Distribution of the mean velocity
√
v21 + v22 inside the strip. Snapshots of the

analytical solution for t = {186∆t, 420∆t, 561∆t, 753∆t}.
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Figure 11: Measured response vs analytical solution and finite element computation for
longer time.

are nearly identical to analytical ones up to about 2000 time steps and for
longer times they do not conserve the total energy of the signal. It is clear
from Fig. 11 that all results coincide quite well up to about 2500 time steps.
After this time instant, the analytical solution does not represent the real
response due to the absence of lateral strip boundaries influence. The results
of finite element computations take the reflections from lateral boundaries
into account, but uncertainties in experimental setup prevent the detailed
coincidence.

In an attempt to improve the agreement between numerical simulations
and experimental data, the 3D computation of the problem was performed
using the in-house finite element code. Unfortunately, the results of 3D cal-
culation differ from those in 2D only slightly, as it can be clearly seen in
Fig. 12. From one side, it confirms that the applied plane stress approxi-
mation is applicable for the considered problem. From another side, it does
not assure that 3D computing will improve the results of numerical modeling
significantly.
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Figure 12: Comparison of results for finite element 2D and 3D simulation.

7. Conclusions

Experimental measurements and numerical simulations were performed
to examine the accuracy of the plane stress approximation in the description
of elastic waves in a finite strip. The comparison of experimental data with
the analytical solution and numerical simulations demonstrates the ability
of standard numerical methods to reproduce the signal propagation in a
homogeneous strip only for short time computations. The obtained results
confirm the suitability of existing nondestructive evaluation methods and
pose certain questions concerning the time-reversal technique using long-time
computing.
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