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Abstract

The influence of a microstructure on heat conduction in solids is studied numer-
ically using the internal variable approach. Two variants of the internal variable
treatment are compared by means of the numerical simulation of two-dimensional
heat conduction in a plate under a localised thermal pulse loading. Computations
of the same problem by the different internal variable descriptions produce qual-
itatively dissimilar results. The single internal variable approach leads to a dif-
fusional type of the internal variable evolution. In contrast, dual internal variable
technique provides a wave-like evolution of the internal variables, and, as the con-
sequence, the corresponding wave-like heat transfer. The results are obtained in
the dimensionless form, and parameters of models are chosen to emphasize the
features of each model.
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1. Introduction

The Fourier law is the cornerstone of heat transfer theory and practice (Carslaw
and Jaeger, 1992, e.g.). Being well applicable for homogeneous continua, it is not
sufficient for the description of heat conduction in inhomogeneous solids (Kamin-
ski, 1990; Özişik and Tzou, 1994). Moreover, an inner microstructure in a solid
can be the source of a hyperbolic character of heat conduction (Mariano, 2017).
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A variety of phenomenological hyperbolic heat conduction models has been pro-
posed as discussed in (Joseph and Preziosi, 1989; Tzou, 1995; Roetzel et al.,
2003; Straughan, 2011; Ván and Fülöp, 2012; Sellitto et al., 2016; Liu et al.,
2017; Rogolino et al., 2018, e.g.). The most popular are the Cattaneo–Vernotte
model, Guyer-Krumhansl model (Guyer and Krumhansl, 1966), and dual-phase
lag model (Tzou, 1995). Among others, Coleman at al. model (Coleman et al.,
1982), Gurtin-Pipkin model (Gurtin and Pipkin, 1968), double temperature model
(Sobolev, 2016), temperature gradient model (Nguyen, 2010), thermomass model
(Guo and Hou, 2010), micromorphic model (Liu et al., 2017), should be men-
tioned. The common feature of many hyperbolic heat conduction models is the
extension of the thermodynamic state space by heat flux and/or entropy flux. The
extension of the thermodynamic state space by heat flux has been employed and
discussed by several researchers (Coleman et al., 1982, 1986; Bai and Lavine,
1995; Lebon and Grmela, 1996; Barletta and Zanchini, 1997; Jou et al., 2004; Ro-
golino et al., 2018). The dependence of entropy on temperature and heat flux is
the main constitutive postulate in the extended irreversible thermodynamics (Jou
et al., 2010).

It is known that the thermodynamic state space can be extended in a more
general manner (Cimmelli, 2009; Ván and Fülöp, 2012; Cimmelli et al., 2014;
Carlomagno et al., 2016; Liu et al., 2017, e.g.). The consecutive and thermo-
dynamically consistent method of such an extension is provided by the internal
variable theory (Coleman and Gurtin, 1967; Rice, 1971; Maugin and Muschik,
1994a). Internal variables are used to describe how the influence of a possible
material microstructure can be taken into account.This approach can be imple-
mented in the finite volume framework for numerical simulations of the transient
heat conduction in solids with a microstructure.

It should be noted that the conventional internal variable thermodynamic the-
ory (Maugin and Muschik, 1994a) has been extended recently by the dual internal
variable concept (Ván et al., 2008; Berezovski et al., 2011; Berezovski and Ván,
2017). In the paper, both kinds of the internal variable theory are compared on the
example of transient heat conduction in a thin plate of a microstructured material
under localised pulse loading at a boundary. The goal of the study is to examine
possible similarities and/or differences in the application of internal variables for
the description of the microstructure influence on heat conduction in rigid solids.

Classical representation of heat conduction in rigid solids is reminded briefly
in Section 2. Section 3 contains the derivation of governing equations and results
of numerical simulations of heat conduction in microstructured solids under lo-
calised pulse loading in the framework of the single internal variable theory. For
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the dual internal variables approach, the corresponding governing equations and
results of numerical simulations are given in Section 4. Conclusions are formu-
lated in Section 5.

2. Classical heat conduction in rigid solids

The conduction of heat in rigid solids is governed by the local balance law for
energy (in the absence of body sources) (Gurtin et al., 2010, e.g.)

∂E
∂ t

+∇ ·q = 0, (1)

and by the second law of thermodynamics

∂S
∂ t

+∇ ·
(q

T

)
≥ 0. (2)

Here E is the internal energy per unit volume, q is the heat flux, S is the entropy
per unit volume, T is the absolute temperature.

The corresponding free energy density W = E−T S depends on temperature
only (Gurtin et al., 2010)

W =W (T ), (3)

and the entropy density is calculated as follows

S =−∂W
∂T

. (4)

Due to the definition of entropy density, the time derivative of energy can be cal-
culated by chain rule

∂E
∂ t

=
∂ (W +T S)

∂ t
=

∂W
∂ t

+
∂ (T S)

∂ t
=

∂W
∂T

∂T
∂ t

+
∂ (T S)

∂ t
=

=−S
∂T
∂ t

+S
∂T
∂ t

+T
∂S
∂ t

= T
∂S
∂ t

,

(5)

and balance of energy (1) can be rewritten as

T
∂S
∂ t

+∇ ·q = 0. (6)

Multiplying second law (2) by T and comparing the result with balance of energy
(6), we arrive at the inequality

−q∇T ≥ 0. (7)
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The latter inequality leads to the classical constitutive equation for heat flux which
is called the Fourier law

q =−k∇T, (8)

with the thermal conductivity k considered here as a positive constant.
The quadratic free energy density of the form

W =−
ρcp

2T0
(T −T0)

2, (9)

where ρ is the matter density and cp is the heat capacity, determines the heat
conduction equation for small deviations from the reference temperature T0

ρcpTt− k∇
2T = 0. (10)

Classical heat conduction equation (10) is valid for homogeneous materials obey-
ing the Fourier law. It is clear that this equation should be generalized to include
the influence of a possible inhomogeneity of a material in the description of the
heat conduction. Such a generalization can be achieved in many ways as it is
demonstrated in (Liu et al., 2017; Berezovski, 2019, e.g.).

2.1. Heat flux as independent variable
The simplest step in the generalization is the inclusion of heat flux into the

thermodynamic state space
W =W (T,q). (11)

Keeping the definition of the entropy density

S =−∂W
∂T

, (12)

we can calculate the time derivative of the internal energy

∂E
∂ t

=
∂ (W +T S)

∂ t
=

∂W
∂ t

+
∂ (T S)

∂ t
=

∂W
∂T

∂T
∂ t

+
∂W
∂q

∂q

∂ t
+

∂ (T S)
∂ t

=

=−S
∂T
∂ t

+
∂W
∂q

∂q

∂ t
+S

∂T
∂ t

+T
∂S
∂ t

= T
∂S
∂ t

+
∂W
∂q

∂q

∂ t
.

(13)

Correspondingly, balance of energy (1) obtains the form

T
∂S
∂ t

+
∂W
∂q

∂q

∂ t
+∇ ·q = 0. (14)
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Comparing the latter equation with the second law of thermodynamics multiplied
by T

T
∂S
∂ t

+T ∇ ·
(q

T

)
≥ 0, (15)

we arrive at the dissipation inequality in the form

−∂W
∂q

∂q

∂ t
− q

T
∇T ≥ 0. (16)

Using a quadratic dependence for the free energy density

W =W (T,q) =−
ρcp

2T0
(T −T0)

2 +
1
2

Bq2, (17)

we can rewrite the dissipation inequality as follows:

−q(BT
∂q

∂ t
+∇T )≥ 0. (18)

It is clear that the choice for heat flux

q =−k(BT
∂q

∂ t
+∇T ), k ≥ 0, (19)

satisfies the dissipation inequality.
The latter equation can be represented in the form of the Cattaneo–Vernotte

equation for small deviation from the reference temperature T0

q+ τ
∂q

∂ t
=−k∇T, k ≥ 0, (20)

with τ = kBT0.
Thus, the extension of the thermodynamic state space by heat flux allows to

derive the Cattaneo–Vernotte equation in a thermodynamically consistent way.
It should be noted that the corresponding heat conduction equation cannot be re-
duced to the telegrapher equation due to the presence of the second term in balance
of energy (14). This has been noticed already by Coleman et al. (1982, 1986). A
similar situation appears in the framework of the extended irreversible thermo-
dynamics (Lebon et al., 2011) where the telegrapher equation is obtained only
under assumption of the independence of internal energy of heat flux. Such an as-
sumption is inconsistent with the main constitutive postulate of the dependence of
entropy (and, therefore, internal energy) on temperature and heat flux (Jou et al.,
2010).

This is why a more systematic way of the extension of the thermodynamic
state space is described in what follows.
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3. Single internal variable

It is supposed that the use of an internal variable will take into account the
influence of microstructural processes on the global behavior of a material (Rice,
1971; Maugin and Muschik, 1994a). The internal variable theory has a long his-
tory (Coleman and Gurtin, 1967; Rice, 1971; Lubliner, 1973; Day, 1976; Maugin,
1990; Muschik, 1991; Kestin, 1993; Maugin and Muschik, 1994a; McDowell,
2005; Ván et al., 2008; Horstemeyer and Bammann, 2010; Maugin, 2015). Its
comprehensive presentation for mechanical problems is given in (Maugin, 2006,
2010). The specification of the theory to heat conduction in microstructured solids
is provided in (Berezovski, 2016, 2019). Here the main concepts needed for the
derivation of governing equations for heat conduction in rigid solids with a mi-
crostructure are reminded.

We start with a weakly nonlocal theory of internal variable including an in-
ternal variable α and its gradient into the thermodynamic state space (Lebon and
Grmela, 1996; Valanis, 1996, cf.). In the simplest variant of such a theory (for
rigid heat conductors), the free energy per unit volume W is specified as a func-
tion of the absolute temperature T , the internal variable α, and its gradient ∇α
(Maugin, 2006). In the case of a quadratic free energy density, we have

W =−
ρcp

2T0
(T −T0)

2 +
1
2

Bα2 +
1
2

C(∇α)2, (21)

where B and C are material parameters. The energy balance in terms of the free
energy can be represented as (Maugin, 2006)

∂ (ST )
∂ t

+∇ ·q =−∂W
∂ t

, (22)

where body forces are neglected for simplicity.
Since the free energy depends on an internal variable, its time derivative is

calculated by chain rule

−∂W
∂ t

=− ∂W
∂T

∂T
∂ t
− ∂W

∂α

∂α

∂ t
− ∂W

∂∇α

∂∇α

∂ t
=

=STt−Bα :αt−C∇α : (∇αt)
T .

(23)

Substituting expression (23) into Eq. (22), we can rewrite the balance of energy
as follows:

(ST )t +∇ · (q+C∇α :αt) = STt +(C∇
2α−Bα) :αt . (24)
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3.1. Dissipation inequality
Having in mind the presence of the internal variable we can write the second

law of thermodynamics in the form

∂S
∂ t

+∇ ·S ≥ 0, S =
q

T
+K, (25)

with the entropy flux S containing an extra entropy flux K (Müller, 1967, 1985;
Maugin, 1990; Grmela et al., 1998; Maugin, 2006, cf.). The extra entropy flux
vanishes in most cases, but this is not a basic requirement.

Multiplying second law (25) by temperature and taking into account energy
balance equation (24) we can rewrite the dissipation inequality as(

C∇
2α−Bα

)
:αt +∇ · (−C∇α :αt +TK)−S ·∇T ≥ 0. (26)

Selecting the extra entropy flux following the idea by Maugin (1990)

K =
1
T
(C∇α) :αt , (27)

we can eliminate the divergence term in the dissipation inequality

T
(
C∇

2α−Bα
)

:αt− (q+C∇α :αt) ·∇T ≥ 0. (28)

Now the left-had side of the dissipation inequality consists from the products of
thermodynamic fluxes and forces.

3.2. Evolution equation for the single internal variable
The solution of dissipation inequality (28) is provided by the representation

thermodynamic fluxes αt and (q+C∇α : αt) as linear functions of conjugated
thermodynamic forces following the standard thermodynamic approach (De Groot
and Mazur, 1962)(

αt
(q+C∇α :αt)

)
=M

(
T
(
C∇2α−Bα

)
−∇T

)
, (29)

with

M =

(
M11 M12
M21 M22

)
, (30)

and components Mi j of the matrix M are considered as constants for simplicity.
The symmetric part of the matrixM should be positive semidefinite to ensure the
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non-negativity of the entropy production, which requires (Johnson, 1970; Horn
et al., 1990)

M11 ≥ 0, M22 ≥ 0, M11M22−
(M12 +M21)

2

2
≥ 0. (31)

Therefore, the evolution equation for the internal variable α has the form

αt = M11T
(
C∇

2α−Bα
)
−M12∇T. (32)

Accordingly, for the generalized heat flux we have

q+C∇α :αt = M21T
(
C∇

2α−Bα
)
−M22∇T. (33)

Eliminating the heat flux from energy conservation equation (24) using Eq. (33),
we arrive at the heat conduction equation in the framework of the single internal
variable approach

T St−M22∇
2T =(C∇

2α−Bα) :αt−M21∇ ·
[
T (C∇

2α−Bα)
]
. (34)

3.3. Heat flux as internal variable
Now we are able to make a certain interpretation of the internal variable. It

is noteworthy that choosing heat flux as the internal variable we obtain for its
evolution from Eq. (32)

qt = M11T (C∇
2q−Bq)−M12∇T. (35)

It is clear that in the absence of internal variables (i.e., for zero values of B and C)
we have the classical Fourier law

qt =−M12∇T. (36)

If the free energy density does not depend on the gradient of the internal variable
(i.e., C = 0), then the evolution equation for heat flux is reduced to a Cattaneo-
Vernotte-type equation

1
M11T B

qt +q =−
M12

M11T B
∇T. (37)

If, vice versa, the free energy density depends only on the gradient of the internal
variable and independent of the internal variable itself (i.e., B = 0), then we arrive
at the Green-Naghdi-type equation for heat flux

1
M11TC

qt =−
M12

M11TC
∇T +∇

2q. (38)
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Entire equation (35) can be interpreted as the Guyer-Krumhansl-type equation

1
M11T B

qt +q =−
M12

M11T B
∇T +

C
B

∇
2q. (39)

As noted in Section 2, the generalized evolution equations for heat flux do not
ensure a hyperbolic character of the heat conduction equation. It is worth therefore
to examine the complete system of equations (32) and (34). In the absence of
analytical solution, we do this numerically.

3.4. Numerical test
3.4.1. Governing equations

Considering small deviations of temperature from the reference value T0, we
neglect nonlinear terms which reduces heat conduction equation (34) to

Tt− k∇
2T =− k1∇ ·

(
∇

2α
)
+ k2∇ ·α, (40)

with k=M22/ρcp and coupling coefficients k1 =M21T0C/ρcp and k2 =M21B/ρcp.
Accordingly, evolution equation for the internal variable (32) is represented as

αt = a1∇
2α−a2α−a3∇T, (41)

with model parameters a1 = M11T0C, a2 = M11T0B, and a3 = M12. Last two equa-
tions are similar to those presented in (Grot, 1969; Ieşan, 2002).

3.4.2. Formulation of the problem
As an example, the transient heat conduction from a heat source localized at

the boundary of a thin plate is considered. The sketch of the problem is shown in
Fig. 1. The plate is made from a homogeneous isotropic material with a possible
inner microstructure. The length of the plate is denoted by L and its width is equal
to d.

Initially, the plate has uniform temperature T0. The thermal loading Tl(x, t) is
nonzero only at the bottom boundary for x ∈ [−h/2,h/2]. All other parts of plate
boundaries are keeping at the ambient temperature T0. The shape of the loading
Tl(x, t) is a smooth cosine pulse of duration tl with the amplitude T1 changing
according to cosine function in x, namely,

T (x, t) =
T1

2
cos
(

π

2
x
h

)(
1− cos

2πt
tl

)
[H(t)−H(t− tl)], (42)

where H(t) denotes the Heaviside step function.
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Figure 1: Sketch of the problem.

3.4.3. Dimensionless variables
To reduce the number of coefficients it is useful to introduce dimensionless

variables. Let t0 is a characteristic time of a process and l0 = L is its characteristic
length. Dimensionless variables (denoted by primes) are introduced as follows:

t ′ =
t
t0
, x′ =

x
l0
, T ′ =

T
T0
, α′ =

α

A0
, (43)

with the reference temperature T0 and the reference magnitude of the internal
variable A0. Substitution of definitions (43) into Eqs. (40) and (41) provides

A0

t0
α′t ′ =

A0a1

l2
0

∇
′2α′−A0a2α

′− T0a3

l0
∇
′T ′, (44)

and
T0

t0
T ′t ′−

kT0

l2
0

∇
′2T ′ =−k1A0

l3
0

∇
′ ·
(
∇
′2α′

)
+

k2A0

l0
∇
′ ·α′. (45)

The choice of characteristic values t0 and A0 is dictates by the conservation of the
same order of magnitude for first three terms in heat conduction equation (45)

t0 =
l2
0
k
, A0 = l0T0. (46)
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Such a choice results in the dimensionless heat conduction equation

T ′t ′−∇
′2T ′ =−k1

k
∇
′ ·
(
∇
′2α′

)
+

k2l2
0

k
∇
′ ·α′. (47)

The dimensionless evolution equation for the internal variable obtains the form

α′t ′ =
a1

k
∇
′2α′−

a2l2
0

k
α′− a3

k
∇
′T ′. (48)

For a clear demonstration of the effect of the internal variable, we choose the value
of parameters k = 1, k1 = 10, k2l2

0 = 0.5, the equality of coefficients a1 and k, and
a2 and k2, and the small value of a3 = 0.005.

Figure 2: Temperature distribution in the plate at 1000 time steps.

3.4.4. Results of the simulation
Computations in the two-dimensional case are performed by means of the

finite-volume numerical scheme (Berezovski et al., 2008) with the dimensionless
space step ∆x′ = 5 · 10−3 and the dimensionless time step ∆t ′ = 8.33 · 10−6. The
length of the computational domain is equal to 200∆x and its width is 80∆x. The
pulse duration is 50∆t, its width h = 20∆x, and the initial amplitude is equal to
5T0 (expressed in Celsius degrees). Typical result of the simulation is presented
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Figure 3: Contour plot of temperature distribution in the plate with microstructure at 1000 time
steps.

in Fig. 2 in terms of the distribution of the excess of dimensionless temperature at
1000 time steps. The corresponding contour plot is shown in Fig. 3.

As one can see, the microstructure influence changes the distribution of tem-
perature in the plate only slightly in comparison with the more symmetrical tem-
perature distribution in the homogeneous plate without microstructure shown in
Fig. 4. This is due to the parabolicity of the evolution equation for the internal
variable.

It seems that the single internal variable technique is unable to describe a
wave-like thermal response to the localised heating. The single internal variable
theory provides the generalization of governing equations of heat conduction in
microstructured solids but does not change the mathematical structure of the de-
scription. Governing equations (40) and (41) remain parabolic in this framework
both for heat conduction and the internal variable evolution.

However, the internal variable theory does not exhausted by the single internal
variable case. The dual internal variable approach (Ván et al., 2008; Berezovski
et al., 2011; Berezovski and Ván, 2017) affords a more general description ensur-
ing a hyperbolic behavior of internal variables even in the heat conduction case
(Berezovski, 2016, 2019).
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Figure 4: Contour plot of temperature distribution in the plate without microstructure at 1000 time
steps.

4. Dual internal variables

The dual internal variable approach is the generalization of the single internal
variable theory (Ván et al., 2008; Berezovski et al., 2011; Berezovski and Ván,
2017). For heat conduction in solids, it has been specified in (Berezovski, 2016,
2019). In this approach it is supposed that the free energy depends on internal
variables α,β, and their space gradients.

4.1. Quadratic free energy
Specifying the free energy density as a quadratic function of its arguments

W =−
ρcp

2T0
(T −T0)

2 +
1
2

Bα2 +
1
2

C(∇α)2 +
1
2

Dβ2 +
1
2

F(∇β)2, (49)

we can calculate the time derivative of the free energy

−∂W
∂ t

=−∂W
∂T

∂T
∂ t
− ∂W

∂α

∂α

∂ t
− ∂W

∂∇α

∂∇α

∂ t
− ∂W

∂β

∂β

∂ t
− ∂W

∂∇β

∂∇β

∂ t
=

= STt−Bα :αt−C∇α : (∇αt)
T −Dβ : βt−F∇β : (∇βt)

T .

(50)

Balance of energy (Eq. (22)) is then rewritten with the obtained expression for
time rate of the free energy

(ST )t +∇ ·q = STt−Bα :αt−C∇α : (∇αt)
T−

−Dβ : βt−F∇β : (∇βt)
T .

(51)
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It can be further transformed to

(ST )t +∇ · (q+C∇α :αt +F∇β : βt) =

= STt +(C∇
2α−Bα) :αt +(F∇

2β−Dβ) : βt .
(52)

Accordingly, the dissipation inequality reads

(C∇
2α−Bα) :αt +(F∇

2β−Dβ) : βt+

+∇ · (C∇α :αt +F∇β : βt +T K)−

− 1
T
(q−C∇α :αt−F∇β : βt) ·∇T ≥ 0.

(53)

The elimination of the divergence term in the dissipation inequality is achieved
using the idea of Maugin (1990)

K =− 1
T
(C∇α :αt +F∇β : βt). (54)

This choice of the extra entropy flux reduces the dissipation inequality to the sum
of products of thermodynamic fluxes and forces

(C∇
2α−Bα) :αt +(F∇

2β−Dβ) : βt−

− 1
T
(q−C∇α :αt−F∇β : βt) ·∇T ≥ 0.

(55)

4.2. Evolution equations for internal variables
Similarly to the case of single internal variable we can represent a linear solu-

tion of the dissipation inequality as αt
βt

(q−C∇α :αt−F∇β : βt)

= L

(C∇2α−Bα)
(F∇2β−Dβ)
− 1

T ∇T

 , (56)

where

L =

L11 L12 L13
L21 L22 L23
L31 L32 L33

 , (57)

with the similar condition of semidefiniteness of the matrix L as mentioned above.
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It follows that evolution equations for internal variablesα and β have the form

αt = L11(C∇
2α−Bα)+L12(F∇

2β−Dβ)−L13
1
T

∇T, (58)

βt = L21(C∇
2α−Bα)+L22(F∇

2β−Dβ)−L23
1
T

∇T, (59)

and the modified heat flux is calculated similarly

q−C∇α :αt−F∇β : βt = L31(C∇
2α−Bα)+

+L32(F∇
2β−Dβ)−L33

1
T

∇T.
(60)

Correspondingly, the heat conduction equation reads

(ST )t +∇ · (L31(C∇
2α−Bα)+L32(F∇

2β−Dβ)−L33
1
T

∇T ) =

= STt +(C∇
2α−Bα) :αt +(F∇

2β−Dβ) : βt .
(61)

Equations (58) – (61) compose the complete system of equations for the calcula-
tion of the evolution of internal variables and temperature. However, one of the
internal variables (say, β) can be eliminated.

4.3. Elimination of one internal variable
Neglecting the nonlinear contributions for small deviations of temperature

from its reference value T0 we can calculate the time derivative of the evolution
equation for the internal variable α

αtt = L11(C∇
2αt−Bαt)+L12(F∇

2βt−Dβt)−L13
1
T0

∇Tt , (62)

and express the time rate of β in terms of α

βt =
L̂21

L12
(C∇

2α−Bα)+
L22

L12
αt +

L̂23

L12

1
T0

∇T, (63)

as well as the time rate of the Laplacian β

∇
2βt =

L̂21

L12
∇

2(C∇
2α−Bα)+

L22

L12
∇

2αt +
L̂23

L12

1
T0

∇(∇2T ), (64)

with L̂21 = L21L12−L11L22, L̂23 = L13L22−L23L12.
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The single evolution equation for the internal variable α is obtained by sub-
stitution the relationships for the time derivatives of β and its Laplacian in the
expression for the second time derivative of α

αtt = L̂21BDα− L̂21(CD+BF)∇2α− (L22D+L11B)αt+

+(L11C+L22F)∇2αt− L̂23D
1
T0

∇T −L13
1
T0

∇Tt+

+CFL̂21∇
2(∇2α)+FL̂23

1
T0

∇(∇2T ).

(65)

4.4. Simplifications
To reduce the complexity of the obtained evolution equation, we consider its

simplified version with vanishing values of coefficients B and F in the free energy
dependence

αtt =−L̂21(CD)∇2α− (L22D)αt +(L11C)∇2αt−

− L̂23D
1
T0

∇T −L13
1
T0

∇Tt .
(66)

Avoiding viscous dissipation, i.e., L13 = 0, L22 = 0, we arrive at

αtt =−L̂21(CD)∇2α+(L11C)∇2αt− L̂23D
1
T0

∇T. (67)

Single hyperbolic equation (67) for the internal variable α can be represented in
the form

αtt = a2
4∇

2α+a5∇
2αt +a6∇T, (68)

with obvious relations for the values of coefficients, i.e., a2
4 = −L̂21(CD), a5 =

L11C, a6 =−L̂23DT−1
0 . Accordingly, the heat conduction equation can be rewrit-

ten as

Tt− k∇
2T =k3∇ ·

(
∇

2α
)
+ k4∇ · (αt) , (69)

with k = (ρcpL12T0)
−1(L33L12− L32L13), k3 = C(ρcpL12)

−1(L11L32− L31L12),
and k4 = (ρcpL12)

−1L32.
Thus, the heat conduction equation remains parabolic, but the evolution equa-

tion for the internal variable α is hyperbolic. Now we will examine the influence
of the microstructure on the transient heat conduction in the framework of dual
internal variables. Solution of the system of equations (68)–(69) will be obtained
numerically.
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4.5. Dimensionless variables
As in the case of single internal variable, it is useful to introduce the dimen-

sionless variables in the same way. Definitions of dimensionless variables (43)
provide the equations for internal variable

A0

t2
0
α′

t ′t ′ = a2
4

A0

l2
0

∇
′2α′+a5

A0

l2
0t0

∇
′2α′t ′+a6

T0

l0
∇T ′, (70)

and for heat conduction

T0

t0
T ′t ′− k

T0

l2
0

∇
′2T = k3

A0

l3
0

∇
′ ·
(
∇
′2α′

)
+ k4

A0

l0t0
∇
′ ·
(
α′

t
)
. (71)

In this case we make another characteristic choice keeping the same order of mag-
nitude for two first terms in the evolution equation for the internal variable and for
the temperature coupling term

t0 =
l0
a4

, A0 = l0T0. (72)

Due to this choice, the dimensionless evolution equation for the internal variable
obtains the form

α′
t ′t ′ = ∇

′2α′+
a5

a4l0
∇
′2α′t ′+

a6

a2
4

∇T ′, (73)

and the heat conduction equation reads, respectively,

T ′t ′−
k

a4l0
∇
′2T ′ =

k3

a4l0
∇
′ ·
(
∇
′2α′

)
+ k4∇

′ ·
(
α′

t
)
. (74)

4.6. Numerical test
Computations of the problem formulated in Section 3.4.2 are performed using

the explicit finite-volume numerical scheme (Berezovski et al., 2008) with the
same values of dimensionless space step ∆x′ = 5 · 10−3 and the dimensionless
time step ∆t ′ = 8.33 ·10−6 as previously. Initial and boundary conditions did not
changed. The values of used dimensionless model parameters are the following:
a5/a4l0 = 10−3, a6 = a2

4, k/a4l0 = 0.1, k3/a4l0 = 5 ·10−3, and k4 = 1.5. Results
of simulation are presented in Fig. 5 in terms of the distribution of the excess
temperature normalized by initial temperature T0. Due to the difference in time
scales for single and dual internal variables, the temperature distribution in Fig. 5
corresponds to only 100 time steps. A clear wave-like behavior of temperature is
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Figure 5: Temperature distribution in the plate with microstructure at 100 time steps.
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Figure 6: Contour plot of temperature distribution in the plate with microstructure at 100 time
steps.
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observed complemented by a narrow diffusional zone close to the thermal loading
location. It is confirmed by the contour plot shown in Fig. 6.

The obtained result follows from the hyperbolic character of the evolution
equation of the internal variable α which is reflected in the behavior of temper-
ature due to the coupling of governing equations. Since the internal variable α
represents the influence of the microstructure, it can be associated with the mi-
crotemperature (Grot, 1969).

5. Conclusions

The extension of the thermodynamic state space is a paradigmatic method in
the non-equilibrium thermodynamics (Müller, 1985; Müller and Ruggeri, 1998;
Maugin, 1999; Jou et al., 2010; Cimmelli et al., 2014). The thermodynamics with
internal variables (Coleman and Gurtin, 1967; Maugin and Muschik, 1994a; Cim-
melli and Rogolino, 2001) provides a formalization of such an extension. The
single internal variable method is broadly employed for a long time (Maugin and
Muschik, 1994b; Horstemeyer and Bammann, 2010; Maugin, 2015, e.g.). Its ap-
plication to heat conduction results in the coupled parabolic equations both for
heat conduction and internal variable evolution (Berezovski, 2016). The more
recent dual internal variable concept (Ván et al., 2008; Berezovski et al., 2011;
Berezovski and Ván, 2017) provides a hyperbolic equation for the behavior of
internal variables keeping the parabolic nature for heat conduction equation.

In the paper, both approaches are compared by means of the numerical simula-
tion of two-dimensional heat conduction in a plate under a localised thermal pulse
loading. Computations of the same problem by the different internal variable de-
scriptions produce qualitatively dissimilar results. The single internal variable
approach leads to a diffusional type of the internal variable evolution. In con-
trast, dual internal variable technique provides a wave-like evolution of the inter-
nal variables, and, as the consequence, the corresponding wave-like heat transfer.
The results are obtained in the dimensionless form, and parameters of models are
chosen to emphasize the features of each model.
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