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Abstract

In this paper, wave propagation in a two-layer composite strip is investigated
analytically and numerically. The strip is loaded by a very short transverse
stress pulse. Three cases of the strip problem are assumed: (i) isotropic alu-
minum Al strip and two-layer strips made of (ii) Al and the ceramics Al2O3

and (iii) the ceramics Al2O3 and Al. The analytical method is based on
Laplace and Fourier transform. The in-house finite element algorithm and
thermodynamic consistent finite volume scheme are employed for computa-
tions, while the explicit time stepping procedure is used in both cases. The
comparison of analytical and numerical results determines the degree of the
accuracy of calculations, which is important for simulation of complex wave
propagation problems in general heterogeneous media.
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1. Introduction

Application of elastic wave propagation to inspect the state of real struc-
tures and their damage localization is an essential part of structural health
monitoring [1]. For instance, acoustic emission testing is completely based
on elastic wave phenomena [2]. The acoustic emission testing is the broadly
accepted approach for the localization of defects in structures [3–5]. The va-
lidity of this approach has, however, certain limitations [6]. In fact, the signal
arrival time measurement is performed under the assumption that the prop-
agation velocity is constant in all directions (see, e.g., MISTRAS Acousto-
Ultrasonics, https://www.mistrasgroup.com/products/technologies/acousto-
ultrasonics.aspx). The wave propagation from a source to the sensor is sup-
posed to be straight and uninterrupted. These assumptions can be invalid
due to various possible inhomogeneity effects that can reduce the accuracy
of this technique.

This is only one reason to have effective tools for the prediction of wave
propagation in real materials and structures. A key element in wave con-
trolling is the prediction of the wavefield for any composite with arbitrarily
distributed scatterers of irregular shapes and sizes. It should be noted that
classical works in wave propagation [7–9] deal with the theoretical description
of propagation, reflection, and transmission of elastic waves in simplified situ-
ations. More recent works [10–14] demonstrate the applicability of numerical
methods to characterize wave propagation in inhomogeneous materials and
structures.

This means that if the geometry of inhomogeneities and material proper-
ties of constituents are prescribed, then the only problem is in the accuracy
of calculations. The accuracy is determined by the comparison of an approx-
imate numerical solution with the true analytical one. However, analytical
solutions are usually known for idealized isotropic homogeneous materials
and simplified geometry.

It is a great advantage of the paper that the analytical solution can be
constructed for the dynamic transverse load of a two-layer infinite strip fol-
lowing [15]. Having an analytical solution, its comparison with numerical
solutions can be performed. In the paper, calculations by the finite element
method and by the finite volume method are compared with the analytical
solution to examine their accuracy on the example of a two-layer strip un-
der dynamic transverse loading. The paper is a continuation of the work
performed on one-dimensional wave propagation in layered bars [16].
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2. Problem description
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Figure 1: Sketch of the problem.

We will consider the transient response of a two-layer elastic strip to the
transverse impulse loading. The sketch of the problem is shown in Fig. 1.
The infinite elastic strip is composed of two homogeneous isotropic layers of
different materials. Namely, the bottom layer 1 of the thickness d1 = 30 mm
is made from aluminumAl and the upper layer 2 of the thickness d2 = 10 mm
is made from aluminum oxide Al2O3 (ceramics). The properties of materials
are given in Table 1. The corresponding longitudinal and shear wave speeds
are also stated there. The values of longitudinal speed cp in parenthesis
correspond to plane stress conditions. It is clear from the values specified
in Table 1 that the composite strip is made from two materials with highly
different properties.

Material Density Young modulus Poisson Longitudinal Shear Source
ρ [kg/m3] E [GPa] ratio ν wave speed cp [m/s] speed cs [m/s]

Al 2700 70.6 0.345 6420 (5448) 3040 [17]
Al2O3 3970 401 0.24 10911.2 (10352.8) 6381.9 [18]

Table 1: Values of material properties.

Initially, the strip is at rest. The stress loading p(x1, t), as normal pres-
sure, is nonzero only for x2 = d1 + d2 and for x1 ∈ [−h, h]. All other parts of
the strip boundaries were stress-free. The shape of the loading p(x1, t) is a

3



smooth cosine pulse of duration t0 with the amplitude σ0 changing according
to cosine function in x1, namely,

p(x1, t) =
σ0

2
cos
(π

2

x1

h

)(
1− cos

2πt

t0

)
[H(t)−H(t− t0)], (1)

where H(t) denotes the Heaviside step function. Corresponding parameters
contained in (1) were the following: h = 2 mm, σ0 = 106 Pa, t0 = 2 · 10−6 s.

3. Governing equations

In this section, basic equations of dynamic problems in solids are specified
for 2D case under plane stress conditions. Let Ω ⊂ R3 be an open, bounded
domain with a piecewise smooth boundary ∂Ω and t ∈ [0, T ] is the time range
of interest. Neglecting both geometrical and physical nonlinearities, we can
write the bulk equations (balance of linear momentum) of homogeneous linear
isotropic elasticity in the absence of body forces as follows [19]:

ρ
∂vi
∂t

=
∂σij
∂xj

, on Ω× [0, T ]. (2)

The balance of linear momentum is complemented by the Hooke law in the
form

∂σij
∂t

= λ
∂vk
∂xk

δij + µ

(
∂vi
∂xj

+
∂vj
∂xi

)
, (3)

where t is time, xi are spatial coordinates, vi are the velocity components,
σij denotes the Cauchy stress tensor, ρ is the density, λ and µ are the Lamé
coefficients given by λ = Eν/((1+ν)(1−2ν)) and µ = E/(2(1+ν)), E is the
Young modulus and ν is the Poisson ratio. We assume that E and ν could
be different at each material point.

Since initially the strip is at rest, therefore the initial displacement and
velocity fields are of zero values. The Neumann boundary conditions are
assumed as the pressure at the boundary ΓN = [−h, h]× [x2 = d1 + d2] with
the space distribution and time history given by Eq. (1). The strip is floating
in the space, therefore the Dirichlet boundary conditions is not taken into
account.
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3.1. Plane stress approximation

For the 2D problem, in our case of the strip geometry, we have Ω =
(−∞,∞)× [0, d1 + d2]. The strip is supposed to be thin along the x3 direc-
tion then stresses on all parallel x3-planes are sufficiently small and can be
neglected, i.e.,

σi3 = 0, i = 1, 2, 3. (4)

This approximation is called plane stress approximation. Though the dis-
placement u3 in the direction of x3 does not vanish, the others (u1, u2) are
independent of the coordinate x3; that is,

ui = ui(x1, x2), i = 1, 2. (5)

It follows that the strain tensor components, εi3, are

εi3 = 0, ε33 = − ν
E
σii, i = 1, 2. (6)

Equations of motion (2)-(3) specialized to plane stress conditions have
the form

ρ
∂v1

∂t
=
∂σ11

∂x1

+
∂σ12

∂x2

, (7)

ρ
∂v2

∂t
=
∂σ21

∂x1

+
∂σ22

∂x2

. (8)

Accordingly, strain-velocity relationships are represented as

∂ε11

∂t
=
∂v1

∂x1

, (9)

∂ε12

∂t
=

1

2

(
∂v1

∂x2

+
∂v2

∂x1

)
, (10)

∂ε22

∂t
=
∂v2

∂x2

. (11)

3.2. Stress-strain relation

Stress-strain relations (the Hooke law) which close the system of governing
equations under plane stress conditions have the form

σ11 = (λ+ 2µ)ε11 + λε22, (12)
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σ12 = σ21 = 2µε12, (13)

σ22 = (λ+ 2µ)ε22 + λε11, (14)

where λ = 2µλ/(λ + 2µ). Time derivatives of the stress-strain relations
together with compatibility conditions determine relationships

∂σ11

∂t
= (λ+ 2µ)

∂v1

∂x1

+ λ
∂v2

∂x2

, (15)

∂σ22

∂t
= λ

∂v1

∂x1

+ (λ+ 2µ)
∂v2

∂x2

, (16)

∂σ12

∂t
=
∂σ21

∂t
= µ

(
∂v1

∂x2

+
∂v2

∂x1

)
. (17)

These equations together with the balance of linear momentum (7)–(8) form
the system of equations, which is convenient for the solution.

3.3. Wave speeds

The wave speeds under plane stress conditions are specified for the isotropic
case as

cp =

√
E

(1− ν2) ρ
, cs =

√
µ/ρ. (18)

In the case of heterogeneous media, material parameters depend on position
of material points.

4. Analytical solution

In this Section, we set out the technique used for obtaining the analytical
solution of the studied problem.

4.1. Derivation procedure and final formulas for transforms of stress compo-
nents

To find the analytical solution of the problem formulated in Sections 2
and 3, it is advantageous to introduce a local coordinate system x1,L − x2,L

for each Lth layer (L = 1, 2). The origins of these systems are localized in the
geometrical centres of layers, i.e., the domain of the Lth layer are defined as
(−∞,+∞)× [− dL/2, dL/2]. Then one can use a procedure for the deriva-
tion of desired formulas of stress components similar to that employed in
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[15]. Taking the Laplace transform in time domain, we transfer the original
systems of equations of motion for each layer to spatial boundary value prob-
lems with a complex parameter p. The general solutions of obtained systems
can then be expressed by means of Fourier integrals. Taking into account
the symmetry of the problem, the Laplace transforms of all non-zero stress
components denoted hereinafter by a hat are given for ω ∈ R by Fourier
integrals having the form

σ̂11,L(x1,L, x2,L, p) =
1

π

∞∫
0

[(A1,L sinh(x2,Lλ1,L) + A2,L cosh(x2,Lλ1,L)) k1,L−

− (A3,L sinh(x2,Lλ2,L) + A4,L cosh(x2,Lλ2,L)) k2,L] cos(ωx1,L)dω ,

(19)

σ̂22,L(x1,L, x2,L, p) =
1

π

∞∫
0

[(A1,L sinh(x2,Lλ1,L) + A2,L cosh(x2,Lλ1,L)) k3,L+

+ (A3,L sinh(x2,Lλ2,L) + A4,L cosh(x2,Lλ2,L)) k2,L] cos(ωx1,L)dω ,

(20)

σ̂12,L(x1,L, x2,L, p) = − 1

π

∞∫
0

[(A1,L cosh(x2,Lλ1,L) + A2,L sinh(x2,Lλ1,L)) k4,L+

+ (A3,L cosh(x2,Lλ2,L) + A4,L sinh(x2,Lλ2,L)) k5,L] sin(ωx1,L)dω .

(21)

The complex functions involved in (19) - (21) are introduced by the following
relations

λ1,L = ω

√
1 +

p2

ω2c2
p,L

, λ2,L = ω

√
1 +

p2

ω2c2
s,L

, k1,L =
ELνL
1− ν2

L

−
2GLc

2
p,Lω

2

p2
,

k2,L =
4GLc

2
s,Lλ2,Lω

p2
, k3,L = 2

(
ω2c2

p,L

p2
+ 1

)
GL +

ELνL
1− ν2

L

,

k4,L =
2GLc

2
p,Lλ1,Lω

p2
, k5,L = 2

(
2c2

s,Lω
2

p2
+ 1

)
GL ,

(22)
where GL denotes the shear modulus of the material in the Lth layer (L =
1, 2) and Ai,L = Ai,L(ω, p) for i = 1 . . . 4 and L = 1, 2 represent 8 unknown
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complex functions which need to be found using the Laplace transform of
four boundary conditions of the problem and four conditions defined at the
interface of the strip layers. Following the problem description given in Sec-
tion 2, the Laplace transforms of mentioned conditions can be written as (in
order from the upper edge of the strip)

σ̂22,2(x1,2, d2/2, p) = p̂(x1,2, p) , σ̂12,2(x1,2, d2/2, p) = 0 ,

û1,1(x1,1, d1/2, p) = û1,2(x1,2,−d2/2, p) , û2,1(x1,1, d1/2, p) = û2,2(x1,2,−d2/2, p) ,

σ̂22,1(x1,1, d1/2, p) = σ̂22,2(x1,2,−d2/2, p) , σ̂12,1(x1,1, d1/2, p) = σ̂12,2(x1,2,−d2/2, p) ,

σ̂22,1(x1,1,−d1/2, p) = 0 , σ̂12,1(x1,1,−d1/2, p) = 0 .
(23)

4.2. Evaluation process and its precision

The evaluation process of derived relationships (19) - (21) is realized in
two basic steps. Namely, these are the Fourier integrals evaluation (FIE)
and the inverse Laplace transform. The sequence of these steps may also be
interchanged due to the properties of the integrands in Eqs. (19) - (21). The
first mentioned step was managed by using the standard numerical Simp-
son rule with a constant integration step in this work. The second step has
been resolved by means of an algorithm for numerical inverse Laplace trans-
form (NILT). Specifically, the procedure based on FFT and Wynn’s epsilon
algorithm was used (see [20] and [21] for more details).

Although the derived relationships (19) - (21) are exact, it is obvious that
their evaluation will suffer from numerical errors. The errors are caused not
only by two numerical procedures mentioned above but also by the precision
limits of the software used for the evaluation. In this work, a Matlab code
with double precision arithmetics has been used. This limitation may come
into play when the hyperbolic functions contained in the integrands of derived
Laplace transforms need to be evaluated for large arguments, i.e., for large
values of the variable ω of the Fourier integrals. The same concerns to the
functions Ai,L(ω, p) evaluated from formulas which can be derived exactly
in this case of two-layer strip. These issues can be overcome by symbolic
calculations of higher precision but it is always redeemed by significantly
higher demands on computational time.

The precision of the algorithm used for NILT is discussed in detail in
[22]. We focus on the accuracy of FIE process here. Even though there exist
very sophisticated algorithms for numerical integration, we used the simple
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straightforward Simpson rule with constant integration step, as mentioned
above. This decision resulted from the analysis of integrands appearing in
Eqs. (19) - (21) after the NILT process. As expected, the precision of FIE
is principally influenced by the integration step dω and by the upper limit
of integration ωmax. Their right choice is predetermined by the behavior of
integrands depending on t, x1 and x2.

(a) (b)

Figure 2: The dependence of σ11 integrand in [Pa·s] on t and ω: (a) point A, (b) point B

We focus on t and x2 dependence first. For this purpose, we assume
the strip mentioned in Section 2, i.e., the strip composed of 30 mm of Al
(1st layer) and of 10 mm of Al2O3 (2nd layer). The dependencies of σ11

integrand on t ∈ [0, 50] µs and ω ∈ [0, 2000] rad s−1 are shown for studied
points A and B for x0 = 10 mm (i.e., for different values of x2) in Fig. 2(a)
and Fig. 2(b), respectively. It is obvious that contrary to the point A, the
calculation of the response at point B (x2 = 40 mm) for very short times
requires ωmax > 2000 to take into account the integrand oscillations. On
the other hand, to obtain good results for longer times, the values of ωmax

can be reduced to about 2000 rad s−1 at both studied points, i.e., both for
x2 = 0 mm and x2 = 40 mm.

The specific character of σ11 integrand oscillations at point A is obvious
from Fig. 3. The curves presented in this figure correspond to vertical cuts
of Fig. 2(a) at times t

.
= 10 µs and t = 50 µs. Such oscillations then

determine the size of the integration step dω. It is clear that calculations
for larger values of t require smaller dω. Similar dependence of dω on x1
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can be deduced from Eqs. (19) - (21). Since the variables x1,L appear after
the NILT process still in the argument of sin or cos functions, the size of dω
needs to be reduced with increasing x1.

(a) (b)

Figure 3: The dependence of σ11 integrand at point A on ω at specific times: (a) t
.
= 10 µs,

(b) t = 50 µs

It is clear from the previous discussion that the evaluation of Eqs. (19) -
(21) is loaded by numerical errors. But if the applied numerical approaches
are used wisely, very precise results can be obtained. Their precision can
then be verified by means of the exact arrival times of P-waves to the points
of interest. In the case of studied points A and B and the Al–Al2O3 strip,
these times can be calculated as

tA =
1

cp,Al2O3

√
d2

2 +

[
(x0 − h)d2

d1 + d2

]2

+
1

cp,Al

√
d2

1 +

[
(x0 − h)d1

d1 + d2

]2
.
= 6.601 µs ,

tB =
x0 − h
cp,Al2O3

.
= 0.7727 µs.

(24)

If we make a detailed view of σ11(t) at mentioned points, then we find out
that the arrival times obtained from the evaluated solution are in very good
agreement with the theoretical ones given by Eq. (24). It is clearly visible
from Fig. 4 where the stress component σ11 at points A and B is shown.
The times tA and tB are highlighted by vertical dotted lines. Naturally, if
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(a) (b)

Figure 4: The detailed views of σ11(t) with times of P-wave arrivals to (a) point A and
(b) point B.

one makes a detailed inspection of σ11 values calculated at points A and B
at times t < tA and t < tB, respectively, then the values are not exactly
equal to zero. The differences from the zero value are more than four (nearly
six) orders smaller in magnitude than the maximal values of σ11 at point A
(point B) on the time interval [0, 50] µs. It is evident that the results of such
precision can be used for the validation of numerical results in the following
sections.

5. Finite element procedure with explicit time integration

5.1. Weak formulation and spatial discretization

As the first step, we rewrite the equation of motion (2) in terms of dis-
placements ui

ρ
∂2ui
∂t2

=
∂σij
∂xj

. (25)

Next, we represent equation of motion (25) in the weak form by multiplying
it by a virtual field δϕi and integrating over the domain Ω using Green’s
theorem ∫

Ω

ρ
∂2ui
∂t2

δϕi dΩ +

∫
Ω

Cijkl
∂uk
∂xl

∂δϕi

∂xj
dΩ =

∫
∂Ω

t∗i δϕi dS, (26)
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with a general stress-strain law σij = Cijklεkl and the traction t∗i at the
boundary ∂Ω.

Applying a spatial discretization

ui =
n∑

a=1

Naqai , δϕi =
n∑

a=1

Naδϕa
i , (27)

we end up with∫
Ω

ρN bNa∂
2qbi
∂t2

δϕa
i dΩ +

∫
Ω

Cijkl
∂N b

∂xl

∂Na

∂xj
qbkδϕ

a
i dΩ =

∫
∂Ω

t∗iN
aδϕa

i dS. (28)

Due to the arbitrariness of the virtual field δϕi, we can represent the latter
relationship in the matrix form

Mq̈(t) + Kq(t) = fext(t), (29)

where q(t) is the nodal displacement vector, q̈(t) is the nodal acceleration
vector, M is the mass matrix having the form

M =

∫
Ω

ρNTN dΩ, (30)

K is the stiffness matrix

K =

∫
Ω

BTCB dΩ (31)

and fext is the load vector

fext =

∫
ΓN

NT t∗ dΓ. (32)

In linear elastodynamic problems, the matrices K and M are constant for
each finite element but may differ for distinct elements due to heterogeneous
media. C is the elasticity matrix, B is the strain-displacement matrix, N
stores the displacement interpolation functions, for details see [23].

For the finite element simulation, we use the standard finite element
based on displacement formulation with linear shape functions [23]. The
integrals in Eqs. (30)-(32) are evaluated by the Gauss integration proce-
dure. To reduce the integration cost for K, we use the one-point integration
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rule with the hourglass control as described in [24]. Elements stiffness ma-
trix K1gp

el obtained by the one-point Gauss integration are complemented
by a stabilization stiffness matrix Kstab suppressing hourglass modes, i.e.,
Kel = K1gp

el + Kstab. The mass matrix M is lumped using row-summing
procedure [23], which is preferred in the explicit time integration due to
temporal-spatial dispersion [25].

5.2. Explicit time integration in FEM

In this paper, we use the central difference (CD) scheme for explicit time
integration as described in the book [26]. The update of nodal velocities at
each time step is then split into two half-steps, and the desired values of
velocities can be prescribed directly. This approach is also called leapfrog
integration. It is assumed that quantities q(t), q̇(t), q̈(t) are known at the
time instant t, and the task is to find their values at the next time step t+∆t.
The central difference scheme as the leapfrog integration procedure takes the
form presented in Algorithm 1:

Initialize t0 = 0, q0, q̇0, assemble M, K, and compute
q̈0 = M−1 (f0

ext −Kq0)
while t<T do

setting of the time step size ∆t
q̇(t+ ∆t

2
) = q̇(t) + q̈(t)∆t

2
;

q(t+ ∆t) = q(t) + q̇(t+ ∆t
2

)∆t;
application of boundary conditions;
r(t+ ∆t) = fext(t+ ∆t)−Kq(t+ ∆t);
q̈(t+ ∆t) = M−1r(t+ ∆t);
q̇(t+ ∆t) = q̇(t+ ∆t

2
) + q̈(t+ ∆t)∆t

2
;

application of boundary conditions;
t = t+ ∆t;

end
Algorithm 1: The central difference scheme in the leapfrog form for
direct time integration of elastodynamic problems

It should be noted that the presented scheme is conditionally stable [23].
This means that the value of the time step ∆t has to satisfy the stability
limit ∆t < ∆tcr, where ∆tcr is the critical limit given as ∆tcr = 2/ωmax.
Here ωmax is the maximum angular frequency of the discretized homogeneous
system (29). It is known that the maximum eigenfrequency of the assembled
finite element mesh is smaller than the maximum value of each separated
finite element consisted in the mesh [23], because this value is taken as a
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maximum over all values as ωmax ≈ max(ωe
max). Here ωe

max = 2cep/h
e is the

maximum frequency of separated element with longitudinal wave speed cep
and length he for the case of the lumped mass matrix for regular meshes.

A regular mesh is preferred due to dispersion in the wave propagation
problem. Suitable Dirichlet and Neumann boundary conditions and initial
conditions should be included for solving the problem. Dirichlet boundary
conditions are applied directly to nodal values of the displacement vector,
velocity vector, acceleration vector, respectively, at ΓD. Neumann boundary
conditions are applied through the external nodal force fext(t). In the case
of stress-free boundary conditions, the nodal external force vector is zero
for material points at the boundary. It is known that Neumann boundary
condition is only an approximation and goes to exact values as convergence
properties of FEM with decreasing mesh size. The final results of stress tensor
σij, computed at integration points inside the finite element domain, are
interpolated into the nodal values. This technique is called stress recovering.
In the paper, we use the ZZ (Zienkiewicz and Zhu) algorithm for the stress
recovery [27], which evaluates the stress tensor σij values correctly.

6. Finite volume scheme

For finite volume calculation, governing equations (7)–(8) and (15)–(17)
are presented in the conservation form [28]

∂U

∂t
+
∂F

∂x1

+
∂G

∂x2

= 0, (33)

with the vector of variables U and fluxes F and G defined as

U =


ρv1

ρv2

σ11

σ12

σ22

 , F =


σ11

σ12

(λ+ 2µ)v1

µv2

λv1

 , G =


σ12

σ22

λv2

µv1

(λ+ 2µ)v2

 . (34)

For the discretisation, a regular Cartesian grid of rectangular cells is used in
space, and time is discretised by time levels. Variables are approximated by
averaged values over cells. The use of cell averages is the standard procedure
in the finite-volume method [29, 28]. Integrating the governing equations
over the control volume results in the Godunov-type numerical scheme [28]

Uk+1
n,m = Uk

n,m +
∆t

∆x1

(
Fk

n+1,m − Fk
n,m

)
+

∆t

∆x2

(
Gk

n,m+1 −Gk
n,m

)
. (35)
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Here the superscript k denotes time level and subscripts n and m indicate
the number of cell in horizontal and vertical directions, respectively.

The numerical fluxes Fk
n,m and Gk

n,m are computed by solving Riemann
problems at interfaces between cells [29, 28]. Various methods have been
proposed for the solution of Riemann problems [30–32, 29]. In the paper,
the thermodynamically consistent version of the wave propagation algorithm
[33] is applied using jump relations at interfaces between computational cells,
which express the continuity of true stresses and velocities. This algorithm
provides algebraic procedure for the solution of Riemann problems, second-
order accuracy [33], and stability up to values of Courant number close to
unity.

6.1. Boundary conditions

To be able to perform the calculation of a particular problem we need
to specify initial and boundary conditions. Initial conditions fix the state of
each cell at a chosen time instant. We suppose that initially the strip is at
rest, which assumes zero values for all wanted fields. Boundary conditions
are imposed by means of ghost cells following [29]. At the loaded upper
boundary, the value of the normal stress in each cell and at each time step
is given in advance. At the stress-free bottom boundary, the value of the
normal stress is zero. Lateral boundary conditions are not specified because
the length of the strip is chosen such that the influence of these boundaries
is absent.

7. Numerical results and comparison with the analytical solution

In this Section, we present the results of numerical solution of pulse prop-
agation in the homogeneous and heterogeneous strip. The results obtained
by the in-house finite element algorithm and by the finite volume scheme
specified above are compared to the analytical solution. The comparison of
non-dimensional stress component σ11/σ0 is made at two selected points A
and B for x0 = 10 mm (see the problem sketch in Fig 1). Note that stress
components σ22 and σ12 have zero values at the points A and B, therefore
only the normal stress σ11 is of interest.

We start with the homogeneous case and continue with the heterogeneous
case of a layered strip composed by two different materials as specified in
Section 2.
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7.1. Homogeneous aluminum strip

Based on the geometry of the problem shown in Fig. 1, the values of
parameters used for the numerical simulations are chosen as follows:

• Loading size h = 2 mm = 10 ∆x1;

• Strip thickness d1 + d2 = 40 mm = 200 ∆x1;

• Strip length = 120 mm = 600 ∆x2;

• Space step (mesh size) ∆x1 = ∆x2 = 0.2 mm;

• Distance x0 = 10 mm = 50∆x1.

The time step ∆t for explicit schemes is determined by the maximum of
longitudinal velocity in the studied material. For pure aluminum, the value
of the longitudinal wave velocity is 5448 m/s (see Table 1), which determines

∆t = ∆x1/cp = 2 · 10−4/5448 = 3.67 · 10−8 s.

Correspondingly, the duration of the loafing is

t0 = 200/3.67 = 54 ∆t.

The characteristic time T0 is then

T0 = 0.04/5448 = 7.34 · 10−6 = 200 ∆t.

Calculations are performed for 500 time steps providing the absence of influ-
ence of lateral boundaries of the strip.

The obtained results are shown in Figs. 5–6. Here blue lines correspond
to the analytical solution, red lines represent the finite element simulation,
and magenta lines denote results obtained by the finite volume calculations.
As one can see, there is almost no difference between the results of finite
element computations and the analytical solution.

At the same time, results of the finite volume simulation are qualitatively
similar but quantitatively have observable distinctions. The reason is in
the imposing of boundary conditions. The finite volume calculations are
performed with the value of the Courant number less than unity due to
stability demand. Keeping the same size for time and space steps as in the
finite element computations, we arrive at the delay in the time variation of
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Figure 5: Time history of the normalized stress σ11 at point A in homogeneous aluminum
strip.
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Figure 6: Time history of the normalized stress σ11 at point B in homogeneous aluminum
strip.
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the loading, as it is demonstrated in Fig. 7. Here the blue line corresponds
to the value of the Courant number equal to unity used in the finite element
solution and the magenta line shows the representation of the same pulse for
Co = 0.83 employed in the finite volume calculations. The initial delay in
input causes the delay in the response.
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Figure 7: Time variation of loading pulse along the vertical central line.

7.2. Composite strip Al–Al2O3

Now we compare the results of numerical simulations with the analytical
solution in the case of the layered strip. First, we consider the case where
pure aluminum is in the layer 1, and the layer 2 is made from the ceramics
Al2O3. Since the longitudinal wave speed for Al2O3 is 10352.8 m/s, the time
step ∆t for the simulation is

∆t = ∆x/cp = 2 · 10−4/10352.8 = 1.93 · 10−8 s.

Accordingly, the duration of the loafing is

t0 = 200/1.93 = 104 ∆t,

and the characteristic time T0 is then

T0 = 0.04/10352.8 = 3.86 · 10−6 = 200 ∆t.
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The comparison of numerical and analytical solutions for the time history
of the normalized stress σ11 at points A and B, in this case, is presented in
Figs. 8–9. The finite element and analytical results are practically coincided
in the considered case. Even finite volume calculations are closer to analytical
and finite element outcomes.
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Figure 8: Time history of the normalized stress σ11 at point A in two-layer Al–Al2O3

strip.

7.3. Composite strip Al2O3–Al

Now we alter the placement of the layers to see how this alteration affects
the comparison. This means that the layer 1 is made from the ceramic
Al2O3 and the layer 2 is made from pure aluminum. The parameters used in
simulations are the same as in the previous case because the only placement
of layers is changed. The comparison of numerical and analytical solutions
for the time history of the longitudinal stress at points A and B is presented
in Figs. 10–11.

Again, blue lines in mentioned figures still correspond to the analytical
solutions, the red ones show the results of finite element computations and
the magenta lines denote the results obtained by finite volume calculations.
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Figure 9: Time history of the normalized stress σ11 at point B in two-layer Al–Al2O3

strip.
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Figure 10: Time history of the longitudinal stress at point A in two-layer Al2O3–Al strip.
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Figure 11: Time history of the longitudinal stress at point B in two-layer Al2O3–Al strip.

It is clear that the variation of stresses in time is changed, but finite ele-
ment results are in a perfect agreement with the analytical ones. As before,
finite volume calculations provide less accurate results due to the reasons
mentioned above.

8. Conclusions

The main goal of the paper was to examine how accurate are numerical
calculations in the comparison with the analytical solution of two-dimensional
transverse pulse propagation in a two-layer strip fabricated from materials
with highly distinct properties. Time histories of stresses at two different
points placed at boundaries of the strip were used for the comparison. It
is demonstrated that the in-house finite element algorithm provides the per-
fect coincidence between analytical and numerical results for all considered
examples. The agreement with the results by the finite volume scheme is
less definitive due to the distinction in the posing of loading conditions. The
main conclusion is that the used numerical algorithms can be applied to the
prediction of signal propagation in more complex practical situations.
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This work provides the basis for the application of elaborated numerical
methods to heterogeneous media with several layers, to graded media, and
to media with inclusions. The influence of a microstructure on dispersive be-
havior of waves in structures can be analyzed by these numerical approaches,
where we can control the accuracy. A special attention has to be paid on
discontinuous wave propagation in heterogeneous cases which is still an open
problem in numerical modeling of composite structures.
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