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Abstract

A special mesh adaptation technique and a precise discontinuity tracking are

presented for an accurate, efficient, and robust adaptive-mesh computational

procedure for one-dimensional hyperbolic systems of conservation laws, with

particular reference to problems with evolving discontinuities in solids. The

main advantage of the adaptive technique is its ability to preserve the modified

mesh as close to the original fixed mesh as possible. The constructed method

is applied to the martensitic phase-transition front propagation in solids.
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1. Introduction

The paper contributes to the solution of the long-term problem of the track-

ing of moving discontinuities in solids by means of the reallocation of a de-

formable mesh, as well as to the prediction of the evolution of unavoidable

discontinuities.5
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Heterogeneity is a typical feature of solids and structures. Distinct homoge-

neous parts of a material (layers, inclusions, grains, etc.) are divided from one

another by boundaries or interfaces. Theoretically, such sharp interfaces can

be idealized as discontinuities. Among them, evolving discontinuities hold a

specific place due to their theoretical complexity and practical importance. Lo-10

cation of such discontinuities is not prescribed in advance. It varies in time and

space under external loading. The most known examples of evolving discon-

tinuities in solid mechanics are brittle cracks and martensitic phase-transition

fronts.

Dynamics of such discontinuities is determined by two factors, that is, by15

the driving force acting at the discontinuity and by the velocity of the dis-

continuity. Both the driving force and the velocity of discontinuity have been

subjects of intensive research in the case of martensitic phase transition fronts

[1] and brittle crack dynamics [2, 3]. The driving force acting at discontinuity

is a specific example of the well-established concept of configurational forces20

[4–6]. It can be calculated by means of standard numerical methods. The

question about the velocity of a discontinuity is more subtle. In contrast to

gas dynamics, where the velocity of shock wave can be calculated by means

of the Rankine-Hugoniot jump relations [7], macroscopic jump conditions in

solid mechanics do not provide enough information, for instance, to specify25

the velocity of a phase boundary uniquely. Uniqueness of the solution can be

achieved by the introduction of two supplementary constitutive-like relation-

ships: a kinetic law for a driving force that establishes the speed of the phase

transformation front and a nucleation criterion [1]. The constitutive theory of

kinetic relations is not completely established yet.30

It is well known [8, e.g.] that even if we know the values of the driving force

and the velocity of a discontinuity, this does not guarantee a precise description

of the motion of the discontinuity using numerical methods. The necessary

precision can be achieved only if the location of the discontinuity coincides

with a mesh node at each time step. The accuracy in the determination of35

velocity and location of the discontinuity is crucial. An error in the location of
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the discontinuity leads to an incorrect distribution of field values which results

in an improper value of the driving force acting at the discontinuity. Then the

divergence from the true solution will increase more and more up to undesired

values. This means that the location of the discontinuity should be as precise40

as possible. Such a requirement demands mesh alignment with discontinuity.

Mesh adaptation is not a new idea. Various methods employ a non-uniform

mesh that is sparse in regions where the solution is smooth and more con-

centrated near discontinuities [9], or use the refinement of the grid by split-

ting computational cells near discontinuity [10]. However, the distortion of45

an adapted mesh can be too large [11], which may result in inadequacy of the

solution. Another approach is to track the discontinuity by virtue of a locally

distorted mesh allowing the discontinuity to jump from one computational cell

to another [8]. In this case, the local re-meshing of two cells adjacent to a dis-

continuity may produce an inappropriate distortion.50

Let us consider the results of numerical simulation of the martensitic phase

boundary motion in the problem formulated in Section 4 using two different

methods of the front tracking following Zhong et al. [8] and Fazio and LeVeque

[11]. It should be noted that these calculations are performed by means of

the wave propagation algorithm [12] under identical conditions specified in55

Section 4 and using the same kinetic relation. The results of the calculations

are presented in Fig. 1.

As one can see, the prediction of the front propagation diverges substan-

tially depending on the front tracking procedure. Moreover, if the mesh size is

changed (say, increased in two times), then the results in both cases are changed60

significantly. The difference in results for the method by Zhong et al. [8] is

shown in Fig. 2. Even more drastically difference is observed for the method

of capacity function [11], as one can see in Fig. 3.

These examples manifest the necessity of the accuracy in the determination

of velocity and location of the discontinuity.65

The discontinuity-driven mesh adaptation presented in the paper is the

synthesis of the moving mesh approach [11] with an appropriate ”capacity

3



 600

 700

 800

 900

 1000

 1100

 1200

 350  400  450  500  550  600

Ti
m

e 
(t

im
e 

st
ep

s)

Distance (space steps)

Figure 1: Predictions of a martensitic front propagation for Ni-Ti shape memory alloy under impact

loading. Blue line corresponds to the location of the front position by means of capacity function

[11], magenta line represents the front position according to the reallocation procedure [8].
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Figure 2: Predictions of a martensitic front propagation according to the reallocation procedure [8].

Here magenta line is the same as in Fig. 1 and red line corresponds to the coarse mesh.
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Figure 3: Predictions of a martensitic front propagation according to [11]. The blue line is the same

as in Fig. 1 and red line corresponds to the coarse mesh.

function” [12] and a reallocation technique similar to proposed in [8]. Such

a combination of the two approaches preserves the advantages of both. Ad-

ditionally, the algorithmic computation of the velocity of discontinuity [13] is70

applied.

The moving mesh technique is described in Section 2 including grid map-

ping and alignment. As an example, martensitic phase-transition front propa-

gation problem is reminded in Section 3. The difference between the location of

a discontinuity with and without mesh alignment is demonstrated in Section75

4. Conclusions and discussion are presented in the last Section.

2. Mesh alignment

2.1. Conservation laws

Wave motion in elastic solids is governed by the balance of linear momen-

tum, the kinematic compatibility conditions, and the Hooke law. In one space

dimension the governing equations can be written the form of conservation
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laws [14, 15]
∂

∂t
q(x, t) +

∂

∂x
f (q(x, t)) = 0, (1)

where t is time, x is space variable, q is a vector of conserved quantities, and

f (q) is called the flux function.80

Let us introduce a computational grid of cells Cn = [xi, xi+1] with interfaces

xi = i∆x and time levels tk = k∆t. For simplicity, the grid size ∆x and time

step ∆t are assumed to be constant. It should be noted that we set the index

n for cell description and keep boundaries of nth cell as xi and xi+1 for later

convenience. Then we introduce the average q̄k
n of the exact solution on Cn at

the time instant t = tk

q̄k
n =

1
∆x

∫ xi+1

xi

q(x, tk)dx. (2)

The difference between the value of the quantity q(x, tk) and its averaged value

q̄k
n is represented by so-called excess quantity Qk

n(x) [13], i.e.,

q(x, tk) = q̄k
n + Qk

n(x). (3)

It should be noted that the values of excess quantity at the ends of the in-

terval [xi, xi+1] are only of interest. We denote them as Qk
n(xi) = (Qk

n)
− and

Qk
n(xi+1) = (Qk

n)
+. For a linear function f

f (q(x, tk)) = f (q̄k
n) + f (Qk

n(x)), (4)

and we can represent the flux function at boundaries of the cell as follows:

f (q(xi, tk)) = f (q̄k
n) + (Fk

n)
−, f (q(xi+1, tk)) = f (q̄k

n) + (Fk
n)

+. (5)

Integration the conservation law (1) over the computational cell n gives

∂

∂t

∫ xi+1

xi

q(x, t)dx = − f (q(xi+1, t)) + f (q(xi, t)) =

= − f (q̄k
n)− (Fk

n)
+ + f (q̄k

n) + (Fk
n)
− = −(Fk

n)
+ + (Fk

n)
−.

(6)

Using the definition of averaged quantity (2) and applying the standard ap-

proximation for the time derivative, we can represent Eq. (6) as a numerical

scheme in terms of excess quantities

q̄k+1
n = q̄k

n −
∆t
∆x

(
(Fk

n)
+ − (Fk

n)
−
)

. (7)
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Comparing with flux-differencing scheme [14], we can see that here the excess

quantities are used instead of numerical fluxes. This scheme is working well

on fixed mesh [13] and has the same properties of accuracy and stability as

those established for the conservative wave propagation algorithm [16].

2.2. Moving mesh85

Keeping in mind a possible motion of a discontinuity, we set a moving

mesh. We suppose that the computational domain is alternatively divided us-

ing a set of points which move in time and are parameterized by zk
i = z(xi, tk).

We keep the original fixed mesh as a part of the adaptive technique, i.e., z0
i = xi.

Following [11], we assume that the motion of points zi has a constant speed

żk
i =

zk+1
i − zk

i
∆t

, (8)

over each time step [tk, tk+1]. The transfer from the fixed mesh to the moving

mesh is illustrated in Fig. 4.

Figure 4: Moving mesh.

As it is demonstrated in [11], the dependence q̃(x, t) ≡ q(z(x, t), t) trans-

forms conservation laws (1) into

(zxq̃)t + ( f (q̃)− ztq̃)x = 0. (9)
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Integration of conservation law (9) over the undistorted cell now results in

∂

∂t
(∆znq̄k

n) + (Fk
n)

+ − (Fk
n)
−−

− żk
i+1(q̄

k
n + (Qk

n)
+) + żk

i (q̄
k
n + (Qk

n)
−) = 0.

(10)

Applying the standard approximation for the time derivative and defining the

capacity κk
n = ∆zk

n/∆x [11], we represent the obtained relationship as

κk+1
n q̄k+1

n − κk
nq̄k

n = − ∆t
∆x

[
(Fk

n)
+ − (Fk

n)
−
]
+

+
∆t
∆x

[
żk

i+1(q̄
k
n + (Qk

n)
+)− żk

i (q̄
k
n + (Qk

n)
−)
]

.
(11)

The final form of the numerical scheme in terms of excess quantities

κk+1
n q̄k+1

n = κk+1
n q̄k

n −
∆t
∆x

[
(Fk

n)
+ − żk

i+1(Q
k
n)

+ − (Fk
n)
− + żk

i (Q
k
n)
−
]

, (12)

follows by the use of the observation [11]

κk
nq̄k

n = κk+1
n q̄k

n −
∆t
∆x

[
żk

i+1 − żk
i

]
q̄k

n. (13)

As shown in [17], it is convenient to represent numerical scheme (12) in the

wave propagation form

κk+1
n q̄k+1

n = κk+1
n q̄k

n −
∆t
∆x

[
(Fk

n)
+ − (Fk

n)
−
]

, (14)

determining values of excess quantities at the boundaries of computational

cells by means of jump relations (for each cell n and time step k)

[[ f (q̄) + F + żi(q̄ + Q)]] = 0. (15)

Here [[A]] = A+ − A−, and A± are uniform limits of a field A in approaching

the boundary from its positive and negative sides, respectively.

The numerical form of the jump relations is then

(Fk
n)
− − (Fk

n−1)
+ − żk

i

[
(Qk

n)
− − (Qk

n−1)
+
]
=

= −( f (q̄k
n)− f (q̄k

n−1) + żk
i (q̄

k
n − q̄k

n−1).
(16)

The major advantage of using this type of formulation is a natural way in90

which the mesh motion is incorporated into discrete equations. This is con-

trasted with methods that explicitly introduce terms of the form żk
i q̄k

n into nu-

merical scheme, which can lead to problems with stability [18].
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2.3. Grid mapping

Now we will introduce a specific grid mapping function in order not to95

fix the grid point attached to the discontinuity but to determine the closest

grid point to the location of the discontinuity at each time step. Instead of the

reallocation for only a limited number of shifted cells as in [8], it will be applied

on whole computational domain that reduces the distortion of the grid.

The computational domain is discretized in such a way that the discontinu-100

ity is always at an interface between computational cells. If at a time instant tk

the discontinuity is located at a certain cell interface, then the computation will

proceed as follows:

• Compute all quantities at the time instant tk+1 from the known state at

the time instant tk, including the discontinuity propagation speed, and105

then the location of the discontinuity at tk+1.

• Calculate the grid mapping function according to the movement of the

discontinuity so that the discontinuity is still at a cell interface.

• Update all quantities at the time instant tk+1 for the adapted mesh.

Assume that the position of the discontinuity G is known at time t = tk

G(tk) = Gk. (17)

If the velocity of the propagation of the discontinuity vk
g is determined, then

we can calculate the position of the discontinuity at the next time step

Gk+1 = Gk + vk
g∆t. (18)

Then we can choose the fixed grid cell boundary Ĝk+1
x , which is the closest to

the updated front location simply checking the relation

|Gk+1 − Ĝx
k+1| < ∆x

2
. (19)

The grid mapping for moving mesh coordinates is given by

zk+1
i =


1

Ĝk+1
x −a

(xi − a)Gk+1, a ≤ xi ≤ Gk+1

Gk+1 + 1
b−Ĝk+1

x
(xi − Ĝk

x)(b− Gk+1), Gk+1 < xi < b.
(20)
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The explicit positioning of the discontinuity ensures the calculation of aver-110

aged quantities using the values belonging to only one side of the discontinu-

ity (a front side or a rear side). This supports the stability of computations and

prevent unphysical damping.

The proposed technique is illustrated on the example of one-dimensional

martensitic phase-transition front propagation in the next Section.115

3. Example: Martensitic phase-transition front propagation

The simplest example of an evolving discontinuity in elastic solids is a

stress-induced phase-transition front between martensite and austenite phases

in a shape memory material, because its continuum description can be con-

sidered in one-dimensional setting [1]. The formulation of the stress-induced120

phase-transition front propagation problem is given in the case of an isother-

mal uniaxial motion of a bar with a unit cross-section. The bar occupies the

interval 0 < x < L in a reference configuration and assumed to be longer than

its diameter so it is under uniaxial stress state and the stress σ(x, t) depends

only on the axial position and time. The density of the material ρ is assumed125

to be constant.

Strain and velocity fields are connected to the displacement u(x, t) of a point

x at time t

ε(x, t) =
∂u
∂x

, v(x, t) =
∂u
∂t

, (21)

respectively. The strain ε(x, t) suffers discontinuity jump across a phase bound-

ary. The displacement field is assumed to remain continuous throughout the

bar. The balance of linear momentum and kinematic compatibility require that

away from a phase boundary

ρ
∂v
∂t

=
∂σ

∂x
, (22)

∂ε

∂t
=

∂v
∂x

, (23)

where the function σ(ε) specifies the stress-strain relation.
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The velocity and strain fields subject to the following initial and boundary

conditions:

ε(x,0) = v(x,0) = 0, for 0 < x < L, (24)

v(0, t) = v0(t), ε(L, t) = 0, for t > 0, (25)

where v0(t) is a given time-dependent function.

On the discontinuity S the balance laws reduce to the Rankine-Hugoniot

jump conditions

V[[ε]] + [[v]] = 0, (26)

V[[ρv]] + [[σ]] = 0, (27)

where V denotes the velocity of an isolated strain discontinuity S which prop-

agates along the bar.130

As it is well known, the strain discontinuity that occurs across a propagat-

ing phase boundary is a source of dissipation [1], i.e., the martensitic phase

transformation is accompanied by an entropy production.

The entropy production is determined by the product of the driving force

at the discontinuity and its velocity [6, 19]

fSV ≥ 0, (28)

where the associated configurational driving force is calculated as follows:

fS = −[[W]] + 〈σ〉[[ε]]. (29)

Here W is free energy per unit volume and 〈σ〉 = (σ+ + σ−)/2.

Unfortunately, the jump relations (26), (27) do not provide enough infor-

mation to specify the velocity of the phase boundary V uniquely. The only

possibility is to use the relationship

V2 =
[[σ]]

ρ[[ε]]
, (30)

which follows from jump relations (26) and (27) since the density ρ is constant135

in the considered case. However, it is possible only after the determination of
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the stress (or strain) jump at the discontinuity. Fortunately, the stress jump can

be accurately determined algorithmically using the thermodynamically consis-

tent version of the wave propagation algorithm [13] as one can see below.

3.1. Averaged and excess quantities140

In the case of elasticity, averaged and excess quantities are introduced as

follows:

σ = σ̄ + Σ v = v̄ + V . (31)

Here overbars still denote averaged quantity and Σ and V are the correspond-

ing excess quantities. Accordingly, the numerical scheme (7) in terms of excess

quantities has the form (c.f. [20])

(ρv)k+1
n − (ρv)k

n =
∆t
∆x

(
(Σk

n)
+ − (Σk

n)
−
)

, (32)

ε̄k+1
n − ε̄k

n =
∆t
∆x

(
(V k

n)
+ − (V k

n)
−
)

. (33)

The boundaries between computational cells represent regular material points

and therefore the total stress should be continuous across the boundary be-

tween cells

[[σ̄ + Σ]] = 0. (34)

The jump relation following from the kinematic compatibility reads

[[v̄ + V ]] = 0. (35)

The numerical form of jump relations (34) and (35) is the following:

(Σk
n−1)

+ − (Σk
n)
− = σ̄k

n − σ̄k
n−1, (36)

(V k
n−1)

+ − (V k
n)
− = v̄k

n − v̄k
n−1. (37)

It should be noted that values of excess stresses and excess velocities at the

boundaries between computational cells are not independent. They are con-

nected due to the conservation of Riemann invariants [21]

ρncn(V k
n)
− + (Σk

n)
− ≡ 0, (38)
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ρn−1cn−1(V k
n−1)

+ − (Σk
n−1)

+ ≡ 0, (39)

where c denotes the velocity of elastic wave.

The system of linear equations (36)-(39) can be solved exactly for each bound-

ary between computational cells determining the values of excess quantities.

Then the field quantities can be updated for the next time step by means of nu-

merical scheme (32)-(33). As it was demonstrated [13], the numerical scheme145

described above is identical to the wave propagation algorithm proposed by

LeVeque [12, 14] for smooth solutions. This means that the convergence and

accuracy of this scheme are established there.

3.2. Excess quantities at the phase boundary

The values of excess stresses at the moving phase boundary satisfy the con-

tinuity of excess stresses across the phase boundary [13, 19]

[[Σ]] = 0, (40)

which results in (
Σk

p−1

)+
−
(

Σk
p

)−
= 0, (41)

if the phase boundary is placed between elements (p− 1) and (p).150

Jump relation (40) expresses the conservation of the genuine jump at the phase

boundary in the numerical calculations [13] since Eq. (40) yields

[[σ]] = [[σ̄ + Σ]] = [[σ̄]]. (42)

Consistently, the conservation of the genuine jump for velocity is also required

[[V ]] = 0. (43)

Keeping the relations between excess stresses and excess velocities (38), (39)

we obtain
(Σk

p−1)
+

ρp−1cp−1
+

(Σk
p)
−

ρpcp
= 0. (44)

Conditions (41) and (44) determine vanishing of values of excess stresses at the

phase boundary

(Σk
p−1)

+ = (Σk
p)
− = 0. (45)
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Similarly, due to conservation of Riemann invariants (38), (39)

(V k
p−1)

+ = (V k
p)
− = 0. (46)

Now we can update the state of elements adjacent to the phase boundary since

all the excess quantities at the phase boundary are determined. Moreover, we

can apply now relationship (30) for the determination of the velocity of the

phase boundary. The direction of the front propagation is determined by the

positivity of entropy production (28). This algorithmic approach to compute155

the velocity of a discontinuity was implemented successfully for calculations

of martensitic phase-transition front propagation [13]. However, it has been re-

alized only for the fixed mesh. In what follows, the computation of the velocity

of a discontinuity is applied in the case of the mesh reallocation.

4. Results of numerical simulations160

The goal of the simulations is to analyze the phase-transition front propa-

gation under dynamic loading. The phase-transition front is represented by a

discontinuity surface of zero thickness separating the different homogeneous

austenite and martensite phases. For the considered one-dimensional case,

simulations were performed for a bar of the length 25 cm at the temperature165

37 oC. Material properties for Ni-Ti shape memory alloy were extracted from

[22], where all the details of the experimental procedure are well explained.

The Young’s moduli are 62 GPa and 22 GPa for austenite and martensite phases,

respectively, Poisson’s ratio is the same for both phases and is equal to 0.33, the

density for both phases is 6450 kg/m3.170

The bar is loaded by a step-wise stress pulse from one end. Another end

of the bar is fixed. Initially, the bar is at rest. After loading, the phase bound-

ary located initially at some position inside the bar may start to move if the

magnitude of the applied stress is high enough.

First, the simulation of the phase transition front propagation is performed175

in the case of a fixed mesh. The dimensionless computational domain is di-

vided by 1200 space steps with the size of dimensionless space step ∆x = 10−3.
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The time step is determined by the requirement for the Courant number to be

equal to 1, and therefore, ∆t = 10−3 as well. The initial position of the phase

boundary is equal to 400∆x. The loading pulse duration is 200 time steps.180

Its dimensionless magnitude is equal to unity. Calculations are performed for

1200 time steps. The initial and final normalized stress shape is shown in Fig.

5.
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Figure 5: Initial and final stress distribution.

A procedure similar to a cellular automaton is applied to the phase-transition

front tracking [13]. At any time step, the values of the driving force are calcu-185

lated in cells adjacent to the phase boundary. If the value of the driving force

at the phase boundary exceeds the critical one, the velocity of the phase front

is computed by means of relationship (30). Virtual displacement of the phase-

transition front is calculated then for the phase boundary adjacent to the cell.

The cell is kept in the old phase state if the virtual displacement is less than the190

size of the space step, and changes its state to another phase otherwise. The

result is represented by the stair-like black line in Fig. 6. Calculations on the

coarse mesh are also performed and the result is represented by red line there.

As one can see, the dependence on the mesh size is very weak in this case.
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Figure 6: Variation of phase boundary location in time at fixed mesh. Black line represents results

of above mentioned method with a fine grid. Red line corresponds to the coarse mesh.

Next, the discontinuity driven mesh adaptation is applied as described in195

previous sections. The comparison of results with and without reallocation is

illustrated in Fig. 7. In this Figure, the black line is the same as in Fig. 6, the

blue line displays the results of mesh adaptation and alignment, and red lines

show the mesh distortion at every 10 space steps. The mesh distortion looks

indiscernible, and it is made more visible in Fig. 8, where a zoomed part of Fig.200

7 shows this distortion at every space step.

One can observe a clear distinction in the position of the front obtained by

means of adapted and non-adapted mesh. The smooth trajectory of the front

position with the mesh adaptation and alignment guarantees the stability of

the numerical scheme eliminating the possibility of instabilities due to sudden205

jumps of the position of the front from one grid point to another which happens

if there is no mesh adaptation.
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Figure 7: Variation of phase boundary location in time.

5. Conclusions and discussion

In the paper, we describe how the discontinuity-driven mesh adaptation

procedure for hyperbolic systems of conservation laws can be constructed for210

problems with moving discontinuities. Key features of the presented method

are accuracy and stability, which is ensured by the ability of the adaptive tech-

nique to preserve the modified mesh as close to the original fixed one as possi-

ble.

It should be noted that there are numerous attempts to achieve an accurate215

solution of the free boundary problem [23–26], at which jump relations are ap-

plied as boundary conditions. The front tracking and front capturing methods

are successful only if the velocity of the front can be determined in advance

as for shock waves in gas dynamics. This is clearly demonstrated in recent

reviews of high-order front tracking and front capturing methods which are220

presented in [27, 28].

The main difficulty in the corresponding numerical solution is in using grid

points on both sides of the discontinuity to approximate a derivative that is
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not even well defined [8]. The only way to determine the velocity of a discon-

tinuity uniquely without an additional constitutive hypothesis is the numeri-225

cal approach based on the thermodynamically consistent version of the wave

propagation algorithm [13]. In this approach, the velocity of the phase bound-

ary is calculated explicitly after the determination of jumps of field quantities

at the boundary by means of specific thermodynamic jump conditions. This is

why we choose the thermodynamically consistent version of the wave propa-230

gation algorithm [13] for the numerical solution of problems with moving dis-

continuity. It should be noted that on smooth solutions the chosen algorithm

is formally identical with the conservative version of the wave propagation

algorithm [21]. This means that the accuracy and convergence of the chosen

method are the same as in the conservative wave propagation algorithm [16,235

18



e.g.]. As shown on the example of martensitic phase transition front propaga-

tion, the method is stable up to the Courant number equal to unity. The exten-

sion of the proposed method by a special adaptive dimensional splitting could

help to implement this method in higher dimensions. The implementation of

this adaptive procedure in higher dimensions is in progress.240

References

[1] R. Abeyaratne, J. K. Knowles, Evolution of Phase Transitions: A Contin-

uum Theory, Cambridge University Press, 2006.

[2] L. B. Freund, Dynamic Fracture Mechanics, Cambridge University Press,

1990.245

[3] K. Ravi-Chandar, Dynamic Fracture, Elsevier, 2004.

[4] G. A. Maugin, Material forces: concepts and applications, Applied Me-

chanics Reviews 48 (5) (1995) 213–245.

[5] R. Kienzler, G. Herrmann, Mechanics in Material Space: with Applica-

tions to Defect and Fracture Mechanics, Springer Science & Business Me-250

dia, 2000.

[6] G. A. Maugin, Configurational Forces: Thermomechanics, Physics, Math-

ematics, and Numerics, CRC Press, 2011.

[7] J. M. Hyman, Numerical methods for tracking interfaces, Physica D: Non-

linear Phenomena 12 (1-3) (1984) 396–407.255

[8] X. Zhong, T. Y. Hou, P. G. LeFloch, Computational methods for propa-

gating phase boundaries, Journal of Computational Physics 124 (1) (1996)

192–216.

[9] M. J. Berger, R. J. LeVeque, Adaptive mesh refinement using wave-

propagation algorithms for hyperbolic systems, SIAM Journal on Numer-260

ical Analysis 35 (6) (1998) 2298–2316.

19



[10] R. J. LeVeque, D. L. George, M. J. Berger, Tsunami modelling with adap-

tively refined finite volume methods, Acta Numerica 20 (2011) 211–289.

[11] R. Fazio, R. J. LeVeque, Moving-mesh methods for one-dimensional hy-

perbolic problems using clawpack, Computers & Mathematics with Ap-265

plications 45 (1-3) (2003) 273–298.

[12] R. J. LeVeque, Wave propagation algorithms for multidimensional hyper-

bolic systems, Journal of Computational Physics 131 (2) (1997) 327–353.

[13] A. Berezovski, J. Engelbrecht, G. A. Maugin, Numerical Simulation of

Waves and Fronts in Inhomogeneous Solids, World Scientific, 2008.270

[14] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Vol. 31,

Cambridge University Press, 2002.

[15] J. S. Hesthaven, Numerical Methods for Conservation Laws: From Anal-

ysis to Algorithms, SIAM, 2018.

[16] D. S. Bale, R. J. LeVeque, S. Mitran, J. A. Rossmanith, A wave propagation275

method for conservation laws and balance laws with spatially varying

flux functions, SIAM Journal on Scientific Computing 24 (3) (2003) 955–

978.

[17] J. M. Stockie, J. A. Mackenzie, R. D. Russell, A moving mesh method for

one-dimensional hyperbolic conservation laws, SIAM Journal on Scien-280

tific Computing 22 (5) (2001) 1791–1813.

[18] S. Li, L. Petzold, Y. Ren, Stability of moving mesh systems of partial dif-

ferential equations, SIAM Journal on Scientific Computing 20 (2) (1998)

719–738.

[19] A. Berezovski, G. A. Maugin, Jump conditions and kinetic relations at285

moving discontinuities, ZAMM-Journal of Applied Mathematics and Me-

chanics/Zeitschrift für Angewandte Mathematik und Mechanik 90 (7-8)

(2010) 537–543.

20



[20] A. Berezovski, G. Maugin, Simulation of thermoelastic wave propagation

by means of a composite wave-propagation algorithm, Journal of Com-290

putational Physics 168 (1) (2001) 249–264.

[21] A. Berezovski, Thermodynamic interpretation of finite volume algo-

rithms, Journal of Structural Mechanics (Rakenteiden Mekaniikka) 44 (3)

(2011) 156–171.

[22] A. L. McKelvey, R. O. Ritchie, On the temperature dependence of the su-295

perelastic strength and the prediction of the theoretical uniaxial transfor-

mation strain in nitinol, Philosophical Magazine A 80 (8) (2000) 1759–1768.

[23] J. Glimm, E. Isaacson, D. Marchesin, O. McBryan, Front tracking for hy-

perbolic systems, Advances in Applied Mathematics 2 (1) (1981) 91–119.

[24] N. Risebro, A. Tveito, A front tracking method for conservation laws in300

one dimension, Journal of Computational Physics 101 (1) (1992) 130–139.

[25] D.-K. Mao, A shock tracking technique based on conservation in one space

dimension, SIAM Journal on Numerical Analysis 32 (5) (1995) 1677–1703.

[26] J. Glimm, X. L. Li, Y. Liu, N. Zhao, Conservative front tracking and level

set algorithms, Proceedings of the National Academy of Sciences 98 (25)305

(2001) 14198–14201.

[27] C. Gatti-Bono, P. Colella, D. Trebotich, A second-order accurate conserva-

tive front-tracking method in one dimension, SIAM Journal on Scientific

Computing 31 (6) (2010) 4795–4813.

[28] P. S. Rawat, X. Zhong, On high-order shock-fitting and front-tracking310

schemes for numerical simulation of shock–disturbance interactions, Jour-

nal of Computational Physics 229 (19) (2010) 6744–6780.

21


