//groups.engin.umd.umich.edu/CIS/course.des/cis400/maxim/

Fortran 0- designed 1954
http://www.engin.umd.umich.edu/CIS/course.des/cis400/fortran/fortran.html
· Compiler completed 1957
· Mostly using assembly languages
· Fortran 1 & 2 designed while the Fortran 0 compiler was in development stage
1960 Fortran IV
· Fixed fields in source code (columns 1-5 labels, 6 'continue', 7-72 source, 73-80 sequence fields)
	Column #
	1–5
	6
	7 – 72
	73 - 80

	
	Labels
	Continue
	Source code
	Sequence fields

· Implicit typing (I-N was integer variable types, all else was floating point)
· Arithmetic 'if' ,  ,  (>0, <0, =0)
· 'Do' iterator
· Formatted i/o
· Comments
1963 Naur developed Algol 60 ('root' for Pascal, PL/1, Ada)

http://www.engin.umd.umich.edu/CIS/course.des/cis400/algol/algol.html
· 'Free' format (freedom of indentation, spacing, etc)
· Reserved words (certain words could not be variable names)
· Explicit typing (variable type had to be explicitly defined)
· General iterator (similar to 'while')
· Block structure
· Recursive procedures
· Dynamic array bounds
· Value parameters
What is an "Algol-like" language?
· Algorithmic language for describing processes
· Imperative (most computation work done in assignment statements)
· Block & procedure
· Lexical scope
C Algol lexical scope
[image: image1.png]

· Lexical scope is where the variable is visible and allows nested subroutines, need order
· Type checking
· Compilation used
[image: image2.png]BCRC

e

SMALLTALE

CONCURRENT
PASCAL

N

Applicative language- functional
[image: image3.png]—

usp

FLASHA MACLISP SCHEME INTERLEP
v ¥
BCPL AL SHOBOL FORTH

o

 IBM in its wisdom gave away FORTRAN with all its new computers creating wide spread support for FORTRAN and undermining Algol support
 Both type-checking and scope was not so good in Algol, this resulted in reduced reliability
 Industry preferred Fortran, academics preferred Algol
COBOL:
http://www.engin.umd.umich.edu/CIS/course.des/cis400/cobol/cobol.html
 1959 Dept. of Defense wanted a single language
 1960 Remington (Rand) developed the first compilers
 Machine independent
 General if/then else
 'Noise' words (almost English-like, so lowly accountants could follow programs i.e. they didn’t have to know how to program to know what the code represented)
APL
IBM 1960 (Ken Iverson)
 http://www.engin.umd.umich.edu/CIS/course.des/cis400/apl/apl.html
 Very compact notation for computation
 Provided for much matrix manipulation
 NOT Algol-like in nature
 Originally built to describe specifications of IBM360
LISP
http://www.engin.umd.umich.edu/CIS/course.des/cis400/lisp/lisp.html
Developed at MIT, (and others) by John McCarthy, (graduate instructor of Dr. Modesitt!!) AI is its application domain
 Symbolic expression, able to manipulate variable names like variable values (i.e. pointer arithmetic)
 Uniform representation for expression (datacode) executable data structures.
 New form of conditional expression (similar to "switch" statements)
 Pre-fix expressions- operator followed by arguments
 Recursion more widely used
 "Garbage collection" used for data management
 A "linked-list" type of structure is the basic structure in LISP
Functional programming
Sequence control

 Used in expressions, (e.g. Precedence rules, parenthesis)

 Between statements or blocks, (e.g. Iteration and conditionals)

 Between sub-programs, (e.g. Calls)

Control sequences

 Implied, (physical statement order)

 Explicit, (parenthesis or goto's)

Example:

Root = -b  (b2-4ac)1/2
 2a

In Fortran:

Root = (-b + Sqrt (b**2 - 4*a*c))/2*a

In some instances, parenthesis are essential, in other they are not. [image: image4.png]

[image: image5.png]

(a + b)*(c - a) in-fix notation

* + a b - c a pre-fix notation

a b + c a - * post-fix notation

What is the difference between unary and binary minus?
(i.e. how does "-b" and "b2-4ac" in the quadratic formula differ in terms of language definition?)

[image: image6.png]Is this a desited parsing
opticn for the wary
minus?

Tree representation: issues
-a * b + c in-fix notation

 Binary vs. unary operator confusion

 Precedence rules

 Associativity

 left to right

 right to left, (eliminates the need for parenthesis for the "2a" in the denominator of the quadratic)

 Operators with varying number of operands, (i.e. (+ 2 3 4))

Problem areas:
 Uniform evaluation-once a tree is formed, all operands are treated equally

 Side effects:

[image: image7.png]*£(x) +
ERCEE

4

Isthis,

This function
changes the
value of 'a"

ecqual o this?

Is this a workable representation for the unary minus in "-a"?

[image: image8.png]Is this a workable
sepresentation for
the unary minus
s

 Error conditions: arithmetic over- or under-flow, (i.e. 4/ (200 * 10,000,000))

 Short circuited boolean evaluation:

(a = 0) OR (b / a > c) in short circuit evaluation, the "OR" is evaluated until a "true" is found.

With full boolean evaluation, the "b/a", where a = 0, is evaluated first. This results in a run-time error.

With an "and", the first "false" stops evaluation.

Statement level control structures:
 Composition, (sequence)

Example:

 Block statements

[image: image9.png]begin

(body)

or

(body)

 Alternating (conditional statements)

 If-then/else or case, (switch)

"dangling else" issue:

if x = 3 then

 y = 5

if x = 5 then

 y = 6

else y = 7 // WHICH "IF" GETS THE "ELSE"?

in C++ {} is used to define where the else belongs

 If-then/else or case, (switch) continued

[image: image10.png]Pascal

case tag of
0: begin
(Body)
end
1: begin
(Body)
end
otherwise:
begin
(body)
end
end,

Fortran 77

iftageq0 then
(Body)

clse iftageq] then
(Body)

clse
(Body)

endif

PL/1

select

when (tag =0) do;

(body)

when (tag =1)
(Body)

otherwise

(body)

end;

end,

do;

end;
do;

end;

CH

switch (tag)
case 0.
(body)
brealk;

8
case 1. {
(Body)
break,

%
defalt. (
(Body)
breal,);
end,

Case design issues:
 What type of selector expression?

 What types of case labels?

 Can you branch to case labels from outside?

 [image: image11.png]Examgle non-mutually
exclusive labeling:

casstag of
1.5 begn Jrange
o)

i
115 begin Jange
o)

end

 Mutually exclusive labels?

 Exhaustive label case coverage? ("default", etc.)

Iteration issues:
In COBOL;

Perform {body} k times

How often is k evaluated?

If k is re-evaluated, when?

Can k < 0?

 When is termination test made?

 When are the loop expression variables evaluated?

(Pre and post test loops)

[image: image12.png]Pre-testloop

while (x > 3) do
(body)

false

body

o

Posttest loop

{

(body)
} white (cond)

false

Counter incrementing loop:

do i = start to end by increment until (cond)

begin

 (body)
end;

Is this pre- or post-test evaluation?

In Fortran 4 it was post-test!!

In Fortran 77 it was pre-test!!

When is i evaluated?

Can "start" or "end" be altered?

Continuing with iteration
[image: image13.png]) in Lisp
inAda loop (prog
loop

exit when (cond)
end loop

(retum)
(g0 loop)

#5)
while true do

begin

end

(can be an infinite loop)

 Loop issues
 What type of values may loop variable assume?

 Complexity of loop expression?

 How often is loop variable checked against final value?

 Can loop variable be assignment inside loop body?

 When evaluate stopping expression?

 Transfer permitted outside loop?

 Scope of loop variable?

6) Multiple loop exits

7) "Loop and a half", (variation of #6 with a test in middle of loop)

8) Iterator, (like Lisp)

goto's
Advantages:
 Found in virtually every language

 Conditional or non-conditional

 Easy to use

 Simulate ANY missing control structure

Computed goto:

 go to (10,20,30) INDEX //goes to 10, 20 or 30 depending on value of INDEX

Assigned goto:

 //assign value, say 10, to LABEL

 go to LABEL, (10, 20, 30) //goes to label depending on what was assigned to LABEL

Approaches to LABEL
 Ada- labels as local syntactic tags, evaluated at compilation

 Algol- restricted data items, (all possible values defined at translation)

 Snobol/APL- unrestricted data types

Disadvantages of goto's:
 Readability

 Source order has little bearing on execution

 Groups of statements may serve multiple purposes

Functional programming
Up until now, we have been covering…

 VonNewmann architecture, (single instruction at a time)

 Assignment statement oriented

(imperative languages)

Functional languages:
More expressive, the expression is more important than assignment or control statement

i.e. in C:

max = x > y? x : y;

OR

if x > y then

 max = x;

else max = y;

But what is "x" in the following expression?

f(x) + (x) = 2 * f(x)

"side effect" or referential transparency

	

	
	[image: image14.png]v\

"side effect” or
seferential ransparency

Functional programming  applicative languages
 f(x) = x * x

 f(2) = 2 * 2

 f(z + 1) = (z + 1) * (z + 1)

"lambda" notation:

(x x*x)2 = 2 * 2 = 4

[image: image15.png]!

Local parameter or
variable

f = x.x*x

global  non-lambda variable

f  g  h = g(h(x)) functional languages permit this imperative do not

Functional/ applicative languages
 Set of "primitives"

 Set of functional forms, (for new functions)

 Application operation, (apply function to arguments)

 Set of data objects

How math functions differ form computational functions
 Modifiable variable in computing

 Program functions have side effects

 Programming functions define procedurally in steps-math functions typically done in terms of other functions

 Both can be recursive

Strongly advised to go to Xlisp home page and download a free implementation of Xlisp

Lisp: John McCarthy-MIT 1960
Distinctive features of Lisp:

 Equivalence of form for data and program

 Heavy reliance on recursion over iteration

 Use of linked list as intrinsic data structure

Data objects in Lisp

 "Atoms", (either literal or numeric, i.e. 'sam or 3)

 List- groups of atoms or lists nested list representation is ((1 2) (3 4))

 Expression- atoms and lists together

There are no reserved words for literal except:

 The literal T is for boolean true

 The literal NIL  '() or false

In Lisp

; is for commenting like // for C++. So ; this comment is not recognized by interpreter
' is to read "as is" and not for interpretation

Simulated Lisp input/output:
> 3

3

> sam

undefined variable

> 'sam

sam
> T

T

> NIL

NIL

> (a (b c) d)

undefined function call ;;;;;; interpreter thinks "a" is a function, not a list element

> '(a (b c) d)

(a (b c) d)

In Lisp (a (b c) d)

 [image: image16.png]

"car" from contents of address register-the first element of a list

"cdr" from contents of decrement register-everything EXCEPT the first element

to exit Lisp:

> (exit)

exit

an atom "A" has:

 A name

 A value

 A property list

In functional languages parameter transmission is by value, (there may be some by name parameter transmission)

Read/ Evaluate loop- and expression is read and evaluated, a value is returned, then the system waits (infinitely) for the next expression

An example of some kind of "by name" parameter transmission:

> (setq x 3)

3

> x

3

> (setq x '(a b c)) ; the apostrophe is needed!!!

(a b c)

> x

(a b c)

> 'x

x

