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11.7 THE WINDOWS 2000 FILE SYSTEM

Windows 2000 supports several file systems, the most important of which are
FAT-16, FAT-32, and NTFS (NT File System). FAT-16 is the old MS-DOS file
system. It uses 16-bit disk addresses, which limits it to disk partitions no larger
than 2 GB. FAT-32 uses 32-bit disk addresses and supports disk partitions up to 2
TB. NTFS is a new file system developed specifically for Windows NT and car-
ried over to Windows 2000. It uses 64-bit disk addresses and can (theoretically)
support disk partitions up to 264 bytes, although other considerations limit it to
smaller sizes. Windows 2000 also supports read-only file systems for CD-ROMs
and DVDs. It is possible (even common) to have the same running system have
access to multiple file system types available at the same time.

In this chapter we will treat the NTFS file system because it is a modern file
system unencumbered by the need to be fully compatible with the MS-DOS file
system, which was based on the CP/M file system designed for 8-inch floppy
disks more than 20 years ago. Times have changed and 8-inch floppy disks are
not quite state of the art any more. Neither are their file systems. Also, NTFS
differs both in user interface and implementation in a number of ways from the
UNIX file system, which makes it a good second example to study. NTFS is a
large and complex system and space limitations prevent us from covering all of its
features, but the material presented below should give a reasonable impression of
it.

11.7.1 Fundamental Concepts

Individual file names in NTFS are limited to 255 characters; full paths are
limited to 32,767 characters. File names are in Unicode, allowing people in coun-
tries not using the Latin alphabet (e.g., Greece, Japan, India, Russia, and Israel) to
write file names in their native language. For example, φιλε is a perfectly legal
file name. NTFS fully supports case sensitive names (so foo is different from Foo
and FOO). Unfortunately, the Win32 API does not fully support case-sensitivity
for file names and not at all for directory names, so this advantage is lost to pro-
grams restricted to using Win32 (e.g., for Windows 98 compatibility).

An NTFS file is not just a linear sequence of bytes, as FAT-32 and UNIX files
are. Instead, a file consists of multiple attributes, each of which is represented by
a stream of bytes. Most files have a few short streams, such as the name of the
file and its 64-bit object ID, plus one long (unnamed) stream with the data. How-
ever, a file can also have two or more (long) data streams as well. Each stream
has a name consisting of the file name, a colon, and the stream name, as in
foo:stream1. Each stream has its own size and is lockable independently of all the
other streams. The idea of multiple streams in a file was borrowed from the
Apple Macintosh, in which files have two streams, the data fork and the resource
fork. This concept was incorporated into NTFS to allow an NTFS server be able
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to serve Macintosh clients.
File streams can be used for purposes other than Macintosh compatibility.

For example, a photo editing program could use the unnamed stream for the main
image and a named stream for a small thumbnail version. This scheme is simpler
than the traditional way of putting them in the same file one after another.
Another use of streams is in word processing. These programs often make two
versions of a document, a temporary one for use during editing and a final one
when the user is done. By making the temporary one a named stream and the
final one the unnamed stream, both versions automatically share a file name,
security information, timestamps, etc. with no extra work.

The maximum stream length is 264 bytes. To get some idea of how big a
264-byte stream is, imagine that the stream were written out in binary, with each
of the 0s and 1s in each byte occupying 1 mm of space. The 267-mm listing
would be 15 light-years long, reaching far beyond the solar system, to Alpha Cen-
tauri and back. File pointers are used to keep track of where a process is in each
stream, and these are 64 bits wide to handle the maximum length stream, which is
about 18.4 exabytes.

The Win32 API function calls for file and directory manipulation are roughly
similar to their UNIX counterparts, except most have more parameters and the
security model is different. Opening a file returns a handle, which is then used for
reading and writing the file. For graphical applications, no file handles are prede-
fined. Standard input, standard output, and standard error have to be acquired
explicitly if needed; in console mode they are preopened, however. Win32 also
has a number of additional calls not present in UNIX.

11.7.2 File System API Calls in Windows 2000

The principal Win32 API functions for file management are listed in Fig. 11-
1. There are actually many more, but these give a reasonable first impression of
the basic ones. Let us now examine these calls briefly. CreateFile can be used to
create a new file and return a handle to it. This API function must also be used to
open existing files as there is no FileOpen API function. We have not listed the
parameters for the API functions because they are so voluminous. As an example,
CreateFile has seven parameters, which are roughly summarized as follows:

1. A pointer to the name of the file to create or open.

2. Flags telling whether the file can be read, written, or both.

3. Flags telling whether multiple processes can open the file at once.

4. A pointer to the security descriptor, telling who can access the file.

5. Flags telling what to do if the file exists/does not exist.

6. Flags dealing with attributes such as archiving, compression, etc.
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2222222222222222222222222222222222222222222222222222222222222222222222222222222
Win32 API function UNIX Description2222222222222222222222222222222222222222222222222222222222222222222222222222222
CreateFile open Create a file or open an existing file; return a handle2222222222222222222222222222222222222222222222222222222222222222222222222222222
DeleteFile unlink Destroy an existing file2222222222222222222222222222222222222222222222222222222222222222222222222222222
CloseHandle close Close a file2222222222222222222222222222222222222222222222222222222222222222222222222222222
ReadFile read Read data from a file2222222222222222222222222222222222222222222222222222222222222222222222222222222
WriteFile write Write data to a file2222222222222222222222222222222222222222222222222222222222222222222222222222222
SetFilePointer lseek Set the file pointer to a specific place in the file2222222222222222222222222222222222222222222222222222222222222222222222222222222
GetFileAttributes stat Return the file properties2222222222222222222222222222222222222222222222222222222222222222222222222222222
LockFile fcntl Lock a region of the file to provide mutual exclusion2222222222222222222222222222222222222222222222222222222222222222222222222222222
UnlockFile fcntl Unlock a previously locked region of the file22222222222222222222222222222222222222222222222222222222222222222222222222222221
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Figure 11-1. The principal Win32 API functions for file I/O. The second
column gives the nearest UNIX equivalent.

7. The handle of a file whose attributes should be cloned for the new file.

The next six API functions in Fig. 11-1 are fairly similar to the corresponding
UNIX system calls. The last two allow a region of a file to be locked and
unlocked to permit a process to get guaranteed mutual exclusion to it.

Using these API functions, it is possible to write a procedure to copy a file,
analogous to the UNIX version of Fig. 6-5. Such a code fragment (without any
error checking) is shown in Fig. 11-2. It has been designed to mimic our UNIX
version. In practice, one would not have to program a copy file program since
CopyFile is an API function (which executes something close to this program as a
library procedure).

/* Open files for input and output. */
inhandle = CreateFile("data", GENERIC3READ, 0, NULL, OPEN3EXISTING, 0, NULL);
outhandle = CreateFile("newf", GENERIC3WRITE, 0, NULL, CREATE3ALWAYS,

FILE3ATTRIBUTE3NORMAL, NULL);

/* Copy the file. */
do {

s = ReadFile(inhandle, buffer, BUF3SIZE, &count, NULL);
if (s && count > 0) WriteFile(outhandle, buffer, count, &ocnt, NULL);

} while (s > 0 && count > 0);

/* Close the files. */
CloseHandle(inhandle);
CloseHandle(outhandle);

Figure 11-2. A program fragment for copying a file using the Windows 2000
API functions.
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Windows 2000 NTFS is a hierarchical file system, similar to the UNIX file
system. The separator between component names is \ however, instead of /, a fos-
sil inherited from MS-DOS. There is a concept of a current working directory and
path names can be relative or absolute. Hard and symbolic links are supported,
the former implemented by having multiple directory entries, as in UNIX, and the
latter implemented using reparse points (discussed later in this chapter). In addi-
tion, compression, encryption, and fault tolerance are also supported. These
features and their implementations will be discussed later in this chapter.

The major directory management API functions are given in Fig. 11-3, again
along with their nearest UNIX equivalents. The functions should be self explana-
tory.
2222222222222222222222222222222222222222222222222222222222222222222222222222222

Win32 API function UNIX Description2222222222222222222222222222222222222222222222222222222222222222222222222222222
CreateDirectory mkdir Create a new directory2222222222222222222222222222222222222222222222222222222222222222222222222222222
RemoveDirectory rmdir Remove an empty directory2222222222222222222222222222222222222222222222222222222222222222222222222222222
FindFirstFile opendir Initialize to start reading the entries in a directory2222222222222222222222222222222222222222222222222222222222222222222222222222222
FindNextFile readdir Read the next directory entry2222222222222222222222222222222222222222222222222222222222222222222222222222222
MoveFile rename Move a file from one directory to another2222222222222222222222222222222222222222222222222222222222222222222222222222222
SetCurrentDirectory chdir Change the current working directory222222222222222222222222222222222222222222222222222222222222222222222222222222211
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Figure 11-3. The principal Win32 API functions for directory management.
The second column gives the nearest UNIX equivalent, when one exists.

11.7.3 Implementation of the Windows 2000 File System

NTFS is a highly complex and sophisticated file system. It was designed
from scratch, rather than being an attempt to improve the old MS-DOS file system.
Below we will examine a number of its features, starting with its structure, then
moving on to file name lookup, file compression, and file encryption.

File System Structure

Each NTFS volume (e.g., disk partition) contains files, directories, bitmaps,
and other data structures. Each volume is organized as a linear sequence of
blocks (clusters in Microsoft’s terminology), with the block size being fixed for
each volume and ranging from 512 bytes to 64 KB, depending on the volume size.
Most NTFS disks use 4-KB blocks as a compromise between large blocks (for
efficient transfers) and small blocks (for low internal fragmentation). Blocks are
referred to by their offset from the start of the volume using 64-bit numbers.

The main data structure in each volume is the MFT (Master File Table),
which is a linear sequence of fixed-size 1-KB records. Each MFT record des-
cribes one file or directory. It contains the file’s attributes, such as its name and
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timestamps, and the list of disk addresses where its blocks are located. If a file is
extremely large, it is sometimes necessary to use two or more MFT records to
contain the list of all the blocks, in which case the first MFT record, called the
base record, points to the other MFT records. This overflow scheme dates back
to CP/M, where each directory entry was called an extent. A bitmap keeps track
of which MFT entries are free.

The MFT is itself a file and as such can be placed anywhere within the
volume, thus eliminating the problem with defective sectors in the first track.
Furthermore, the file can grow as needed, up to a maximum size of 248 records.

The MFT is shown in Fig. 11-4. Each MFT record consists of a sequence of
(attribute header, value) pairs. Each attribute begins with a header telling which
attribute this is and how long the value is because some attribute values are vari-
able length, such as the file name and the data. If the attribute value is short
enough to fit in the MFT record, it is placed there. If it is too long, it is placed
elsewhere on the disk and a pointer to it is placed in the MFT record.

The first 16 MFT records are reserved for NTFS metadata files, as shown in
Fig. 11-4. Each of the records describes a normal file that has attributes and data
blocks, just like any other file. Each of these files has a name that begins with a
dollar sign to indicate that it is a metadata file. The first record describes the
MFT file itself. In particular, it tells where the blocks of the MFT file are located
so the system can find the MFT file. Clearly, Windows 2000 needs a way to find
the first block of the MFT file in order to find the rest of the file system informa-
tion. The way it finds the first block of the MFT file is to look in the boot block,
where its address is installed at system installation time.

Record 1 is a duplicate of the early part of the MFT file. This information is
so precious that having a second copy can be critical in the event one of the first
blocks of the MFT ever goes bad. Record 2 is the log file. When structural chan-
ges are made to the file system, such as adding a new directory or removing an
existing one, the action is logged here before it is performed, in order to increase
the chance of correct recovery in the event of a failure during the operation.
Changes to file attributes are also logged here. In fact, the only changes not
logged here are changes to user data. Record 3 contains information about the
volume, such as its size, label, and version.

As mentioned above, each MFT record contains a sequence of (attribute
header, value) pairs. The $AttrDef file is where the attributes are defined. Infor-
mation about this file is in MFT record 4. Next comes the root directory, which
itself is a file and can grow to arbitrary length. It is described by MFT record 5.

Free space on the volume is kept track of with a bitmap. The bitmap is itself a
file and its attributes and disk addresses are given in MFT record 6. The next
MFT record points to the bootstrap loader file. Record 8 is used to link all the bad
blocks together to make sure they never occur in a file. Record 9 contains the
security information. Record 10 is used for case mapping. For the Latin letters
A-Z case mapping is obvious (at least for people who speak Latin). Case
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Metadata files

1 KB

First user file
(Reserved for future use)
(Reserved for future use)
(Reserved for future use)
(Reserved for future use)
$Extend Extentions: quotas,etc
$Upcase Case conversion table
$Secure Security descriptors for all files
$BadClus List of bad blocks
$Boot Bootstrap loader
$Bitmap Bitmap of blocks used
$ Root directory
$AttrDef Attribute definitions
$Volume Volume file
$LogFile Log file to recovery
$MftMirr Mirror copy of MFT
$Mft Master File Table

Figure 11-4. The NTFS master file table.

mapping for other languages, such as Greek, Armenian, or Georgian (the country,
not the state), is less obvious to Latin speakers, so this file tells how to do it.
Finally, record 11 is a directory containing miscellaneous files for things like disk
quotas, object identifiers, reparse points, and so on. The last 4 MFT records are
reserved for future use.

Each MFT record consists of a record header followed by a sequence of (attri-
bute header, value) pairs. The record header contains a magic number used for
validity checking, a sequence number updated each time the record is reused for a
new file, a count of references to the file, the actual number of bytes in the record
used, the identifier (index, sequence number) of the base record (used only for
extension records), and some other miscellaneous fields. Following the record
header comes the header of the first attribute, then the first attribute value, the
second attribute header, the second attribute value, and so on.

NTFS defines 13 attributes that can appear in MFT records. These are listed
in Fig. 11-5. Each MFT record consists of a sequence of attribute headers, each
of which identifies the attribute it is heading and gives the length and location of
the value field along with a variety of flags and other information. Usually, attri-
bute values follow their attribute headers directly, but if a value is too long to fit
in the MFT record, it may be put in a separate disk block. Such an attribute is
said to be a nonresident attribute. The data attribute is an obvious candidate.
Some attributes, such as the name, may be repeated, but all attributes must appear
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in a fixed order in the MFT record. The headers for resident attributes are 24
bytes long; those for nonresident attributes are longer because they contain infor-
mation about where to find the attribute on disk.

222222222222222222222222222222222222222222222222222222222222222222222222222
Attribute Description222222222222222222222222222222222222222222222222222222222222222222222222222

Standard information Flag bits, timestamps, etc.222222222222222222222222222222222222222222222222222222222222222222222222222
File name File name in Unicode; may be repeated for MS-DOS name222222222222222222222222222222222222222222222222222222222222222222222222222
Security descriptor Obsolete. Security information is now in $Extend$Secure222222222222222222222222222222222222222222222222222222222222222222222222222
Attribute list Location of additional MFT records, if needed222222222222222222222222222222222222222222222222222222222222222222222222222
Object ID 64-bit file identifier unique to this volume222222222222222222222222222222222222222222222222222222222222222222222222222
Reparse point Used for mounting and symbolic links222222222222222222222222222222222222222222222222222222222222222222222222222
Volume name Name of this volume (used only in $Volume)222222222222222222222222222222222222222222222222222222222222222222222222222
Volume information Volume version (used only in $Volume)222222222222222222222222222222222222222222222222222222222222222222222222222
Index root Used for directories222222222222222222222222222222222222222222222222222222222222222222222222222
Index allocation Used for very large directories222222222222222222222222222222222222222222222222222222222222222222222222222
Bitmap Used for very large directories222222222222222222222222222222222222222222222222222222222222222222222222222
Logged utility stream Controls logging to $LogFile222222222222222222222222222222222222222222222222222222222222222222222222222
Data Stream data; may be repeated22222222222222222222222222222222222222222222222222222222222222222222222222211
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Figure 11-5. The attributes used in MFT records.

The standard information field contains the file owner, security information,
the timestamps needed by POSIX, the hard link count, the read-only and archive
bits, etc. It is a fixed-length field and is always present. The file name is variable
length in Unicode. In order to make files with nonMS-DOS names accessible to
old 16-bit programs, files can also have an 8 + 3 MS-DOS name. If the actual file
name conforms to the MS-DOS 8 + 3 naming rule, a secondary MS-DOS name is
not used.

In NT 4.0, security information could be put in an attribute, but in Windows
2000 it all goes into a single file so that multiple files can share the same security
descriptions. The attribute list is needed in case the attributes do not fit in the
MFT record. This attribute then tells where to find the extension records. Each
entry in the list contains a 48-bit index into the MFT telling where the extension
record is and a 16-bit sequence number to allow verification that the extension
record and base records match up.

The object ID attribute gives the file a unique name. This is sometimes
needed internally. The reparse point tells the procedure parsing the file name to
do something special. This mechanism is used for mounting and symbolic links.
The two volume attributes are only used for volume identification. The next three
attributes deal with how directories are implemented. Small ones are just lists of
files but large ones are implemented using B+ trees. The logged utility stream
attribute is used by the encrypting file system.
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Finally, we come to the attribute that everyone has been waiting for: the data.
The stream name, if present, goes in this attribute header. Following the header is
either a list of disk addresses telling which blocks the file contains, or for files of
only a few hundred bytes (and there are many of these), the file itself. Putting the
actual file data in the MFT record is called an immediate file (Mullender and
Tanenbaum, 1987).

Of course, most of the time the data does not fit in the MFT record, so this
attribute is usually nonresident. Let us now take a look at how NTFS keeps track
of the location of nonresident attributes, in particular data.

The model for keeping track of disk blocks is that they are assigned in runs of
consecutive blocks, where possible, for efficiency reasons. For example, if the
first logical block of a file is placed in block 20 on the disk, then the system will
try hard to place the second logical block in block 21, the third logical block in 22,
and so on. One way to achieve these runs is to allocate disk storage several
blocks at a time, if possible.

The blocks in a file are described by a sequence of records, each one describ-
ing a sequence of logically contiguous blocks. For a file with no holes in it, there
will be only one such record. Files that are written in order from beginning to end
all belong in this category. For a file with one hole in it (e.g., only blocks 0–49
and blocks 60–79 are defined), there will be two records. Such a file could be
produced by writing the first 50 blocks, then seeking forward to logical block 60
and writing another 20 blocks. When a hole is read back, all the missing bytes are
zeros.

Each record begins with a header giving the offset of the first block within the
file. Next comes the offset of the first block not covered by the record. In the
example above, the first record would have a header of (0, 50) and would provide
the disk addresses for these 50 blocks. The second one would have a header of
(60,80) and would provide the disk addresses for these 20 blocks.

Each record header is followed by one or more pairs, each giving a disk
address and run length. The disk address is the offset of the disk block from the
start of its partition; the run length is the number of blocks in the run. As many
pairs as needed can be in the run record. Use of this scheme for a three-run,
nine-block file is illustrated in Fig. 11-6.

In this figure we have an MFT record for a short file (short here means that all
the information about the file blocks fits in one MFT record). It consists of the
three runs of consecutive blocks on the disk. The first run is blocks 20-23, the
second is blocks 64-65, and the third is blocks 80-82. Each of these runs is
recorded in the MFT record as a (disk address, block count) pair. How many runs
there are depends on how good a job the disk block allocator did in finding runs of
consecutive blocks when the file was created. For a n-block file, the number of
runs can be anything from 1 up to and including n.

Several comments are worth making here. First, there is no upper limit to the
size of files that can be represented this way. In the absence of address
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MTF
record

Record
header

Header

Figure 11-6. An MFT record for a three-run, nine-block file.

compression, each pair requires two 64-bit numbers in the pair for a total of 16
bytes. However, a pair could represent 1 million or more consecutive disk blocks.
In fact, a 20-MB file consisting of 20 separate runs of 1 million 1-KB blocks each
fits easily in one MFT record, whereas a 60-KB file scattered into 60 isolated
blocks does not.

Second, while the straightforward way of representing each pair takes 2 × 8
bytes, a compression method is available to reduce the size of the pairs below 16.
Many disk addresses have multiple high-order zero-bytes. These can be omitted.
The data header tells how many are omitted, that is, how many bytes are actually
used per address. Other kinds of compression are also used. In practice, the pairs
are often only 4 bytes.

Our first example was easy: all the file information fit in one MFT record.
What happens if the file is so large or highly fragmented that the block informa-
tion does not fit in one MFT record? The answer is simple: use two or more MFT
records. In Fig. 11-7 we see a file whose base record is in MFT record 102. It
has too many runs for one MFT record, so it computes how many extension
records it needs, say, two, and puts their indices in the base record. The rest of
the record is used for the first k data runs.

Note that Fig. 11-7 contains some redundancy. In theory, it should not be
necessary to specify the end of a sequence of runs because this information can be
calculated from the run pairs. The reason for ‘‘overspecifying’’ this information is
to make seeking more efficient: to find the block at a given file offset, it is only
necessary to examine the record headers, not the run pairs.

When all the space in record 102 has been used up, storage of the runs contin-
ues with MFT record 105. As many runs are packed in this record as fit. When
this record is also full, the rest of the runs go in MFT record 108. In this way
many MFT records can be used to handle large fragmented files.
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Run #k+1 Run m
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�� Second extension record

First extension record

Base record
101
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Figure 11-7. A file that requires three MFT records to store all its runs.

A problem arises if so many MFT records are needed that there is no room in
the base MFT to list all their indices. There is also a solution to this problem: the
list of extension MFT records is made nonresident (i.e., stored on disk instead of
in the base MFT record). Then it can grow as large as needed.

An MFT entry for a small directory is shown in Fig. 11-8. The record con-
tains a number of directory entries, each of which describes one file or directory.
Each entry has a fixed-length structure followed by a variable-length file name.
The fixed part contains the index of the MFT entry for the file, the length of the
file name, and a variety of other fields and flags. Looking for an entry in a direc-
tory consists of examining all the file names in turn.

���
���

Standard
info header

Index root
header

Standard
info

Unused

Record
header

A directory entry contains the MFT index for the file, 
the length of the file name, the file name itself, 
and various fields and flags

Figure 11-8. The MFT record for a small directory.

Large directories use a different format. Instead of listing the files linearly, a
B+ tree is used to make alphabetical lookup possible and to make it easy to insert
new names in the directory in the proper place.

File Name Lookup

We now have enough information to see how file name lookup occurs. When
a user program wants to open a file, it typically makes a call like

CreateFile("C:\maria\web.htm", ...)
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This call goes to the user-level shared library, kernel32.dll, where \?? is pre-
pended to the file name giving

\??\C:\maria\web.htm

It is this name that is passed as a parameter to the system call NtFileCreate.
Then the operating system starts the search at the root of the object manager’s

name space (see Fig. 11-0). It then looks in the directory \?? to find C:, which it
will find. This file is a symbolic link to another part of the object manager’s name
space, the directory \Device. The link typically ends at an object whose name is
something like \Device\HarddiskVolume1 . This object corresponds to the first
partition of the first hard disk. From this object it is possible to determine which
MFT to use, namely the one on this partition. These steps are shown in Fig. 11-9.

C:
D:

Harddisk Volume 1

\Devices

2. Follow symbolic link
to get disk portion

\?? Directory

1. Look up C: in \??

Root directory

maria

web.htm

MFT for HD volume 1

3. Look up path name

4. Create new
file object

5. Return handle
to calling process

Handle

Figure 11-9. Steps in looking up the file C:\maria\web.htm.

The parsing of the file name continues now at the root directory, whose blocks
can be found from entry 5 in the MFT (see Fig. 11-4). The string ‘‘maria’’ is now
looked up in the root directory, which returns the index into the MFT for the
directory maria. This directory is then searched for the string ‘‘web.htm’’. If suc-
cessful, the result is a new object created by the object manager. The object,
which is unnamed, contains the index of the MFT record for the file. A handle to
this object is returned to the calling process. On subsequent ReadFile calls, the
handle is provided, which allows the object manager to find the index and then the
contents of the MFT record for the file. If a thread in a second process opens the
file again, it gets a handle to a new file object.

In addition to regular files and directories, NTFS supports hard links in the
UNIX sense, and also symbolic links using a mechanism called reparse points. It
is possible to tag a file or directory as a reparse point and associate a block of data
with it. When the file or directory is encountered during a file name parse, excep-
tion processing is triggered and the block of data is interpreted. It can do various
things, including redirecting the search to a different part of the directory
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hierarchy or even to a different partition. This mechanism is used to support both
symbolic links and mounted file systems.

File Compression

NTFS supports transparent file compression. A file can be created in
compressed mode, which means that NTFS automatically tries to compress the
blocks as they are written to disk and automatically uncompresses them when they
are read back. Processes that read or write compressed files are completely
unaware of the fact that compression and decompression are going on.

Compression works as follows. When NTFS writes a file marked for
compression to disk, it examines the first 16 (logical) blocks in the file, irrespec-
tive of how many runs they occupy. It then runs a compression algorithm on
them. If the resulting data can be stored in 15 or fewer blocks, the compressed
data are written to the disk, preferably in one run, if possible. If the compressed
data still take 16 blocks, the 16 blocks are written in uncompressed form. Then
blocks 16-31 are examined to see if they can be compressed to 15 blocks or less,
and so on.

Figure 11-10(a) shows a file in which the first 16 blocks have successfully
compressed to eight blocks, the second 16 blocks failed to compress, and the third
16 blocks have also compressed by 50%. The three parts have been written as
three runs and stored in the MFT record. The ‘‘missing’’ blocks are stored in the
MFT entry with disk address 0 as shown in Fig. 11-10(b). Here the header (0, 48)
is followed by five pairs, two for the first (compressed) run, one for the
uncompressed run, and two for the final (compressed) run.

Compressed

0 16 32 47

70

30 37

24 31

85

8

40 92

23

55Disk addr

Original uncompressed file

CompressedUncompressed

���
Standard

info
File name 0 48 30 8 0 8 40 16 85

(a)

(b)

Unused8 0 8

Header Five runs (of which two empties)

Figure 11-10. (a) An example of a 48-block file being compressed to 32 blocks.
(b) The MFT record for the file after compression.
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When the file is read back, NTFS has to know which runs are compressed and
which are not. It sees that based on the disk addresses. A disk address of 0 indi-
cates that it is the final part of 16 compressed blocks. Disk block 0 may not be
used for storing data, to avoid ambiguity. Since it contains the boot sector, using
it for data is impossible anyway.

Random access to compressed files is possible, but tricky. Suppose that a
process does a seek to block 35 in Fig. 11-10. How does NTFS locate block 35 in
a compressed file? The answer is that it has to read and decompress the entire run
first. Then it knows where block 35 is and can pass it to any process that reads it.
The choice of 16 blocks for the compression unit was a compromise. Making it
shorter would have made the compression less effective. Making it longer would
have made random access more expensive.

File Encryption

Computers are used nowadays to store all kinds of sensitive data, including
plans for corporate takeovers, tax information, and love letters (love email?),
which the owners do not especially want revealed to anyone. Information loss can
happen when a laptop computer is lost or stolen, a desktop system is rebooted
using an MS-DOS floppy disk to bypass Windows 2000 security, or a hard disk is
physically removed from one computer and installed on another one with an
insecure operating system. Even the simple act of going to the bathroom and
leaving the computer unattended and logged in can be a huge security breach.

Windows 2000 addresses these problem by having an option to encrypt files,
so even in the event the computer is stolen or rebooted using MS-DOS, the files
will be unreadable. The normal way to use Windows 2000 encryption is to mark
certain directories as encrypted, which causes all the files in them to be encrypted,
and new files moved to them or created in them to be encrypted as well. The
actual encryption and decryption is not done by NTFS itself, but by a driver called
EFS (Encrypting File System), which is positioned between NTFS and the user
process. In this way, application programs are unaware of encryption and NTFS
itself is only partially involved in it.

To understand how the encrypting file system works, it is necessary to under-
stand how modern cryptography works. For this purpose, a brief review was
given in Sec. 9.2. Readers not familiar with the basics of cryptography should
read that section before continuing.

Now let us see how Windows 2000 encrypts files. When the user asks a file
to be encrypted, a random 128-bit file key is generated and used to encrypt the file
block by block using a symmetric algorithm parametrized by this key. Each new
file encrypted gets a different 128-bit random file key, so no two files use the
same encryption key, which increases security in case one key is compromised.
The current encryption algorithm is a variant of DES (Data Encryption Stan-
dard), but the EFS architecture supports the addition of new algorithms in the
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future. Encrypting each block independently of all the others is necessary to
make random access still possible.

The file key has to be stored somewhere so the file can be decrypted later. If
it were just stored on the disk in plaintext, then someone who stole or found the
computer could easily decrypt the file, defeating the purpose of encrypting the
files. For this reason, the file keys must all be encrypted before they are stored on
the disk. Public-key cryptography is used for this purpose.

After the file is encrypted, the location of the user’s public key is looked up
using information in the registry. There is no danger of storing the public key’s
location in the registry because if a thief steals the computer and finds the public
key, there is no way to deduce the private key from it. The 128-bit random file
key is now encrypted with the public key and the result stored on disk along with
the file, as shown in Fig. 11-11.

Random
128-bit key, K K

K retrieved
by applying
user's private
key to stored
key on diskDisk

Modified
DES

C = Encrypted file

K encrypted with
user's public key

DecryptionEncryption

Plaintext file Plaintext fileModified
DES

C

Figure 11-11. Operating of the encrypting file system.

To decrypt a file, the encrypted 128-bit random file key is fetched from disk.
However, to decrypt it and retrieve the file key, the user must present the private
key. Ideally, this should be stored on a smart card, external to the computer, and
only inserted in a reader when a file has to be decrypted. Although Windows
2000 supports smart cards, it does not store private keys on them.

Instead, the first time a user encrypts a file using EFS, Windows 2000 gen-
erates a (private key, public key) pair and stores the private key on disk encrypted
using a symmetric encryption algorithm. The key used for the symmetric algo-
rithm is derived either from the user’s login password or from a key stored on the
smart card, if smart card login is enabled. In this way, EFS can decrypt the
private key at login time and keep it within its own virtual address space during
normal operation so it can decrypt the 128-bit file keys as needed without further
disk accesses. When the computer is shut down, the private key is erased from
EFS’ virtual address space so anyone stealing the computer will not have access
to the private key.
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A complication occurs when multiple users need access to the same encrypted
file. Currently the shared use of encrypted files by multiple users is not sup-
ported. However, the EFS architecture could support sharing in the future by
encrypting each file’s key multiple times, once with the public key of each author-
ized user. All of these encrypted versions of the file key could be attached to the
file.

The potential need to share encrypted files is one reason why this two-key
system is used. If all files were encrypted by their owner’s key, there would be no
way to share any files. By using a different key to encrypt each file, this problem
can be solved.

Having a random file key per file but encrypting it with the owner’s sym-
metric key does not work because having the symmetric encryption key just lying
around in plain view would ruin the security— generating the decryption key
from the encryption key is too easy. Thus (slow) public-key cryptography is
needed to encrypt the file keys. Because the encryption key is public anyway,
having it lying around is not dangerous.

The other reason the two-key system is used is performance. Using public-
key cryptography to encrypt each file would be too slow. It is much more effi-
cient to use symmetric-key cryptography to encrypt the data and public-key cryp-
tography to encrypt the symmetric file key.


