
SEC. 12.2 867

12.3 IMPLEMENTATION

Turning away from the user and system call interfaces, let us now take a look
at how to implement an operating system. In the next eight sections we will ex-
amine some general conceptual issues relating to implementation strategies. After
that we will look at some low-level techniques that are often helpful.

12.3.1 System Structure

Probably the first decision the implementers have to make is what the system
structure should be. We examined the main possibilities in Sec. 1.7, but will
review them here. An unstructured monolithic design is really not a good idea,
except maybe for a tiny operating system in, say, a refrigerator, but even there it is
arguable.

Layered Systems

A reasonable approach that has been well established over the years is a lay-
ered system. Dijkstra’s THE system (Fig. 1-25) was the first layered operating
system. UNIX (Fig. 10-3) and Windows 2000 (Fig. 11-7) also have a layered
structure, but the layering in both of them is more a way of trying to describe the
system than a real guiding principle that was used in building the system.

For a new system, designers choosing to go this route should first very care-
fully choose the layers and define the functionality of each one. The bottom layer
should always try to hide the worst idiosyncracies of the hardware, as the HAL
does in Fig. 11-7. Probably the next layer should handle interrupts, context
switching, and the MMU, so above this level, the code is mostly machine
independent. Above this, different designers will have different tastes (and
biases). One possibility is to have layer 3 manage threads, including scheduling
and interthread synchronization, as shown in Fig. 12-1. The idea here is that start-
ing at layer 4 we have proper threads that are scheduled normally and synchronize
using a standard mechanism (e.g., mutexes).

In layer 4 we might find the device drivers, each one running as a separate
thread, with its own state, program counter, registers, etc., possibly (but not neces-
sarily) within the kernel address space. Such a design can greatly simplify the I/O
structure because when an interrupt occurs, it can be converted into an unlock on a
mutex and a call to the scheduler to (potentially) schedule the newly readied
thread that was blocked on the mutex. MINIX uses this approach, but in UNIX,
Linux, and Windows 2000, the interrupt handlers run in a kind of no-man’s land,
rather than as proper threads that can be scheduled, suspended, etc. Since a huge
amount of the complexity of any operating system is in the I/O, any technique for
making it more tractable and encapsulated is worth considering.

Above layer 4, we would expect to find virtual memory, one or more file

868 OPERATING SYSTEM DESIGN CHAP. 12

Interrupt handling, context switching, MMU

Hide the low-level hardware

Virtual memory

Threads, thread scheduling, thread synchronization

1

2

3

4

5

Driver 1 Driver n...

File system 1 ... File system m6

System call handler7

Layer

Driver 2

Figure 12-1. One possible design for a modern layered operating system.

systems, and the system call handlers. If the virtual memory is at a lower level
than the file systems, then the block cache can be paged out, allowing the virtual
memory manager to dynamically determine how the real memory should be di-
vided among user pages and kernel pages, including the cache. Windows 2000
works this way.

Exokernels

While layering has its supporters among system designers, there is also
another camp that has precisely the opposite view (Engler et al., 1995). Their
view is based on the end-to-end argument (Saltzer et al., 1984). This concept
says that if something has to be done by the user program itself, it is wasteful to
do it in a lower layer as well.

Consider an application of that principle to remote file access. If a system is
worried about data being corrupted in transit, it should arrange for each file to be
checksummed at the time it is written and the checksum stored along with the file.
When a file is transferred over a network from the source disk to the destination
process, the checksum is transferred, too, and also recomputed at the receiving
end. If the two disagree, the file is discarded and transferred again.

This check is more accurate than using a reliable network protocol since it
also catches disk errors, memory errors, software errors in the routers, and other
errors besides bit transmission errors. The end-to-end argument says that using a
reliable network protocol is then not necessary, since the end point (the receiving
process) has enough information to verify the correctness of the file itself. The
only reason for using a reliable network protocol in this view is for efficiency, that
is, catching and repairing transmission errors earlier.

The end-to-end argument can be extended to almost all of the operating sys-
tem. It argues for not having the operating system do anything that the user pro-
gram can do itself. For example, why have a file system? Just let the user read

SEC. 12.3 IMPLEMENTATION 869

and write a portion of the raw disk in a protected way. Of course, most users like
having files, but the end-to-end argument says that the file system should be a
library procedure linked with any program that needs to use files. This approach
allows different programs to have different file systems. This line of reasoning
says that all the operating system should do is securely allocate resources (e.g.,
the CPU and the disks) among the competing users. The Exokernel is an operat-
ing system built according to the end-to-end argument (Engler et al., 1995).

Client-Server Systems

A compromise between having the operating system do everything and the
operating system do nothing is to have the operating system do a little bit. This
design leads to a microkernel with much of the operating system running as user-
level server processes as illustrated in Fig. 1-27. This is the most modular and
flexible of all the designs. The ultimate in flexibility is to have each device driver
also run as a user process, fully protected against the kernel and other drivers.
Getting the drivers out of the kernel would eliminate the largest source of instabil-
ity in any operating system—buggy third-party drivers—and would be a tremen-
dous win in terms of reliability.

Of course, device drivers need to access the hardware device registers, so
some mechanism is needed to provide this. If the hardware permits, each driver
process could be given access to only those I/O devices it needs. For example,
with memory-mapped I/O, each driver process could have the page for its device
mapped in, but no other device pages. If the I/O port space can be partially pro-
tected, the correct portion of it could be made available to each driver.

Even if no hardware assistance is available, the idea can still be made to
work. What is then needed is a new system call, available only to device driver
processes, supplying a list of (port, value) pairs. What the kernel does is first
check to see if the process owns all the ports in the list. If so, it then copies the
corresponding values to the ports to initiate device I/O. A similar call can be used
to read I/O ports in a protected way.

This approach keeps device drivers from examining (and damaging) kernel
data structures, which is (for the most part) a good thing. An analogous set of
calls could be made available to allow driver processes to read and write kernel
tables, but only in a controlled way and with the approval of the kernel.

The main problem with this approach, and microkernels in general, is the per-
formance hit all the extra context switches cause. However, virtually all work on
microkernels was done many years ago when CPUs were much slower. Nowa-
days, applications that use every drop of CPU power and cannot tolerate a small
loss of performance, are few and far between. After all, when running a word
processor or Web browser, the CPU is probably idle 90% of the time. If a
microkernel-based operating system turned an unreliable 900-MHz system into a
reliable 800-MHz system, probably few users would complain. After all, most of

870 OPERATING SYSTEM DESIGN CHAP. 12

them were quite happy only a few years ago when they got their previous com-
puter, at the then-stupendous speed of 100 MHz.

Extensible Systems

With the client-server systems discussed above, the idea was to get as much
out of the kernel as possible. The opposite approach is to put more modules into
the kernel, but in a protected way. The key word here is protected, of course. We
studied some protection mechanisms in Sec. 9.5.6 that were initially intended for
importing applets over the Internet, but are equally applicable to inserting foreign
code into kernel. The most important ones are sandboxing and code signing as
interpretation is not really practical for kernel code.

Of course, an extensible system by itself is not a way to structure an operating
system. However, by starting with a minimal system consisting of little more than
a protection mechanism and then adding protected modules to the kernel one at a
time until reaching the functionality desired, a minimal system can be built for the
application at hand. In this view, a new operating system can be tailored to each
application by including only the parts it requires. Paramecium is an example of
such a system (Van Doorn, 2001).

Kernel Threads

Another issue relevant here is that of system threads, no matter which struc-
turing model is chosen. It is sometimes convenient to allow kernel threads to
exist, separate from any user process. These threads can run in the background,
writing dirty pages to disk, swapping processes between main memory and disk,
and so on. In fact, the kernel itself can be structured entirely of such threads, so
that when a user does a system call, instead of the user’s thread executing in ker-
nel mode, the user’s thread blocks and passes control to a kernel thread that takes
over to do the work.

In addition to kernel threads running in the background, most operating sys-
tems start up many daemon processes in the background, too. While these are not
part of the operating system, they often perform ‘‘system’’ type activities. These
might including getting and sending email and serving various kinds of requests
for remote users, such as FTP and Web pages.

12.3.2 Mechanism versus Policy

Another principle that helps architectural coherence, along with keeping
things small and well structured, is that of separating mechanism from policy. By
putting the mechanism in the operating system and leaving the policy to user
processes, the system itself can be left unmodified, even if there is a need to
change policy. Even if the policy module has to be kept in the kernel, it should be

SEC. 12.3 IMPLEMENTATION 871

isolated from the mechanism, if possible, so that changes in the policy module do
not affect the mechanism module.

To make the split between policy and mechanism clearer, let us consider two
real-world examples. As a first example, consider a large company that has a
payroll department, which is in charge of paying the employees’ salaries. It has
computers, software, blank checks, agreements with banks, and more mechanism
for actually paying out the salaries. However, the policy—determining who gets
paid how much—is completely separate and is decided by management. The pay-
roll department just does what it is told to do.

As the second example, consider a restaurant. It has the mechanism for serv-
ing diners, including tables, plates, waiters, a kitchen full of equipment, agree-
ments with credit card companies, and so on. The policy is set by the chef,
namely, what is on the menu. If the chef decides that tofu is out and big steaks
are in, this new policy can be handled by the existing mechanism.

Now let us consider some operating system examples. First, consider thread
scheduling. The kernel could have a priority scheduler, with k priority levels.
The mechanism is an array, indexed by priority level, as shown in Fig. 10-11 or
Fig. 11-19. Each entry is the head of a list of ready threads at that priority level.
The scheduler just searches the array from highest priority to lowest priority,
selecting the first threads it hits. The policy is setting the priorities. The system
may have different classes of users, each with a different priority, for example. It
might also allow user processes to set the relative priority of its threads. Priorities
might be increased after completing I/O or decreased after using up a quantum.
There are numerous other policies that could be followed, but the idea here is the
separation between setting policy and carrying it out.

A second example is paging. The mechanism involves MMU management,
keeping lists of occupied pages and free pages, and code for shuttling pages to and
from disk. The policy is deciding what to do when a page fault occurs. It could
be local or global, LRU-based or FIFO-based, or something else, but this algo-
rithm can (and should) be completely separate from the mechanics of actually
managing the pages.

A third example is allowing modules to be loaded into the kernel. The
mechanism concerns how they are inserted, how they are linked, what calls they
can make, and what calls can be made on them. The policy is determining who is
allowed to load a module into the kernel and which modules. Maybe only the
superuser can load modules, but maybe any user can load a module that has been
digitally signed by the appropriate authority.

12.3.3 Orthogonality

Good system design consists of separate concepts that can be combined
independently. For example, in C, there are primitive data types including inte-
gers, characters, and floating-point numbers. There are also mechanisms for com-

872 OPERATING SYSTEM DESIGN CHAP. 12

bining data types, including arrays, structures, and unions. These ideas combine
independently, allowing arrays of integers, arrays of characters, structure and
union members that are floating-point numbers, etc. In fact, once a new data type
has been defined, such as an array of integers, it can be used as if it were a primi-
tive data type, for example as a member of a structure or a union. The ability to
combine separate concepts independently is called orthogonality. It is direct
consequence of the simplicity and completeness principles.

The concept of orthogonality also occurs in operating systems in various dis-
guises. One example is the Linux clone system call, which creates a new thread.
The call has a bitmap as a parameter, which allows the address space, working
directory, file descriptors, and signals to shared or copied individually. If every-
thing is copied, we have a new process, the same as fork. If nothing is copied, a
new thread is created in the current process. However, it is also possible to create
intermediate forms of sharing not possible in traditional UNIX systems. By
separating out the various features and making them orthogonal, a finer degree of
control is possible.

Another use of orthogonality is the separation of the process concept from the
thread concept in Windows 2000. A process is a container for resources, nothing
more and nothing less. A thread is a schedulable entity. When one process is
given a handle for another process, it does not matter how many threads it has.
When a thread is scheduled, it does not matter which process it belongs to. These
concepts are orthogonal.

Our last example of orthogonality comes from UNIX. Process creation there
is done in two steps: fork plus exec. Creating the new address space and loading
it with a new memory image are separate, allowing things to be done in between
(such as manipulating file descriptors). In Windows 2000, these two steps cannot
be separated, that is, the concepts of making a new address space and filling it in
are not orthogonal there. The Linux sequence of clone plus exec is yet more
orthogonal, since there are even more fine-grained building blocks available. As
a general rule, having a small number of orthogonal elements that can be com-
bined in many ways leads to a small, simple, and elegant system.

12.3.4 Naming

Most long-lived data structures used by an operating system have some kind
of name or identifier by which they can be referred. Obvious examples are login
names, file names, device names, process IDs, and so on. How these names are
constructed and managed is an important issue in system design and implementa-
tion.

Names designed for people to use are character-string names in ASCII or
Unicode and are usually hierarchical. Directory paths, for example one such as
/usr/ast/books/mos2/chap-12, are clearly hierarchical, indicating a series of direc-
tories to search starting at the root. URLs are also hierarchical. For example,

SEC. 12.3 IMPLEMENTATION 873

www.cs.vu.nl/~ast/ indicates a specific machine (www) in a specific department
(cs) at specific university (vu) in a specific country (nl). The part after the slash
indicates a specific file on the designated machine, in this case, by convention,
www/index.html in ast’s home directory. Note that URLs (and DNS addresses in
general, including email addresses) are ‘‘backward,’’ starting at the bottom of the
tree and going up, unlike file names, which start at the top of the tree and go
down. Another way of looking at this is whether the tree is written from the top
starting at the left and going right or starting at the right and going left.

Often naming is done at two levels: external and internal. For example, files
always have a character-string name for people to use. In addition, there is almost
always an internal name that the system uses. In UNIX, the real name of a file is
its i-node number; the ASCI name is not used at all internally. In fact, it is not
even unique since a file may have multiple links to it. The analogous internal
name in Windows 2000 is the file’s index in the MFT. The job of the directory is
to provide the mapping between the external name and the internal name, as
shown in Fig. 12-2.

Chap-12
Chap-11

Chap-10

External name: /usr/ast/books/mos2/Chap-12

Directory: /usr/ast/books/mos2 I-node table

1
2

3
4

5

6
7

2

38
114

Internal name: 2

Figure 12-2. Directories are used to map external names onto internal names.

In many cases (such as the file name example given above), the internal name
is an unsigned integer that serves as an index into a kernel table. Other examples
of table-index names are file descriptors in UNIX and object handles in Windows
2000. Note that neither of these has any external representation. They are strictly
for use by the system and running processes. In general, using table indices for
transient names that are lost when the system is rebooted is a good idea.

Operating systems often support multiple name spaces, both external and
internal. For example, in Chap. 11 we looked at three external name spaces sup-
ported by Windows 2000: file names, object names, and registry names (and there
is also the Active Directory name space, which we did not look at). In addition,
there are innumerable internal name spaces using unsigned integers, for example,
object handles, MFT entries, etc. Although the names in the external name spaces

874 OPERATING SYSTEM DESIGN CHAP. 12

are all Unicode strings, looking up a file name in the registry will not work, just as
using an MFT index in the object table will not work. In a good design, consider-
able thought is given to how many names spaces are needed, what the syntax of
names is in each one, how they can be told apart, whether absolute and relative
names exist, and so on.

12.3.5 Binding Time

As we have just seen, operating systems use various kinds of names to refer to
objects. Sometimes the mapping between a name and an object is fixed, but
sometimes it is not. In the latter case, it may matter when the name is bound to
the object. In general, early binding is simple, but is not flexible, whereas late
binding is more complicated but often more flexible.

To clarify the concept of binding time, let us look at some real-world exam-
ples. An example of early binding is the practice of some colleges to allow
parents to enroll a baby at birth and prepay the current tuition. When the student
shows up 18 years later, the tuition is fully paid up, no matter how high it may be
at that moment.

In manufacturing, ordering parts in advance and maintaining an inventory of
them is early binding. In contrast, just-in-time manufacturing requires suppliers
to be able to provide parts on the spot, with no advance notice required. This is
late binding.

Programming languages often support multiple binding times for variables.
Global variables are bound to a particular virtual address by the compiler. This
exemplifies early binding. Variables local to a procedure are assigned a virtual
address (on the stack) at the time the procedure is invoked. This is intermediate
binding. Variables stored on the heap (those allocated by malloc in C or new in
Java) are assigned virtual addresses only at the time they are actually used. Here
we have late binding.

Operating systems often use early binding for most data structures, but occa-
sionally use late binding for flexibility. Memory allocation is a case in point.
Early multiprogramming systems on machines lacking address relocation
hardware had to load a program at some memory address and relocate it to run
there. If it was ever swapped out, it had to be brought back at the same memory
address or it would fail. In contrast, paged virtual memory is a form of late bind-
ing. The actual physical address corresponding to a given virtual address is not
known until the page is touched and actually brought into memory.

Another example of late binding is window placement in a GUI. In contrast
to the early graphical systems, in which the programmer had to specify the abso-
lute screen coordinates for all images on the screen, in modern GUIs, the software
uses coordinates relative to the window’s origin, but that is not determined until
the window is put on the screen, and it may even be changed later.

SEC. 12.3 IMPLEMENTATION 875

12.3.6 Static versus Dynamic Structures

Operating system designers are constantly forced to choose between static and
dynamic data structures. Static ones are always simpler to understand, easier to
program, and faster in use; dynamic ones are more flexible. An obvious example
is the process table. Early systems simply allocated a fixed array of per-process
structures. If the process table consisted of 256 entries, then only 256 processes
could exist at any one instant. An attempt to create a 257th one would fail for
lack of table space. Similar considerations held for the table of open files (both
per user and system wide), and many other kernel tables.

An alternative strategy is to build the process table as a linked list of minit-
ables, initially just one. If this table fills up, another one is allocated from a glo-
bal storage pool and linked to the first one. In this way, the process table cannot
fill up until all of kernel memory is exhausted.

On the other hand, the code for searching the table becomes more compli-
cated. For example, the code for searching a static process table to see if a given
PID, pid, is given in Fig. 12-3. It is simple and efficient. Doing the same thing
for a linked list of minitables is more work.

found = 0;
for (p = &proc3table[0]; p < &proc3table[PROC3TABLE3SIZE]; p++) {

if (p->proc3pid == pid) {
found = 1;
break;

}
}

Figure 12-3. Code for searching the process table for a given PID.

Static tables are best when there is plenty of memory or table utilizations can
be guessed fairly accurately. For example, in a single-user system, it is unlikely
that the user will start up more than 32 processes at once and it is not a total disas-
ter if an attempt to start a 33rd one fails.

Yet another alternative is to use a fixed-size table, but if it fills up, allocate a
new fixed-size table, say, twice as big. The current entries are then copied over to
the new table and the old table is returned to the free storage pool. In this way,
the table is always contiguous rather than linked. The disadvantage here is that
some storage management is needed and the address of the table is now a variable
instead of a constant.

A similar issue holds for kernel stacks. When a thread switches to kernel
mode, or a kernel-mode thread is run, it needs a stack in kernel space. For user
threads, the stack can be initialized to run down from the top of the virtual address
space, so the size need not be specified in advance. For kernel threads, the size
must be specified in advance because the stack takes up some kernel virtual

876 OPERATING SYSTEM DESIGN CHAP. 12

address space and there may be many stacks. The question is: how much space
should each one get? The trade-offs here are similar to those for the process table.

Another static-dynamic trade-off is process scheduling. In some systems,
especially real-time ones, the scheduling can be done statically in advance. For
example, an airline knows what time its flights will leave weeks before their
departure. Similarly, multimedia systems know when to schedule audio, video,
and other processes in advance. For general-purpose use, these considerations do
not hold and scheduling must be dynamic.

Yet another static-dynamic issue is kernel structure. It is much simpler if the
kernel is built as a single binary program and loaded into memory to run. The
consequence of this design, however, is that adding a new I/O device requires a
relinking of the kernel with the new device driver. Early versions of UNIX
worked this way, and it was quite satisfactory in a minicomputer environment
when adding new I/O devices was a rare occurrence. Nowadays, most operating
systems allow code to be added to the kernel dynamically, with all the additional
complexity that entails.

12.3.7 Top-Down versus Bottom-Up Implementation

While it is best to design the system top down, in theory it can be imple-
mented top down or bottom up. In a top-down implementation, the implementers
start with the system call handlers and see what mechanisms and data structures
are needed to support them. These procedures are written and so on until the
hardware is reached.

The problem with this approach is that it is hard to test anything with only the
top-level procedures available. For this reason, many developers find it more
practical to actually build the system bottom up. This approach entails first writ-
ing code that hides the low-level hardware, essentially the HAL in Fig. 11-7.
Interrupt handling and the clock driver are also needed early on.

Then multiprogramming can be tackled, along with a simple scheduler (e.g.,
round-robin scheduling). At this point it should be possible to test the system to
see if it can run multiple processes correctly. If that works, it is now time to begin
the careful definition of the various tables and data structures needed throughout
the system, especially those for process and thread management and later memory
management. I/O and the file system can wait initially, except for a primitive way
to read the keyboard and write to the screen for testing and debugging. In some
cases, the key low-level data structures should be protected by allowing access
only through specific access procedures—in effect, object-oriented programming,
no matter what the programming language is. As lower layers are completed,
they can be tested thoroughly. In this way, the system advances from the bottom
up, much the way contractors build tall office buildings.

If a large team is available, an alternative approach is to first make a detailed
design of the whole system, and then assign different groups to write different

SEC. 12.3 IMPLEMENTATION 877

modules. Each one tests its own work in isolation. When all the pieces are ready,
they are integrated and tested. The problem with this line of attack is that if noth-
ing works initially, it may be hard to isolate whether one or more modules are
malfunctioning, or one group misunderstood what some other module was sup-
posed to do. Nevertheless, with large teams, this approach is often used to max-
imize the amount of parallelism in the programming effort.

12.3.8 Useful Techniques

We have just looked at some abstract ideas for system design and implemen-
tation. Now we will examine a number of useful concrete techniques for system
implementation. There are numerous other ones, of course, but space limitations
restrict us to just a few of them.

Hiding the Hardware

A lot of hardware is ugly. It has to be hidden early on (unless it exposes
power, which most hardware does not). Some of the very low-level details can be
hidden by a HAL-type layer of the type shown in Fig. 12-1. However, many
hardware details cannot be hidden this way.

One thing that deserves early attention is how to deal with interrupts. They
make programming unpleasant, but operating systems have to deal with them.
One approach is to turn them into something else immediately. For example,
every interrupt could be turned into a pop-up thread instantly. At that point we
are dealing with threads, rather than interrupts.

A second approach is to convert each interrupt into an unlock operation on a
mutex that the corresponding driver is waiting on. Then the only effect of an
interrupt is to cause some thread to become ready.

A third approach is convert an interrupt into a message to some thread. The
low-level code just builds a message telling where the interrupt came from,
enqueues it, and calls the scheduler to (potentially) run the handler, which was
probably blocked waiting for the message. All these techniques, and other ones
like them, all try to convert interrupts into thread synchronization operations.
Having each interrupt handled by a proper thread in a proper context is easier to
manage than running a handler in the arbitrary context that it happened to occur
in. Of course, this must be done efficiently, but deep within the operating system,
everything must be done efficiently.

Most operating systems are designed to run on multiple hardware platforms.
These platforms can differ in terms of the CPU chip, MMU, word length, RAM
size, and other features that cannot easily be masked by the HAL or equivalent.
Nevertheless, it is highly desirable to have a single set of source files that are used
to generate all versions; otherwise each bug that later turns up must be fixed mul-
tiple times in multiple sources, with the danger that the sources drift apart.

878 OPERATING SYSTEM DESIGN CHAP. 12

Some hardware differences, such as RAM size, can be dealt with by having
the operating system determine the value at boot time and keep it in a variable.
Memory allocators, for example, can use the RAM size variable to determine how
big to make the block cache, page tables, etc. Even static tables such as the proc-
ess table can be sized based on the total memory available.

However, other differences, such as different CPU chips, cannot be solved by
having a single binary that determines at run time which CPU it is running on.
One way to tackle the problem of one source and multiple targets is to use condi-
tional compilation. In the source files, certain compile-time flags are defined for
the different configurations and these are used to bracket code that is dependent
on the CPU, word length, MMU, etc. For example, imagine an operating system
that is to run on the Pentium and The init procedure could be written as illustrated
in Fig. 12-4(a). Depending on the value of CPU, which is defined in the header
file config.h, one kind of initialization or other is done. Because the actual binary
contains only the code needed for the target machine, there is no loss of efficiency
this way.

#include "config.h" #include "config.h"

init() #if (WORD3LENGTH == 32)
{ typedef int Register;
#if (CPU == PENTIUM) #endif
/* Pentium initialization here. */
#endif #if (WORD3LENGTH == 64)

typedef long Register;
#endif Register R0, R1, R2, R3;

(a) (b)
}

Figure 12-4. (a) CPU-dependent conditional compilation. (b) Word-length
dependent conditional compilation.

As a second example, suppose there is a need for a data type Register, This
could be handled by the conditional code of Fig. 12-4(b) (assuming that the com-
piler produces 32-bit ints and 64-bit longs). Once this definition has been made
(probably in a header file included everywhere), the programmer can just declare
variables to be of type Register and know they will be the right length.

The header file, config.h, has to be defined correctly, of course. For the Pen-
tium it might be something like this:

#define CPU PENTIUM
#define WORD3LENGTH 32

like

#define WORD3LENGTH 64

SEC. 12.3 IMPLEMENTATION 879

Some readers may be wondering why CPU and WORD3LENGTH are han-
dled by different macros. We could easily have bracketed the definition of Regis-
ter with a test on However, this is not a good idea. Consider what happens when
we later port the system to the 64-bit Intel Itanium. We would have to add a third
conditional to Fig. 12-4(b) for the Itanium. By doing it as we have, all we have to
do is include the line

#define WORD3LENGTH 64

to the config.h file for the Itanium.
This example illustrates the orthogonality principle we discussed earlier.

Those items that are CPU-dependent should be conditionally compiled based on
the CPU macro and those things that are word-length dependent should use the
WORD3LENGTH macro. Similar considerations hold for many other parameters.

Indirection

It is sometimes said that there is no problem in computer science that cannot
be solved with another level of indirection. While something of an exaggeration,
there is definitely a grain of truth here. Let us consider some examples. On
Pentium-based systems, when a key is depressed, the hardware generates an inter-
rupt and puts the key number, rather than an ASCII character code, in a device
register. Furthermore, when the key is released later, a second interrupt is gen-
erated, also with the key number. This indirection allows the operating system the
possibility of using the key number to index into a table to get the ASCII charac-
ter, which makes it easy to handle the many keyboards used around the world in
different countries. Getting both the depress and release information makes it
possible to use any key as a shift key since the operating system knows the exact
sequence the keys were depressed and released.

Indirection is also used on output. Programs can write ASCII characters to
the screen, but these are interpreted as indices into a table for the current output
font. The table entry contains the bitmap for the character. This indirection
makes it possible to separate characters from fonts.

Another example of indirection is the use of major device numbers in UNIX.
Within the kernel there is a table indexed by major device number for the block
devices and another one for the character devices. When a process opens a spe-
cial file such as /dev/hd0, the system extracts the type (block or character) and
major and minor device numbers from the i-node and indexes into the appropriate
driver table to find the driver. This indirection makes it easy to reconfigure the
system, because programs deal with symbolic device names, not actual driver
names.

Yet another example of indirection occurs in message-passing systems that
name a mailbox rather than a process as the message destination. By indirecting

880 OPERATING SYSTEM DESIGN CHAP. 12

through mailboxes (as opposed to naming a process as the destination), consider-
able flexibility can be achieved (e.g., having a secretary handle her boss’ mes-
sages).

In a sense, the use of macros, such as

#define PROC3TABLE3SIZE 256

is also a form of indirection, since the programmer can write code without having
to know how big the table really is. It is good practice to give symbolic names to
all constants (except sometimes −1, 0, and 1), and put these in headers with com-
ments explaining what they are for.

Reusability

It is frequently possible to reuse the same code in slightly different contexts.
Doing so is a good idea as it reduces the size of the binary and means that the
code has to be debugged only once. For example, suppose that bitmaps are used
to keep track of free blocks on the disk. Disk block management can be handled
by having procedures alloc and free that manage the bitmaps.

As a bare minimum, these procedures should work for any disk. But we can
go further than that. The same procedures can also work for managing memory
blocks, blocks in the file system’s block cache, and i-nodes. In fact, they can be
used to allocate and deallocate any resources that can be numbered linearly.

Reentrancy

Reentrancy refers for the ability of code to be executed two or more times
simultaneously. On a multiprocessor, there is always the danger than while one
CPU is executing some procedure, another CPU will start executing it as well,
before the first one has finished. In this case, two (or more) threads on different
CPUs might be executing the same code at the same time. This situation must be
protected against by using mutexes or some other means to protect critical
regions.

However, the problem also exists on a uniprocessor. In particular, most of
any operating system runs with interrupts enabled. To do otherwise, would lose
many interrupts and make the system unreliable. While the operating system is
busy executing some procedure, P, it is entirely possible that an interrupt occurs
and that the interrupt handler also calls P. If the data structures of P were in an
inconsistent state at the time of the interrupt, the handler will see them in an
inconsistent state and fail.

An obvious example where this can happen is if P is the scheduler. Suppose
that some process used up its quantum and the operating system was moving it to
the end of its queue. Part way through the list manipulation, the interrupt occurs,
makes some process ready, and runs the scheduler. With the queues in an

SEC. 12.3 IMPLEMENTATION 881

inconsistent state, the system will probably crash. As a consequence even on a
uniprocessor, it is best that most of the operating system is reentrant, critical data
structures are protected by mutexes, and interrupts are disabled at moments when
they cannot be tolerated.

Brute Force

Using brute force to solve a problem has acquired a bad name over the years,
but it is often the way to go in the name of simplicity. Every operating system has
many procedures that are rarely called or operate with so little data that optimiz-
ing them is not worthwhile. For example, it is frequently necessary to search vari-
ous tables and arrays within the system. The brute force algorithm is just leave
the table in the order the entries are made and search it linearly when something
has to be looked up. If the number of entries is small (say, under 100), the gain
from sorting the table or hashing it is small, but the code is far more complicated
and more likely to have bugs in it.

Of course, for functions that are on the critical path, say, context switching,
everything should be done to make them fast, possibly even writing them in
(heaven forbid) assembly language. But large parts of the system are not on the
critical path. For example, many system calls are rarely called. If there is one
fork every 10 sec, and it takes 10 msec to carry out, then even optimizing it to 0
wins only 0.1%. If the optimized code is bigger and buggier, a case can be made
not to bother with the optimization.

Check for Errors First

Many system calls can potentially fail for a variety of reasons: the file to be
opened belongs to someone else; process creation fails because the process table
is full; or a signal cannot be sent because the target process does not exist. The
operating system must painstakingly check for every possible error before carry-
ing out the call.

Many system calls also require acquiring resources such as process table slots,
i-node table slots, or file descriptors. A general piece of advice that can save a lot
of grief is to first check to see if the system call can actually be carried out before
acquiring any resources. This means putting all the tests at the beginning of the
procedure that executes the system call. Each test should be of the form

if (error3condition) return(ERROR3CODE);

If the call gets all the way through the gauntlet of tests, then it is certain that it
will succeed. At that point resources can be acquired.

Interspersing the tests with resource acquisition means that if some test fails
along the way, all the resources acquired up to that point must be returned. If an
error is made here and some resource is not returned, no damage is done

882 OPERATING SYSTEM DESIGN CHAP. 12

immediately. For example, one process table entry may just become permanently
unavailable. However, over a period of time, this bug may be triggered multiple
times. Eventually, most or all the process table entries may become unavailable,
leading to a system crash in an extremely unpredictable and difficult to debug
way.

Many systems suffer from this problem in the form of memory leaks. Typi-
cally, the program calls malloc to allocate space but forgets to call free later to re-
lease it. Ever so gradually, all of memory disappears until the system is rebooted.

Engler et al. (2000) have proposed an interesting way to check for some of
these errors at compile time. They observed that the programmer knows many
invariants that the compiler does not know, such as when you lock a mutex, all
paths starting at the lock must contain an unlock and no more locks of the same
mutex. They have devised a way for the programmer to tell the compiler this fact
and instruct it to check all the paths at compile time for violations of the invariant.
The programmer can also specify that allocated memory must be released on all
paths and many other conditions as well.

