
SEC. 2.1 81

2.2 THREADS

In traditional operating systems, each process has an address space and a sin-
gle thread of control. In fact, that is almost the definition of a process. Neverthe-
less, there are frequently situations in which it is desirable to have multiple
threads of control in the same address space running in quasi-parallel, as though
they were separate processes (except for the shared address space). In the follow-
ing sections we will discuss these situations and their implications.

2.2.1 The Thread Model

The process model as we have discussed it thus far is based on two indepen-
dent concepts: resource grouping and execution. Sometimes it is useful to
separate them; this is where threads come in.

One way of looking at a process is that it is way to group related resources
together. A process has an address space containing program text and data, as
well as other resources. These resource may include open files, child processes,
pending alarms, signal handlers, accounting information, and more. By putting
them together in the form of a process, they can be managed more easily.

The other concept a process has is a thread of execution, usually shortened to
just thread. The thread has a program counter that keeps track of which instruc-
tion to execute next. It has registers, which hold its current working variables. It
has a stack, which contains the execution history, with one frame for each pro-
cedure called but not yet returned from. Although a thread must execute in some
process, the thread and its process are different concepts and can be treated
separately. Processes are used to group resources together; threads are the entities
scheduled for execution on the CPU.

What threads add to the process model is to allow multiple executions to take
place in the same process environment, to a large degree independent of one
another. Having multiple threads running in parallel in one process is analogous
to having multiple processes running in parallel in one computer. In the former
case, the threads share an address space, open files, and other resources. In the
latter case, processes share physical memory, disks, printers, and other resources.
Because threads have some of the properties of processes, they are sometimes
called lightweight processes. The term multithreading is also used to describe
the situation of allowing multiple threads in the same process.

In Fig. 2-1(a) we see three traditional processes. Each process has its own
address space and a single thread of control. In contrast, in Fig. 2-1(b) we see a
single process with three threads of control. Although in both cases we have three
threads, in Fig. 2-1(a) each of them operates in a different address space, whereas
in Fig. 2-1(b) all three of them share the same address space.

When a multithreaded process is run on a single-CPU system, the threads take
turns running. In Fig. 2-0, we saw how multiprogramming of processes works.

82 PROCESSES AND THREADS CHAP. 2

Thread Thread

Kernel Kernel

Process 1 Process 1 Process 1 Process

User
space

Kernel
space

(a) (b)

Figure 2-1. (a) Three processes each with one thread. (b) One process with
three threads.

By switching back and forth among multiple processes, the system gives the illu-
sion of separate sequential processes running in parallel. Multithreading works
the same way. The CPU switches rapidly back and forth among the threads pro-
viding the illusion that the threads are running in parallel, albeit on a slower CPU
than the real one. With three compute-bound threads in a process, the threads
would appear to be running in parallel, each one on a CPU with one-third the
speed of the real CPU.

Different threads in a process are not quite as independent as different
processes. All threads have exactly the same address space, which means that
they also share the same global variables. Since every thread can access every
memory address within the process’ address space, one thread can read, write, or
even completely wipe out another thread’s stack. There is no protection between
threads because (1) it is impossible, and (2) it should not be necessary. Unlike
different processes, which may be from different users and which may be hostile
to one another, a process is always owned by a single user, who has presumably
created multiple threads so that they can cooperate, not fight. In addition to shar-
ing an address space, all the threads share the same set of open files, child
processes, alarms, and signals, etc. as shown in Fig. 2-2. Thus the organization of
Fig. 2-1(a) would be used when the three processes are essentially unrelated,
whereas Fig. 2-1(b) would be appropriate when the three threads are actually part
of the same job and are actively and closely cooperating with each other.

The items in the first column are process properties, not thread properties.
For example, if one thread opens a file, that file is visible to the other threads in
the process and they can read and write it. This is logical since the process is the
unit of resource management, not the thread. If each thread had its own address
space, open files, pending alarms, and so on, it would be a separate process. What
we are trying to achieve with the thread concept is the ability for multiple threads

SEC. 2.2 THREADS 83

222
Per process items Per thread items
Address space Program counter
Global variables Registers
Open files Stack
Child processes State
Pending alarms
Signals and signal handlers
Accounting information22211

1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

Figure 2-2. The first column lists some items shared by all threads in a process.
The second one lists some items private to each thread.

of execution to share a set of resources so they can work together closely to per-
form some task.

Like a traditional process (i.e., a process with only one thread), a thread can
be in any one of several states: running, blocked, ready, or terminated. A running
thread currently has the CPU and is active. A blocked thread is waiting for some
event to unblock it. For example, when a thread performs a system call to read
from the keyboard, it is blocked until input is typed. A thread can block waiting
for some external event to happen or for some other thread to unblock it. A ready
thread is scheduled to run and will as soon as its turn comes up. The transitions
between thread states are the same as the transitions between process states and
are illustrated in Fig. 2-0.

It is important to realize that each thread has its own stack, as shown in
Fig. 2-3. Each thread’s stack contains one frame for each procedure called but not
yet returned from. This frame contains the procedure’s local variables and the
return address to use when the procedure call has finished. For example, if pro-
cedure X calls procedure Y and this one calls procedure Z, while Z is executing the
frames for X, Y, and Z will all be on the stack. Each thread will generally call dif-
ferent procedures and a thus a different execution history. This is why is thread
needs its own stack.

When multithreading is present, processes normally start with a single thread
present. This thread has the ability to create new threads by calling a library pro-
cedure, for example, thread3create. A parameter to thread3create typically
specifies the name of a procedure for the new thread to run. It is not necessary (or
even possible) to specify anything about the new thread’s address space since it
automatically runs in the address space of the creating thread. Sometimes threads
are hierarchical, with a parent-child relationship, but often no such relationship
exists, with all threads being equal. With or without a hierarchical relationship,
the creating thread is usually returned a thread identifier that names the new
thread.

When a thread has finished its work, it can exit by calling a library procedure,
say, thread3exit. It then vanishes and is no longer schedulable. In some thread

84 PROCESSES AND THREADS CHAP. 2

 Kernel

Thread 3's stack

Process

Thread 3Thread 1

Thread 2

Thread 1's
stack

Figure 2-3. Each thread has its own stack.

systems, one thread can wait for a (specific) thread to exit by calling a procedure,
for example, thread3wait. This procedure blocks the calling thread until a
(specific) thread has exited. In this regard, thread creation and termination is very
much like process creation and termination, with approximately the same options
as well.

Another common thread call is thread3yield, which allows a thread to volun-
tarily give up the CPU to let another thread run. Such a call is important because
there is no clock interrupt to actually enforce timesharing as there is with
processes. Thus it is important for threads to be polite and voluntarily surrender
the CPU from time to time to give other threads a chance to run. Other calls
allow one thread to wait for another thread to finish some work, for a thread to
announce that it has finished some work, and so on.

While threads are often useful, they also introduce a number of complications
into the programming model. To start with, consider the effects of the UNIX fork
system call. If the parent process has multiple threads, should the child also have
them? If not, the process may not function properly, since all of them may be
essential.

However, if the child process gets as many threads as the parent, what hap-
pens if a thread in the parent was blocked on a read call, say, from the keyboard?
Are two threads now blocked on the keyboard, one in the parent and one in the
child? When a line is typed, do both threads get a copy of it? Only the parent?
Only the child? The same problem exists with open network connections.

Another class of problems is related to the fact that threads share many data
structures. What happens if one thread closes a file while another one is still read-
ing from it? Suppose that one thread notices that there is too little memory and
starts allocating more memory. Part way through, a thread switch occurs, and the
new thread also notices that there is too little memory and also starts allocating

SEC. 2.2 THREADS 85

more memory. Memory will probably be allocated twice. These problems can be
solved with some effort, but careful thought and design are needed to make mul-
tithreaded programs work correctly.

2.2.2 Thread Usage

Having described what threads are, it is now time to explain why anyone
wants them. The main reason for having threads is that in many applications,
multiple activities are going on at once. Some of these may block from time to
time. By decomposing such an application into multiple sequential threads that
run in quasi-parallel, the programming model becomes simpler.

We have seen this argument before. It is precisely the argument for having
processes. Instead of thinking about interrupts, timers, and context switches, we
can think about parallel processes. Only now with threads we add a new element:
the ability for the parallel entities to share an address space and all of its data
among themselves. This ability is essential for certain applications, which is why
having multiple processes (with their separate address spaces) will not work.

A second argument for having threads is that since they do not have any
resources attached to them, they are easier to create and destroy than processes.
In many systems, creating a thread goes 100 times faster than creating a process.
When the number of threads needed changes dynamically and rapidly, this pro-
perty is useful.

A third reason for having threads is also a performance argument. Threads
yield no performance gain when all of them are CPU bound, but when there is
substantial computing and also substantial I/O, having threads allows these activi-
ties to overlap, thus speeding up the application.

Finally, threads are useful on systems with multiple CPUs, where real paral-
lelism is possible. We will come back to this issue in Chap. 8.

It is probably easiest to see why threads are useful by giving some concrete
examples. As a first example, consider a word processor. Most word processors
display the document being created on the screen formatted exactly as it will
appear on the printed page. In particular, all the line breaks and page breaks are
in their correct and final position so the user can inspect them and change the
document if need be (e.g., to eliminate widows and orphans—incomplete top and
bottom lines on a page, which are considered esthetically unpleasing).

Suppose that the user is writing a book. From the author’s point of view, it is
easiest to keep the entire book as a single file to make it easier to search for
topics, perform global substitutions, and so on. Alternatively, each chapter might
be a separate file. However, having every section and subsection as a separate
file is a real nuisance when global changes have to be made to the entire book
since then hundreds of files have to be individually edited. For example, if pro-
posed standard xxxx is approved just before the book goes to press, all
occurrences of ‘‘Draft Standard xxxx’’ have to be changed to ‘‘Standard xxxx’’ at

86 PROCESSES AND THREADS CHAP. 2

the last minute. If the entire book is one file, typically a single command can do
all the substitutions. In contrast, if the book is spread over 300 files, each one
must be edited separately.

Now consider what happens when the user suddenly deletes one sentence
from page 1 of an 800-page document. After checking the changed page to make
sure it is correct, the user now wants to make another change on page 600 and
types in a command telling the word processor to go to that page (possibly by
searching for a phrase occurring only there). The word processor is now forced to
reformat the entire book up to page 600 on the spot because it does not know what
the first line of page 600 will be until it has processed all the previous pages.
There may be a substantial delay before page 600 can be displayed, leading to an
unhappy user.

Threads can help here. Suppose that the word processor is written as a two-
threaded program. One thread interacts with the user and the other handles refor-
matting in the background. As soon as the sentence is deleted from page 1, the
interactive thread tells the reformatting thread to reformat the whole book.
Meanwhile, the interactive thread continues to listen to the keyboard and mouse
and responds to simple commands like scrolling page 1 while the other thread is
computing madly in the background. With a little luck, the reformatting will be
completed before the user asks to see page 600, so it can be displayed instantly.

While we are at it, why not add a third thread? Many word processors have a
feature of automatically saving the entire file to disk every few minutes to protect
the user against losing a day’s work in the event of a program crash, system crash,
or power failure. The third thread can handle the disk backups without interfering
with the other two. The situation with three threads is shown in Fig. 2-4.

Kernel
Keyboard Disk

Four score and seven
years ago, our fathers
brought forth upon this
continent a new nation:
conceived in liberty,
and dedicated to the
proposition that all
men are created equal.
 Now we are engaged
in a great civil war
testing whether that

nation, or any nation
so conceived and so
dedicated, can long
endure. We are met on
a great battlefield of
that war.
 We have come to
dedicate a portion of
that field as a final
resting place for those
who here gave their

lives that this nation
might live. It is
altogether fitting and
proper that we should
do this.
 But, in a larger sense,
we cannot dedicate, we
cannot consecrate we
cannot hallow this
ground. The brave
men, living and dead,

who struggled here
have consecrated it, far
above our poor power
to add or detract. The
world will little note,
nor long remember,
what we say here, but
it can never forget
what they did here.
 It is for us the living,
rather, to be dedicated

here to the unfinished
work which they who
fought here have thus
far so nobly advanced.
It is rather for us to be
here dedicated to the
great task remaining
before us, that from
these honored dead we
take increased devotion
to that cause for which

they gave the last full
measure of devotion,
that we here highly
resolve that these dead
shall not have died in
vain that this nation,
under God, shall have
a new birth of freedom
and that government of
the people by the
people, for the people

Figure 2-4. A word processor with three threads.

SEC. 2.2 THREADS 87

If the program were single-threaded, then whenever a disk backup started,
commands from the keyboard and mouse would be ignored until the backup was
finished. The user would perceive this as sluggish performance. Alternatively,
keyboard and mouse events could interrupt the disk backup, allowing good perfor-
mance but leading to a complex interrupt-driven programming model. With three
threads, the programming model is much simpler. The first thread just interacts
with the user. The second thread reformats the document when told to. The third
thread writes the contents of RAM to disk periodically.

It should be clear that having three separate processes would not work here
because all three threads need to operate on the document. By having three
threads instead of three processes, they share a common memory and thus all have
access to the document being edited.

An analogous situation exists with many other interactive programs. For
example, an electronic spreadsheet is a program that allows a user to maintain a
matrix, some of whose elements are data provided by the user. Other elements
are computed based on the input data using potentially complex formulas. When
a user changes one element, many other elements may have to be recomputed. By
having a background thread do the recomputation, the interactive thread can allow
the user to make additional changes while the computation is going on. Similarly,
a third thread can handle periodic backups to disk on its own.

Now consider yet another example of where threads are useful: a server for a
World Wide Web site. Requests for pages come in and the requested page is sent
back to the client. At most Web sites, some pages are more commonly accessed
than other pages. For example, Sony’s home page is accessed far more than a
page deep in the tree containing the technical specifications of some particular
camcorder. Web servers use this fact to improve performance by maintaining a
collection of heavily used pages in main memory to eliminate the need to go to
disk to get them. Such a collection is called a cache and is used in many other
contexts as well.

One way to organize the Web server is shown in Fig. 2-5(a). Here one thread,
the dispatcher, reads incoming requests for work from the network. After exa-
mining the request, it chooses an idle (i.e., blocked) worker thread and hands it
the request, possibly by writing a pointer to the message into a special word asso-
ciated with each thread. The dispatcher then wakes up the sleeping worker, mov-
ing it from blocked state to ready state.

When the worker wakes up, it checks to see if the request can be satisfied
from the Web page cache, to which all threads have access. If not, it starts a read
operation to get the page from the disk and blocks until the disk operation com-
pletes. When the thread blocks on the disk operation, another thread is chosen to
run, possibly the dispatcher, in order to acquire more work, or possibly another
worker that is now ready to run.

This model allows the server to be written as a collection of sequential
threads. The dispatcher’s program consists of an infinite loop for getting a work

88 PROCESSES AND THREADS CHAP. 2

Dispatcher thread

Worker thread

Web page cache

Kernel

Network
connection

Web server process

User
space

Kernel
space

Figure 2-5. A multithreaded Web server.

request and handing it off to a worker. Each worker’s code consists of an infinite
loop consisting of accepting a request from the dispatcher and checking the Web
cache to see if the page is present. If so, it is returned to the client and the worker
blocks waiting for a new request. If not, it gets the page from the disk, returns it
to the client, and blocks waiting for a new request.

A rough outline of the code is given in Fig. 2-6. Here, as in the rest of this
book, TRUE is assumed to be the constant 1. Also, buf and page are structures
appropriate for holding a work request and a Web page, respectively.

while (TRUE) { while (TRUE) {
get3next3request(&buf); wait3for3work(&buf)
handoff3work(&buf); look3for3page3 in3cache(&buf, &page);

} if (page3not3 in3cache(&page))
read3page3from3disk(&buf, &page);

return3page(&page);
}

(a) (b)

Figure 2-6. A rough outline of the code for Fig. 2-5. (a) Dispatcher thread. (b)
Worker thread.

Consider how the Web server could be written in the absence of threads. One
possibility is to have it operate as a single thread. The main loop of the Web
server gets a request, examines it, and carries it out to completion before getting
the next one. While waiting for the disk, the server is idle and does not process
any other incoming requests. If the Web server is running on a dedicated
machine, as is commonly the case, the CPU is simply idle while the Web server is

SEC. 2.2 THREADS 89

waiting for the disk. The net result is that many fewer requests/sec can be pro-
cessed. Thus threads gain considerable performance, but each thread is pro-
grammed sequentially, in the usual way.

So far we have seen two possible designs: a multithreaded Web server and a
single-threaded Web server. Suppose that threads are not available but the system
designers find the performance loss due to single threading unacceptable. If a
nonblocking version of the read system call is available, a third approach is possi-
ble. When a request comes in, the one and only thread examines it. If it can be
satisfied from the cache, fine, but if not, a nonblocking disk operation is started.

The server records the state of the current request in a table and then goes and
gets the next event. The next event may either be a request for new work or a
reply from the disk about a previous operation. If it is new work, that work is
started. If it is a reply from the disk, the relevant information is fetched from the
table and the reply processed. With nonblocking disk I/O, a reply probably will
have to take the form of a signal or interrupt.

In this design, the ‘‘sequential process’’ model that we had in the first two
cases is lost. The state of the computation must be explicitly saved and restored
in the table every time the server switches from working on one request to
another. In effect, we are simulating the threads and their stacks the hard way. A
design like this in which each computation has a saved state and there exists some
set of events that can occur to change the state is called a finite-state machine.
This concept is widely used throughout computer science.

It should now be clear what threads have to offer. They make it possible to
retain the idea of sequential processes that make blocking system calls (e.g., for
disk I/O) and still achieve parallelism. Blocking system calls make programming
easier and parallelism improves performance. The single-threaded server retains
the ease of blocking system calls but gives up performance. The third approach
achieves high performance through parallelism but uses nonblocking calls and
interrupts and is thus is hard to program. These models are summarized in
Fig. 2-7.

222
Model Characteristics222
Threads Parallelism, blocking system calls222
Single-threaded process No parallelism, blocking system calls222
Finite-state machine Parallelism, nonblocking system calls, interrupts22211

1
1
1
1
1

11
1
1
1
1
1

11
1
1
1
1
1

Figure 2-7. Three ways to construct a server.

A third example where threads are useful is in applications that must process
very large amounts of data. The normal approach is to read in a block of data,
process it, and then write it out again. The problem here is that if only blocking
system calls are available, the process blocks while data are coming in and data
are going out. Having the CPU go idle when there is lots of computing to do is

90 PROCESSES AND THREADS CHAP. 2

clearly wasteful and should be avoided if possible.
Threads offer a solution. The process could be structured with an input

thread, a processing thread, and an output thread. The input thread reads data into
an input buffer. The processing thread takes data out of the input buffer,
processes them, and puts the results in an output buffer. The output buffer writes
these results back to disk. In this way, input, output, and processing can all be
going on at the same time. Of course, this model only works if a system call
blocks only the calling thread, not the entire process.

2.2.3 Implementing Threads in User Space

There are two main ways to implement a threads package: in user space and
in the kernel. The choice is moderately controversial, and a hybrid implementa-
tion is also possible. We will now describe these methods, along with their
advantages and disadvantages.

The first method is to put the threads package entirely in user space. The ker-
nel knows nothing about them. As far as the kernel is concerned, it is managing
ordinary, single-threaded processes. The first, and most obvious, advantage is
that a user-level threads package can be implemented on an operating system that
does not support threads. All operating systems used to fall into this category, and
even now some still do.

All of these implementations have the same general structure, which is illus-
trated in Fig. 2-8(a). The threads run on top of a run-time system, which is a col-
lection of procedures that manage threads. We have seen four of these already:
thread3create, thread3exit, thread3wait, and thread3yield, but usually there are
more.

When threads are managed in user space, each process needs its own private
thread table to keep track of the threads in that process. This table is analogous
to the kernel’s process table, except that it keeps track only of the per-thread pro-
perties such the each thread’s program counter, stack pointer, registers, state, etc.
The thread table is managed by the run-time system. When a thread is moved to
ready state or blocked state, the information needed to restart it is stored in the
thread table, exactly the same way as the kernel stores information about
processes in the process table.

When a thread does something that may cause it to become blocked locally,
for example, waiting for another thread in its process to complete some work, it
calls a run-time system procedure. This procedure checks to see if the thread
must be put into blocked state. If so, it stores the thread’s registers (i.e., its own)
in the thread table, looks in the table for a ready thread to run, and reloads the
machine registers with the new thread’s saved values. As soon as the stack
pointer and program counter have been switched, the new thread comes to life
again automatically. If the machine has an instruction to store all the registers and
another one to load them all, the entire thread switch can be done in a handful of

SEC. 2.2 THREADS 91

Process ProcessThread Thread

Process
table

Process
table

Thread
table

Thread
table

Run-time
system

Kernel
space

User
space

KernelKernel

Figure 2-8. (a) A user-level threads package. (b) A threads package managed
by the kernel.

instructions. Doing thread switching like this is at least an order of magnitude
faster than trapping to the kernel and is a strong argument in favor of user-level
threads packages.

However, there is one key difference with processes. When a thread is fin-
ished running for the moment, for example, when it calls thread3yield, the code
of thread3yield can save the thread’s information in the thread table itself. Furth-
ermore, it can then call the thread scheduler to pick another thread to run. The
procedure that saves the thread’s state and the scheduler are just local procedures,
so invoking them is much more efficient than making a kernel call. Among other
issues, no trap is needed, no context switch is needed, the memory cache need not
be flushed, and so on. This makes thread scheduling very fast.

User-level threads also have other advantages. They allow each process to
have its own customized scheduling algorithm. For some applications, for exam-
ple, those with a garbage collector thread, not having to worry about a thread
being stopped at an inconvenient moment is a plus. They also scale better, since
kernel threads invariably require some table space and stack space in the kernel,
which can be a problem if there are a very large number of threads.

Despite their better performance, user-level threads packages have some
major problems. First among these is the problem of how blocking system calls
are implemented. Suppose that a thread reads from the keyboard before any keys
have been hit. Letting the thread actually make the system call is unacceptable,
since this will stop all the threads. One of the main goals of having threads in the
first place was to allow each one to use blocking calls, but to prevent one blocked
thread from affecting the others. With blocking system calls, it is hard to see how
this goal can be achieved readily.

92 PROCESSES AND THREADS CHAP. 2

The system calls could all be changed to be nonblocking (e.g., a read on the
keyboard would just return 0 bytes if no characters were already buffered), but
requiring changes to the operating system is unattractive. Besides, one of the
arguments for user-level threads was precisely that they could run with existing
operating systems. In addition, changing the semantics of read will require
changes to many user programs.

Another alternative is possible in the event that it is possible to tell in advance
if a call will block. In some versions of UNIX, a system call, select, exists, which
allows the caller to tell whether a prospective read will block. When this call is
present, the library procedure read can be replaced with a new one that first does
a select call and then only does the read call if it is safe (i.e., will not block). If
the read call will block, the call is not made. Instead, another thread is run. The
next time the run-time system gets control, it can check again to see if the read is
now safe. This approach requires rewriting parts of the system call library, is
inefficient and inelegant, but there is little choice. The code placed around the
system call to do the checking is called a jacket or wrapper.

Somewhat analogous to the problem of blocking system calls is the problem
of page faults. We will study these in Chap. 4. For the moment, it is sufficient to
say that computers can be set up in such a way that not all of the program is in
main memory at once. If the program calls or jumps to an instruction that is not in
memory, a page fault occurs and the operating system will go and get the missing
instruction (and its neighbors) from disk. This is called a page fault. The process
is blocked while the necessary instruction is being located and read in. If a thread
causes a page fault, the kernel, not even knowing about the existence of threads,
naturally blocks the entire process until the disk I/O is complete, even though
other threads might be runnable.

Another problem with user-level thread packages is that if a thread starts run-
ning, no other thread in that process will ever run unless the first thread volun-
tarily gives up the CPU. Within a single process, there are no clock interrupts,
making it impossible to schedule processes round-robin fashion (taking turns).
Unless a thread enters the run-time system of its own free will, the scheduler will
never get a chance.

One possible solution to the problem of threads running forever is to have the
run-time system request a clock signal (interrupt) once a second to give it control,
but this, too, is crude and messy to program. Periodic clock interrupts at a higher
frequency are not always possible, and even if they are, the total overhead may be
substantial. Furthermore, a thread might also need a clock interrupt, interfering
with the run-time system’s use of the clock.

Another, and probably the most devastating argument against user-level
threads, is that programmers generally want threads precisely in applications
where the threads block often, as, for example, in a multithreaded Web server.
These threads are constantly making system calls. Once a trap has occurred to the
kernel to carry out the system call, it is hardly any more work for the kernel to

SEC. 2.2 THREADS 93

switch threads if the old one has blocked, and having the kernel do this eliminates
the need for constantly making select system calls that check to see if read system
calls are safe. For applications that are essentially entirely CPU bound and rarely
block, what is the point of having threads at all? No one would seriously propose
computing the first n prime numbers or playing chess using threads because there
is nothing to be gained by doing it that way.

2.2.4 Implementing Threads in the Kernel

Now let us consider having the kernel know about and manage the threads.
No run-time system is needed in each, as shown in Fig. 2-8(b). Also, there is no
thread table in each process. Instead, the kernel has a thread table that keeps track
of all the threads in the system. When a thread wants to create a new thread or
destroy an existing thread, it makes a kernel call, which then does the creation or
destruction by updating the kernel thread table.

The kernel’s thread table holds each thread’s registers, state, and other infor-
mation. The information is the same as with user-level threads, but it is now in
the kernel instead of in user space (inside the run-time system). This information
is a subset of the information that traditional kernels maintain about each of their
single-threaded processes, that is, the process state. In addition, the kernel also
maintains the traditional process table to keep track of processes.

All calls that might block a thread are implemented as system calls, at consid-
erably greater cost than a call to a run-time system procedure. When a thread
blocks, the kernel, at its option, can run either another thread from the same proc-
ess (if one is ready), or a thread from a different process. With user-level threads,
the run-time system keeps running threads from its own process until the kernel
takes the CPU away from it (or there are no ready threads left to run).

Due to the relatively greater cost of creating and destroying threads in the ker-
nel, some systems take an environmentally correct approach and recycle their
threads. When a thread is destroyed, it is marked as not runnable, but its kernel
data structures are not otherwise affected. Later, when a new thread must be
created, an old thread is reactivated, saving some overhead. Thread recycling is
also possible for user-level threads, but since the thread management overhead is
much smaller, there is less incentive to do this.

Kernel threads do not require any new, nonblocking system calls. In addition,
if one thread in a process causes a page fault, the kernel can easily check to see if
the process has any other runnable threads, and if so, run one of them while wait-
ing for the required page to be brought in from the disk. Their main disadvantage
is that the cost of a system call is substantial, so if thread operations (creation, ter-
mination, etc.) are common, much more overhead will be incurred.

94 PROCESSES AND THREADS CHAP. 2

2.2.5 Hybrid Implementations

Various ways have been investigated to try to combine the advantages of
user-level threads with kernel-level threads. One way is use kernel-level threads
and then multiplex user-level threads onto some or all of the kernel threads, as
shown in Fig. 2-9.

Multiple user threads
on a kernel thread

User
space

Kernel
spaceKernel threadKernel

Figure 2-9. Multiplexing user-level threads onto kernel-level threads.

In this design, the kernel is aware of only the kernel-level threads and
schedules those. Some of those threads may have multiple user-level threads mul-
tiplexed on top of them. These user-level threads are created, destroyed, and
scheduled just like user-level threads in a process that runs on an operating system
without multithreading capability. In this model, each kernel-level thread has
some set of user-level threads that take turns using it.

2.2.6 Scheduler Activations

Various researchers have attempted to combine the advantage of user threads
(good performance) with the advantage of kernel threads (not having to use a lot
of tricks to make things work). Below we will describe one such approach dev-
ised by Anderson et al. (1992), called scheduler activations. Related work is dis-
cussed by Edler et al. (1988) and Scott et al. (1990).

The goals of the scheduler activation work are to mimic the functionality of
kernel threads, but with the better performance and greater flexibility usually
associated with threads packages implemented in user space. In particular, user
threads should not have to make special nonblocking system calls or check in
advance if it is safe to make certain system calls. Nevertheless, when a thread
blocks on a system call or on a page fault, it should be possible to run other
threads within the same process, if any are ready.

SEC. 2.2 THREADS 95

Efficiency is achieved by avoiding unnecessary transitions between user and
kernel space. If a thread blocks waiting for another thread to do something, for
example, there is no reason to involve the kernel, thus saving the overhead of the
kernel-user transition. The user-space run-time system can block the synchroniz-
ing thread and schedule a new one by itself.

When scheduler activations are used, the kernel assigns a certain number of
virtual processors to each process and lets the (user-space) run-time system allo-
cate threads to processors. This mechanism can also be used on a multiprocessor
where the virtual processors may be real CPUs. The number of virtual processors
allocated to a process is initially one, but the process can ask for more and can
also return processors it no longer needs. The kernel can also take back virtual
processors already allocated in order to assign them to other, more needy,
processes.

The basic idea that makes this scheme work is that when the kernel knows
that a thread has blocked (e.g., by its having executed a blocking system call or
caused a page fault), the kernel notifies the process’ run-time system, passing as
parameters on the stack the number of the thread in question and a description of
the event that occurred. The notification happens by having the kernel activate
the run-time system at a known starting address, roughly analogous to a signal in
UNIX. This mechanism is called an upcall.

Once activated like this, the run-time system can reschedule its threads, typi-
cally by marking the current thread as blocked and taking another thread from the
ready list, setting up its registers, and restarting it. Later, when the kernel learns
that the original thread can run again (e.g., the pipe it was trying to read from now
contains data, or the page it faulted over has been brought in from disk), it makes
another upcall to the run-time system to inform it of this event. The run-time sys-
tem, at its own discretion, can either restart the blocked thread immediately, or put
it on the ready list to be run later.

When a hardware interrupt occurs while a user thread is running, the inter-
rupted CPU switches into kernel mode. If the interrupt is caused by an event not
of interest to the interrupted process, such as completion of another process’ I/O,
when the interrupt handler has finished, it puts the interrupted thread back in the
state it was in before the interrupt. If, however, the process is interested in the
interrupt, such as the arrival of a page needed by one of the process’ threads, the
interrupted thread is not restarted. Instead, the interrupted thread is suspended
and the run-time system started on that virtual CPU, with the state of the inter-
rupted thread on the stack. It is then up to the run-time system to decide which
thread to schedule on that CPU: the interrupted one, the newly ready one, or some
third choice.

An objection to scheduler activations is the fundamental reliance on upcalls, a
concept that violates the structure inherent in any layered system. Normally, layer
n offers certain services that layer n + 1 can call on, but layer n may not call pro-
cedures in layer n + 1. Upcalls do not follow this fundamental principle.

96 PROCESSES AND THREADS CHAP. 2

2.2.7 Pop-Up Threads

Threads are frequently useful in distributed systems. An important example is
how incoming messages, for example requests for service, are handled. The tradi-
tional approach is to have a process or thread that is blocked on a receive system
call waiting for an incoming message. When a message arrives, it accepts the
message and processes it.

However, a completely different approach is also possible, in which the
arrival of a message causes the system to create a new thread to handle the mes-
sage. Such a thread is called a pop-up thread and is illustrated in Fig. 2-10. A
key advantage of pop-up threads is that since they are brand new, they do not have
any history—registers, stack, etc. that must be restored. Each one starts out fresh
and each one is identical to all the others. This makes it possible to create such a
thread quickly. The new thread is given the incoming message to process. The
result of using pop-up threads is that the latency between message arrival and the
start of processing can be made very short.

Network

Incoming message

Pop-up thread
created to handle

incoming message
Existing thread

Process

(a) (b)

Figure 2-10. Creation of a new thread when a message arrives. (a) Before the
message arrives. (b) After the message arrives.

Some advance planning is needed when pop-up threads are used. For exam-
ple, in which process does the thread run? If the system supports threads running
in the kernel’s context, the thread may run there (which is why we have not shown
the kernel in Fig. 2-10). Having the pop-up thread run in kernel space is usually
easier and faster than putting it in user space. Also, a pop-up thread in kernel

SEC. 2.2 THREADS 97

space can easily access all the kernel’s tables and the I/O devices, which may be
needed for interrupt processing. On the other hand, a buggy kernel thread can do
more damage than a buggy user thread. For example, if it runs too long and there
is no way to preempt it, incoming data may be lost.

2.2.8 Making Single-Threaded Code Multithreaded

Many existing programs were written for single-threaded processes. Convert-
ing these to multithreading is much trickier than it may at first appear. Below we
will examine just a few of the pitfalls.

As a start, the code of a thread normally consists of multiple procedures, just
like a process. These may have local variables, global variables, and procedure
parameters. Local variables and parameters do not cause any trouble, but vari-
ables that are global to a thread but not global to the entire program do. These are
variables that are global in the sense that many procedures within the thread use
them (as they might use any global variable), but other threads should logically
leave them alone.

As an example, consider the errno variable maintained by UNIX. When a
process (or a thread) makes a system call that fails, the error code is put into
errno. In Fig. 2-11, thread 1 executes the system call access to find out if it has
permission to access a certain file. The operating system returns the answer in the
global variable errno. After control has returned to thread 1, but before it has a
chance to read errno, the scheduler decides that thread 1 has had enough CPU
time for the moment and decides to switch to thread 2. Thread 2 executes an
open call that fails, which causes errno to be overwritten and thread 1’s access
code to be lost forever. When thread 1 starts up later, it will read the wrong value
and behave incorrectly.

Thread 1 Thread 2

Access (errno set)

Errno inspected

Open (errno overwritten)

Ti
m

e

Figure 2-11. Conflicts between threads over the use of a global variable.

98 PROCESSES AND THREADS CHAP. 2

Various solutions to this problem are possible. One is to prohibit global vari-
ables altogether. However worthy this ideal may be, it conflicts with much exist-
ing software. Another is to assign each thread its own private global variables, as
shown in Fig. 2-12. In this way, each thread has its own private copy of errno and
other global variables, so conflicts are avoided. In effect, this decision creates a
new scoping level, variables visible to all the procedures of a thread, in addition to
the existing scoping levels of variables visible only to one procedure and variables
visible everywhere in the program.

Thread 1's
code

Thread 2's
code

Thread 1's
stack

Thread 2's
stack

Thread 1's
globals

Thread 2's
globals

Figure 2-12. Threads can have private global variables.

Accessing the private global variables is a bit tricky, however, since most pro-
gramming languages have a way of expressing local variables and global vari-
ables, but not intermediate forms. It is possible to allocate a chunk of memory for
the globals and pass it to each procedure in the thread, as an extra parameter.
While hardly an elegant solution, it works.

Alternatively, new library procedures can be introduced to create, set, and
read these thread-wide global variables. The first call might look like this:

create3global("bufptr");

It allocates storage for a pointer called bufptr on the heap or in a special storage
area reserved for the calling thread. No matter where the storage is allocated,
only the calling thread has access to the global variable. If another thread creates
a global variable with the same name, it gets a different storage location that does
not conflict with the existing one.

Two calls are needed to access global variables: one for writing them and the
other for reading them. For writing, something like

set3global("bufptr", &buf);

SEC. 2.2 THREADS 99

will do. It stores the value of a pointer in the storage location previously created
by the call to create3global. To read a global variable, the call might look like

bufptr = read3global("bufptr");

It returns the address stored in the global variable, so its data can be accessed.
The next problem turning a single-threaded program into a multithreaded pro-

gram is that many library procedures are not reentrant. That is, they were not
designed to have a second call made to any given procedure while a previous call
has not yet finished. For example, sending a message over the network may well
be programmed to assemble the message in a fixed buffer within the library, then
to trap to the kernel to send it. What happens if one thread has assembled its mes-
sage in the buffer, then a clock interrupt forces a switch to a second thread that
immediately overwrites the buffer with its own message?

Similarly, memory allocation procedures, such as malloc in UNIX, maintain
crucial tables about memory usage, for example, a linked list of available chunks
of memory. While malloc is busy updating these lists, they may temporarily be in
an inconsistent state, with pointers that point nowhere. If a thread switch occurs
while the tables are inconsistent and a new call comes in from a different thread,
an invalid pointer may be used, leading to a program crash. Fixing all these prob-
lems properly effectively means rewriting the entire library.

A different solution is to provide each procedure with a jacket that sets a bit to
mark the library as in use. Any attempt for another thread to use a library pro-
cedure while a previous call has not yet completed is blocked. Although this
approach can be made to work, it greatly eliminates potential parallelism.

Next, consider signals. Some signals are logically thread specific, whereas
others are not. For example, if a thread calls alarm, it makes sense for the result-
ing signal to go to the thread that made the call. However, when threads are
implemented entirely in user space, the kernel does not even know about threads
and can hardly direct the signal to the right one. An additional complication
occurs if a process may only have one alarm at a time pending and several threads
call alarm independently.

Other signals, such as keyboard interrupt, are not thread specific. Who should
catch them? One designated thread? All the threads? A newly created pop-up
thread? Furthermore, what happens if one thread changes the signal handlers
without telling other threads? And what happens if one thread wants to catch a
particular signal (say, the user hitting CTRL-C), and another thread wants this sig-
nal to terminate the process? This situation can arise if one or more threads run
standard library procedures and others are user-written. Clearly, these wishes are
incompatible. In general, signals are difficult enough to manage in a single-
threaded environment. Going to a multithreaded environment does not make
them any easier to handle.

One last problem introduced by threads is stack management. In many sys-
tems, when a process’ stack overflows, the kernel just provides that process with

100 PROCESSES AND THREADS CHAP. 2

more stack automatically. When a process has multiple threads, it must also have
multiple stacks. If the kernel is not aware of all these stacks, it cannot grow them
automatically upon stack fault. In fact, it may not even realize that a memory
fault is related to stack growth.

These problems are certainly not insurmountable, but they do show that just
introducing threads into an existing system without a fairly substantial system
redesign is not going to work at all. The semantics of system calls may have to be
redefined and libraries have to be rewritten, at the very least. And all of these
things must be done in such a way as to remain backward compatible with exist-
ing programs for the limiting case of a process with only one thread. For addi-
tional information about threads, see (Hauser et al., 1993; and Marsh et al., 1991).

