
430 FILE SYSTEMS CHAP. 6

6.4 EXAMPLE FILE SYSTEMS

In the following sections we will discuss several example file systems, rang-
ing from quite simple to highly sophisticated. Since modern UNIX file systems
and Windows 2000’s native file system are covered in the chapter on UNIX
(Chap. 10) and the chapter on Windows 2000 (Chap. 11) we will not cover those
systems here. We will, however, examine their predecessors below.

6.4.1 CD-ROM File Systems

As our first example of a file system, let us consider the file systems used on
CD-ROMs. These systems are particularly simple because they were designed for
write-once media. Among other things, for example, they have no provision for
keeping track of free blocks because on a CD-ROM files cannot be freed or added
after the disk has been manufactured. Below we will take a look at the main CD-
ROM file system type and two extensions to it.

The ISO 9660 File System

The most common standard for CD-ROM file systems was adopted as an
International Standard in 1988 under the name ISO 9660. Virtually every CD-
ROM currently on the market is compatible with this standard, sometimes with
the extensions to be discussed below. One of the goals of this standard was to
make every CD-ROM readable on every computer, independent of the byte order-
ing used and independent of the operating system used. As a consequence, some
limitations were placed on the file system to make it possible for the weakest
operating systems then in use (such as MS-DOS) to read it.

CD-ROMs do not have concentric cylinders the way magnetic disks do.
Instead there is a single continuous spiral containing the bits in a linear sequence
(although seeks across the spiral are possible). The bits along the spiral are
divided into logical blocks (also called logical sectors) of 2352 bytes. Some of
these are for preambles, error correction, and other overhead. The payload por-
tion of each logical block is 2048 bytes. When used for music, CDs have leadins,
leadouts, and intertrack gaps, but these are not used for data CD-ROMs. Often
the position of a block along the spiral is quoted in minutes and seconds. It can be
converted to a linear block number using the conversion factor of 1 sec = 75
blocks.

ISO 9660 supports CD-ROM sets with as many as 216 − 1 CDs in the set. The
individual CD-ROMs may also be partitioned into logical volumes (partitions).
However, below we will concentrate on ISO 9660 for a single unpartitioned CD-
ROM.

Every CD-ROM begins with 16 blocks whose function is not defined by the
ISO 9660 standard. A CD-ROM manufacturer could use this area for providing a

SEC. 6.4 EXAMPLE FILE SYSTEMS 431

bootstrap program to allow the computer to be booted from the CD-ROM, or for
some other purpose. Next comes one block containing the primary volume des-
criptor, which contains some general information about the CD-ROM. Among
this information are the system identifier (32 bytes), volume identifier (32 bytes),
publisher identifier (128 bytes), and data preparer identifier (128 bytes). The
manufacturer can fill in these fields in any desired way, except that only upper
case letters, digits, and a very small number of punctuation marks may be used to
ensure cross-platform compatibility.

The primary volume descriptor also contains the names of three files, which
may contain the abstract, copyright notice, and bibliographic information, respec-
tively. In addition, certain key numbers are also present, including the logical
block size (normally 2048, but 4096, 8192, and larger powers of two are allowed
in certain cases), the number of blocks on the CD-ROM, and the creation and
expiration dates of the CD-ROM. Finally, the primary volume descriptor also
contains a directory entry for the root directory, telling where to find it on the
CD-ROM (i.e., which block it starts at). From this directory, the rest of the file
system can be located.

In addition to the primary volume descriptor, a CD-ROM may contain a sup-
plementary volume descriptor. It contains similar information to the primary, but
that will not concern us here.

The root directory, and all other directories for that matter, consists of a vari-
able number of entries, the last of which contains a bit marking it as the final one.
The directory entries themselves are also variable length. Each directory entry
consists of 10 to 12 fields, some of which are in ASCII and others of which are
numerical fields in binary. The binary fields are encoded twice, once in little-
endian format (used on example). Thus a 16-bit number uses 4 bytes and a 32-bit
number uses 8 bytes. The use of this redundant coding was necessary to avoid
hurting anyone’s feelings when the standard was developed. If the standard had
dictated little endian, then people from companies with big-endian products would
have felt like second-class citizens and would not have accepted the standard.
The emotional content of a CD-ROM can thus be quantified and measured exactly
in kilobytes/hour of wasted space.

The format of an ISO 9660 directory entry is illustrated in Fig. 6-1. Since
directory entries have variable lengths, the first field is a byte telling how long the
entry is. This byte is defined to have the high-order bit on the left to avoid any
ambiguity.

Directory entries may optionally have an extended attributes. If this feature is
used for a directory entry, the second byte tells how long the extended attributes
are.

Next comes the starting block of the file itself. Files are stored as contiguous
runs of blocks, so a file’s location is completely specified by the starting block
and the size, which is contained in the next field.

The date and time that the CD-ROM was recorded is stored in the next field,

432 FILE SYSTEMS CHAP. 6

1 1 8 8 7 1 2 4

Location of file

Extended attribute record length
Directory entry length

File Size Date and time CD # L File name Sys

1 4-15

Padding

Flags

Interleave Base name Ext Ver
• ;

Bytes

Figure 6-1. The ISO 9660 directory enty.

with separate bytes for the year, month, day, hour, minute, second, and time zone.
Years begin to count at 1900, which means that CD-ROMs will suffer from a
Y2156 problem because the year following 2155 will be 1900. This problem
could have been delayed by defining the origin of time to be 1988 (the year the
standard was adopted). Had that been done, the problem would have been post-
poned until 2244. Every 88 extra years helps.

The Flags field contains a few miscellaneous bits, including one to hide the
entry in listings (a feature copied from MS-DOS), one to distinguish an entry that
is a file from an entry that is a directory, one to enable the use of the extended
attributes, and one to mark the last entry in a directory. A few other bits are also
present in this field but they will not concern us here. The next field deals with
interleaving pieces of files in a way that is not used in the simplest version of ISO
9660, so we will not consider it further.

The next field tells which CD-ROM the file is located on. It is permitted that
a directory entry on one CD-ROM refers to a file located on another CD-ROM in
the set. In this way it is possible to build a master directory on the first CD-ROM
that lists all the files on all the CD-ROMs in the complete set.

The field marked L in Fig. 6-1 gives the size of the file name in bytes. It is
followed by the file name itself. A file name consists of a base name, a dot, an
extension, a semicolon, and a binary version number (1 or 2 bytes). The base
name and extension may use upper case letters, the digits 0–9, and the underscore
character. All other characters are forbidden to make sure that every computer
can handle every file name. The base name can be up to eight characters; the
extension can be up to three characters. These choices were dictated by the need
to be MS-DOS compatible. A file name may be present in a directory multiple
times, as long as each one has a different version number.

The last two fields are not always present. The Padding field is used to force
every directory entry to be an even number of bytes, to align the numeric fields of
subsequent entries on 2-byte boundaries. If padding is needed, a 0 byte is used.
Finally, we have the System use field. Its function and size are undefined, except
that it must be an even number of bytes. Different systems use it in different
ways. The Macintosh keeps Finder flags here, for example.

Entries within a directory are listed in alphabetical order except for the first

SEC. 6.4 EXAMPLE FILE SYSTEMS 433

two entries. The first entry is for the directory itself. The second one is for its
parent. In this respect, these entries are similar to the UNIX . and .. directory
entries. The files themselves need not be in directory order.

There is no explicit limit to the number of entries in a directory. However,
there is a limit to the depth of nesting. The maximum depth of directory nesting is
eight.

ISO 9660 defines what are called three levels. Level 1 is the most restrictive
and specifies that file names are limited to 8 + 3 characters as we have described,
and also requires all files to be contiguous as we have described. Furthermore, it
specifies that directory names be limited to eight characters with no extensions.
Use of this level maximizes the chances that a CD-ROM can be read on every
computer.

Level 2 relaxes the length restriction. It allows files and directories to have
names of up to 31 characters, but still from the same set of characters.

Level 3 uses the same name limits as level 2, but partially relaxes the assump-
tion that files have to be contiguous. With this level, a file may consist of several
sections, each of which is a contiguous run of blocks. The same run may occur
multiple times in a file and may also occur in two or more files. If large chunks of
data are repeated in several files, level 3 provides some space optimization by not
requiring the data to be present multiple times.

Rock Ridge Extensions

As we have seen, ISO 9660 is highly restrictive in several ways. Shortly after
it came out, people in the UNIX community began working on an extension to
make it possible to represent UNIX file systems on a CD-ROM. These extensions
were named Rock Ridge, after a town in the Gene Wilder movie Blazing Saddles,
probably because one of the committee members liked the film.

The extensions use the System use field in order to make Rock Ridge CD-
ROMs readable on any computer. All the other fields retain their normal ISO
9660 meaning. Any system not aware of the Rock Ridge extensions just ignores
them and sees a normal CD-ROM.

The extensions are divided up into the following fields:

1. PX - POSIX attributes.

2. PN - Major and minor device numbers.

3. SL - Symbolic link.

4. NM - Alternative name.

5. CL - Child location.

6. PL - Parent location.

7. RE - Relocation.

434 FILE SYSTEMS CHAP. 6

8. TF - Time stamps.

The PX field contains the standard UNIX rwxrwxrwx permission bits for the
owner, group, and others. It also contains the other bits contained in the mode
word, such as the SETUID and SETGID bits, and so on.

To allow raw devices to be represented on a CD-ROM, the PN field is
present. It contains the major and minor device numbers associated with the file.
In this way, the contents of the /dev directory can be written to a CD-ROM and
later reconstructed correctly on the target system.

The SL field is for symbolic links. It allows a file on one file system to refer
to a file on a different file system.

Probably the most important field is NM. It allows a second name to be asso-
ciated with the file. This name is not subject to the character set or length restric-
tions of ISO 9660, making it possible to express arbitrary UNIX file names on a
CD-ROM.

The next three fields are used together to get around the ISO 9660 limit of
directories that may only be nested eight deep. Using them it is possible to
specify that a directory is to be relocated, and to tell where it goes in the hierar-
chy. It is effectively a way to work around the artificial depth limit.

Finally, the TF field contains the three timestamps included in each UNIX i-
node, namely the time the file was created, the time it was last modified, and the
time it was last accessed. Together, these extensions make it possible to copy a
UNIX file system to a CD-ROM and then restore it correctly to a different system.

Joliet Extensions

The UNIX community was not the only group that wanted a way to extend
ISO 9660. Microsoft also found it too restrictive (although it was Microsoft’s
own MS-DOS that caused most of the restrictions in the first place). Therefore
Microsoft invented some extensions that were called Joliet. They were designed
to allow Windows file systems to be copied to CD-ROM and then restored, in pre-
cisely the same way that Rock Ridge was designed for UNIX. Virtually all pro-
grams that run under Windows and use CD-ROMs support Joliet, including pro-
grams that burn CD-recordables. Usually, these programs offer a choice between
the various ISO 9660 levels and Joliet.

The major extensions provided by Joliet are

1. Long file names.

2. Unicode character set.

3. Directory nesting deeper than eight levels.

4. Directory names with extensions

SEC. 6.4 EXAMPLE FILE SYSTEMS 435

The first extension allows file names up to 64 characters. The second extension
enables the use of the Unicode character set for file names. This extension is
important for software intended for use in countries that do not use the Latin
alphabet, such as Japan, Israel, and Greece. Since Unicode characters are two
bytes, the maximum file name in Joliet occupies 128 bytes.

Like Rock Ridge, the limitation on directory nesting is removed by Joliet.
Directories can be nested as deeply as needed. Finally, directory names can have
extensions. It is not clear why this extension was included, since Windows direc-
tories virtually never use extensions, but maybe some day they will.

6.4.2 The CP/M File System

The first personal computers (then called microcomputers) came out in the
early 1980s. A popular early type used the 8-bit Intel 8080 CPU and had 4 KB of
RAM and a single 8-inch floppy disk with a capacity of 180 KB. Later versions
used the slightly fancier (but still 8-bit) Zilog Z80 CPU, had up to 64 KB of
RAM, and had a whopping 720-KB floppy disk as the mass storage device.
Despite the slow speed and small amount of RAM, nearly all of these machines
ran a surprisingly powerful disk-based operating system, called CP/M (Control
Program for Microcomputers) (Golden and Pechura, 1986). This system dom-
inated its era as much as MS-DOS and later Windows dominated the IBM PC
world. Two decades later, it has vanished without a trace (except for a small
group of diehard fans), which gives reason to think that systems that now dom-
inate the world may be essentially unknown when current babies become college
students (Windows what?).

It is worth taking a look at CP/M for several reasons. First, it was a histori-
cally very important system and was the direct ancestor of MS-DOS. Second,
current and future operating system designers who think that a computer needs 32
MB just to boot the operating system could probably learn a lot about simplicity
from a system that ran quite well in 16 KB of RAM. Third, in the coming dec-
ades, embedded systems are going to be extremely widespread. Due to cost,
space, weight, and power constraints, the operating systems used, for example, in
watches, cameras, radios, and cellular telephones, are of necessity going to be
lean and mean, not unlike CP/M. Of course, these systems do not have 8-inch
floppy disks, but they may well have electronic disks using flash memory, and
building a CP/M-like file system on such a device is straightforward.

The layout of CP/M in memory is shown in Fig. 6-2. At the top of main
memory (in RAM) is the BIOS, which contains a basic library of 17 I/O calls used
by CP/M (in this section we will describe CP/M 2.2, which was the standard ver-
sion when CP/M was at the height of its popularity). These calls read and write
the keyboard, screen, and floppy disk.

Just below the BIOS is the operating system proper. The size of the operating
system in CP/M 2.2 is 3584 bytes. Amazing but true: a complete operating system

436 FILE SYSTEMS CHAP. 6

BIOS

CP/M

Shell

User program

Zero page

Address

0xFFFF

0x100

0

Figure 6-2. Memory layout of CP/M.

in under 4 KB. Below the operating system comes the shell (command line pro-
cessor), which chews up another 2 KB. The rest of memory is for user programs,
except for the bottom 256 bytes, which are reserved for the hardware interrupt
vectors, a few variables, and a buffer for the current command line so user pro-
grams can get at it.

The reason for splitting the BIOS from CP/M itself (even though both are in
RAM) is portability. CP/M interacts with the hardware only by making BIOS
calls. To port CP/M to a new machine, all that is necessary is to port the BIOS
there. Once that has been done, CP/M itself can be installed without modification.

A CP/M system has only one directory, which contains fixed-size (32-byte)
entries. The directory size, although fixed for a given implementation, may be
different in other implementations of CP/M All files in the system are listed in this
directory. After CP/M boots, it reads in the directory and computes a bitmap con-
taining the free disk blocks by seeing which blocks are not in any file. This bit-
map, which is only 23 bytes for a 180-KB disk, is kept in memory during execu-
tion. At system shutdown time it is discarded, that is, not written back to the disk.
This approach eliminates the need for a disk consistency checker (like fsck) and
saves 1 block on the disk (percentually equivalent to saving 90 MB on a modern
16-GB disk).

When the user types a command, the shell first copies the command to a
buffer in the bottom 256 bytes of memory. Then it looks up the program to be
executed and reads it into memory at address 256 (above the interrupt vectors),
and jumps to it. The program then begins running. It discovers its arguments by
looking in the command line buffer. The program is allowed to overwrite the
shell if it needs the memory. When the program finishes, it makes a system call
to CP/M telling it to reload the shell (if it was overwritten) and execute it. In a
nutshell, that is pretty much the whole CP/M story.

SEC. 6.4 EXAMPLE FILE SYSTEMS 437

In addition to loading programs, CP/M provides 38 system calls, mostly file
services, for user programs. The most important of these are reading and writing
files. Before a file can be read, it must be opened. When CP/M gets an open sys-
tem call, it has to read in and search the one and only directory. The directory is
not kept in memory all the time to save precious RAM. When CP/M finds the
entry, it immediately has the disk block numbers, since they are stored right in the
directory entry, as are all the attributes. The format of a directory entry is given in
Fig. 6-3.

Bytes 1 8 3 1 2

File name

User code File type
(extension)

Extent Block count
Disk block numbers

�
� 16

Figure 6-3. The CP/M directory entry format.

The fields in Fig. 6-3 have the following meanings. The User code field
keeps track of which user owns the file. Although only one person can be logged
into a CP/M at any given moment, the system supports multiple users who take
turns using the system. While searching for a file name, only those entries
belonging to the currently logged-in user are checked. In effect, each user has a
virtual directory without the overhead of managing multiple directories.

The next two fields give the name and extension of the file. The base name is
up to eight characters; an optional extension of up to three characters may be
present. Only upper case letters, digits, and a small number of special characters
are allowed in file names. This 8 + 3 naming using upper case only was later
taken over by MS-DOS.

The Block count field tells how many bytes this file entry contains, measured
in units of 128 bytes (because I/O is actually done in 128-byte physical sectors).
The last 1-KB block may not be full, so the system has no way to determine the
exact size of a file. It is up to the user to put in some END-OF-FILE marker if
desired. The final 16 fields contain the disk block numbers themselves. Each
block is 1 KB, so that maximum file size is 16 KB. Note that physical I/O is done
in units of 128-byte sectors and sizes are kept track of in sectors, but file blocks
are allocated in units of 1 KB (8 sectors at a time) to avoid making the directory
entry too large.

However, the CP/M designer realized that some files, even on a 180-KB
floppy disk, might exceed 16 KB, so an escape hatch was built around the 16-KB
limit. A file that is between 16 KB and 32 KB uses not one directory entry, but
two. The first entry holds the first 16 blocks; the second entry holds the next 16
blocks. Beyond 32 KB, a third directory entry is used, and so on. The Extent
field keeps track of the order of the directory entries so the system knows which

438 FILE SYSTEMS CHAP. 6

16 KB comes first, which comes second, and so on.
After an open call, the addresses of all the disk blocks are known, making

read straightforward. The write call is also simple. It just requires allocating a
free block from the bitmap in memory and then writing the block. Consecutive
blocks on a file are not placed in consecutive blocks on the disk because the 8080
cannot process an interrupt and start reading the next block on time. Instead,
interleaving is used to allow several blocks to be read on a single rotation.

CP/M is clearly not the last word in advanced file systems, but it is simple,
fast, and can be implemented by a competent programmer in less than a week.
For many embedded applications, it may be all that is needed.

6.4.3 The MS-DOS File System

To a first approximation, MS-DOS is a bigger and better version of CP/M. It
runs only on Intel platforms, does not support multiprogramming, and runs only in
the PC’s real mode (which was originally the only mode). The shell has more
features and there are more system calls, but the basic function of the operating
system is still loading programs, handling the keyboard and screen, and managing
the file system. It is the latter functionality that interests us here.

The MS-DOS file system was patterned closely on the CP/M file system,
including the use of 8 + 3 (upper case) character file names. The first version
(MS-DOS 1.0) was even limited to a single directory, like CP/M. However, starting
with MS-DOS 2.0, the file system functionality was greatly expanded. The biggest
improvement was the inclusion of a hierarchical file system in which directories
could be nested to an arbitrary depth. This meant that the root directory (which
still had a fixed maximum size) could contain subdirectories, and these could con-
tain further subdirectories ad infinitem. Links in the style of UNIX were not per-
mitted, so the file system formed a tree starting at the root directory.

It is common for different application programs to start out by creating a sub-
directory in the root directory and put all their files there (or in subdirectories
thereof), so that different applications do not conflict. Since directories are them-
selves just stored as files, there are no limits on the number of directories or files
that may be created. Unlike CP/M, however, there is no concept of different users
in MS-DOS. Consequently, the logged in user has access to all files.

To read a file, an MS-DOS program must first make an open system call to get
a handle for it. The open system call specifies a path, which may be either abso-
lute or relative to the current working directory. The path is looked up component
by component until the final directory is located and read into memory. It is then
searched for the file to be opened.

Although MS-DOS directories are variable sized, like CP/M, they use a fixed-
size 32-byte directory entry. The format of an MS-DOS directory entry is shown
in Fig. 6-4. It contains the file name, attributes, creation date and time, starting
block, and exact file size. File names shorter than 8 + 3 characters are left

SEC. 6.4 EXAMPLE FILE SYSTEMS 439

justified and padded with spaces on the right, in each field separately. The Attri-
butes field is new and contains bits to indicate that a file is read-only, needs to be
archived, is hidden, or is a system file. Read-only files cannot be written. This is
to protect them from accidental damage. The archived bit has no actual operating
system function (i.e., MS-DOS does not examine or set it). The intention is to
allow user-level archive programs to clear it upon archiving a file and to have
other programs set it when modifying a file. In this way, a backup program can
just examine this attribute bit on every file to see which files to back up. The hid-
den bit can be set to prevent a file from appearing in directory listings. Its main
use is to avoid confusing novice users with files they might not understand.
Finally, the system bit also hides files. In addition, system files cannot acciden-
tally be deleted using the del command. The main components of MS-DOS have
this bit set.

�
��
�

Size

Extension Attributes Reserved Date First
block

number

Bytes 8 3 1 10 2

File name

Time

2 2 4

Figure 6-4. The MS-DOS directory entry.

The directory entry also contains the date and time the file was created or last
modified. The time is accurate only to ±2 sec because it is stored in a 2-byte
field, which can store only 65,536 unique values (a day contains 86,400 unique
seconds). The time field is subdivided into seconds (5 bits), minutes (6 bits), and
hours (5 bits). The date counts in days using three subfields: day (5 bits), month
(4 bits), and year−1980 (7 bits). With a 7-bit number for the year and time begin-
ning in 1980, the highest expressible year is 2107. Thus MS-DOS has a built-in
Y2108 problem. To avoid catastrophe, MS-DOS users should begin with Y2108
compliance as early as possible. If MS-DOS had used the combined date and time
fields as a 32-bit seconds counter, it could have represented every second exactly
and delayed the catastrophe until 2116.

Unlike CP/M, which does not store the exact file size, MS-DOS does. Since a
32-bit number is used for the file size, in theory files can be as large as 4 GB.
However, other limits (described below) restrict the maximum file size to 2 GB or
less. A surprising large part of the entry (10 bytes) is unused.

Another way in which MS-DOS differs from CP/M is that it does not store a
file’s disk addresses in its directory entry, probably because the designers realized
that large hard disks (by then common on minicomputers) would some day reach
the MS-DOS world. Instead, MS-DOS keeps track of file blocks via a file alloca-
tion table in main memory. The directory entry contains the number of the first

440 FILE SYSTEMS CHAP. 6

file block. This number is used as an index into a 64K entry FAT in main mem-
ory. By following the chain, all the blocks can be found. The operation of the
FAT is illustrated in Fig. 6-0.

The FAT file system comes in three versions for MS-DOS: FAT-12, FAT-16,
and FAT-32, depending on how many bits a disk address contains. Actually,
FAT-32 is something of a misnomer since only the low-order 28 bits of the disk
addresses are used. It should have been called FAT-28, but powers of two sound
so much neater.

For all FATs, the disk block can be set to some multiple of 512 bytes (possi-
bly different for each partition), with the set of allowed block sizes (called cluster
sizes by Microsoft) being different for each variant. The first version of MS-DOS
used FAT-12 with 512-byte blocks, giving a maximum partition size of 212 × 512
bytes (actually only 4086 × 512 bytes because 10 of the disk addresses were used
as special markers, such as end of file, bad block, etc. With these parameters, the
maximum disk partition size was about 2 MB and the size of the FAT table in
memory was 4096 entries of 2 bytes each. Using a 12-bit table entry would have
been too slow.

This system worked well for floppy disks, but when hard disks came out, it
became a problem. Microsoft solved the problem by allowing additional block
sizes of 1 KB, 2 KB, and 4 KB. This change preserved the structure and size of
the FAT-12 table, but allowed disk partitions of up to 16 MB.

Since MS-DOS supported four disk partitions per disk drive, the new FAT-12
file system worked up to 64-MB disks. Beyond that, something had to give.
What happened was the introduction of FAT-16, with 16-bit disk pointers. Addi-
tionally, block sizes of 8 KB, 16 KB, and 32 KB were permitted. (32,768 is the
largest power of two that can be represented in 16 bits.) The FAT-16 table now
occupied 128 KB of main memory all the time, but with the larger memories by
then available, it was widely used and rapidly replaced the FAT-12 file system.
The largest disk partition that can be supported by FAT-16 is 2 GB (64K entries
of 32 KB each) and the largest disk 8 GB, namely four partitions of 2 GB each.

For business letters, this limit is not a problem, but for storing digital video
using the DV standard, a 2-GB file holds just over 9 minutes of video. As a
consequence of the fact that a PC disk can support only four partitions, the largest
video that can be stored on a disk is about 38 minutes, no matter how large the
disk is. This limit also means that the largest video that can be edited on line is
less than 19 minutes, since both input and output files are needed.

Starting with the second release of Windows 95, the FAT-32 file system, with
its 28-bit disk addresses, was introduced and the version of MS-DOS underlying
Windows 95 was adapted to support FAT-32. In this system, partitions could
theoretically be 228 × 215 bytes, but they are actually limited to 2 TB (2048 GB)
because internally the system keeps track of partition sizes in 512-byte sectors
using a 32-bit number and 29 × 232 is 2 TB. The maximum partition size for vari-
ous block sizes and all three FAT types is shown in Fig. 6-5.

SEC. 6.4 EXAMPLE FILE SYSTEMS 441

222
Block size FAT-12 FAT-16 FAT-322

0.5 KB 2 MB222
1 KB 4 MB222
2 KB 8 MB 128 MB222
4 KB 16 MB 256 MB 1 TB222
8 KB 512 MB 2 TB222

16 KB 1024 MB 2 TB222
32 KB 2048 MB 2 TB22211

1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1

Figure 6-5. Maximum partition size for different block sizes. The empty boxes
represent forbidden combinations.

In addition to supporting larger disks, the FAT-32 file system has two other
advantages over FAT-16. First, an 8-GB disk using FAT-32 can be a single parti-
tion. Using FAT-16 it has to be four partitions, which appears to the Windows
user as the C:, D:, E:, and F: logical disk drives. It is up to the user to decide
which file to place on which drive and keep track of what is where.

The other advantage of FAT-32 over FAT-16 is that for a given size disk par-
tition, a smaller block size can be used. For example, for a 2-GB disk partition,
FAT-16 must use 32-KB blocks, otherwise with only 64K available disk
addresses, it cannot cover the whole partition. In contrast, FAT-32 can use, for
example, 4-KB blocks for a 2-GB disk partition. The advantage of the smaller
block size is that most files are much shorter than 32 KB. If the block size is 32
KB, a file of 10 bytes ties up 32 KB of disk space. If the average file is, say, 8
KB, then with a 32-KB block, ¾ of the disk will be wasted, not a terribly efficient
way to use the disk. With an 8-KB file and a 4-KB block, there is no disk was-
tage, but the price paid is more RAM eaten up by the FAT. With a 4-KB block
and a 2-GB disk partition, there are 512K blocks, so the FAT must have 512K
entries in memory (occupying 2 MB of RAM).

MS-DOS uses the FAT to keep track of free disk blocks. Any block that is not
currently allocated is marked with a special code. When MS-DOS needs a new
disk block, it searches the FAT for an entry containing this code. Thus no bitmap
or free list is required.

6.4.4 The Windows 98 File System

The original release of Windows 95 used the MS-DOS file system, including
the use of 8 + 3 character file names and the FAT-12 and FAT-16 file systems.
Starting with the second release of Windows 95, file names longer than 8 + 3
characters were permitted. In addition, FAT-32 was introduced, primarily to
allow larger disk partitions larger than 2 GB and disks larger than 8 GB, which
were then available. Both the long file names and FAT-32 were used in Windows

442 FILE SYSTEMS CHAP. 6

98 in the same form as in the second release of Windows 95. Below we will
describe these features of the Windows 98 file system, which have been carried
forward into Windows Me as well.

Since long file names are more exciting for users than the FAT structure, let
us look at them first. One way to introduce long file names would have been to
just invent a new directory structure. The problem with this approach is that if
Microsoft had done this, people who were still in the process of converting from
Windows 3 to Windows 95 or Windows 98 could not have accessed their files
from both systems. A political decision was made within Microsoft that files
created using Windows 98 must be accessible from Windows 3 as well (for dual-
boot machines). This constraint forced a design for handling long file names that
was backward compatible with the old MS-DOS 8 + 3 naming system. Since such
backward compatibility constraints are not unusual in the computer industry, it is
worth looking in detail at how Microsoft accomplished this goal.

The effect of this decision to be backward compatible meant that the Win-
dows 98 directory structure had to be compatible with the MS-DOS directory
structure. As we saw, this structure is just a list of 32-byte entries as shown in
Fig. 6-4. This format came directly from CP/M (which was written for the 8080),
which goes to show how long (obsolete) structures can live in the computer world.

However, it was possible to now allocate the 10 unused bytes in the entries of
Fig. 6-4, and that was done, as shown in Fig. 6-6. This change has nothing to do
with long names, but it is used in Windows 98, so it is worth understanding.

8 1 13 41 2 2

Base name

4 2 4Bytes

Ext File sizeN
T

Creation
date/time

Last write
date/time

Last
access

Attributes
Sec Upper 16 bits

of starting
block

Lower 16 bits
of starting

block

Figure 6-6. The extended MOS-DOS directory entry used in Windows 98.

The changes consist of the addition of five new fields where the 10 unused
bytes used to be. The NT field is mostly there for some compatibility with Win-
dows NT in terms of displaying file names in the correct case (in MS-DOS, all file
names are upper case). The Sec field solves the problem that it is not possible to
store the time of day in a 16-bit field. It provides additional bits so that the new
Creation time field is accurate to 10 msec. Another new field is Last access,
which stores the date (but not time) of the last access to the file. Finally, going to
the FAT-32 file system means that block numbers are now 32 bits, so an addi-
tional 16-bit field is needed to store the upper 16 bits of the starting block number.

Now we come to the heart of the Windows 98 file system: how long file
names are represented in a way that is backward compatible with MS-DOS. The

SEC. 6.4 EXAMPLE FILE SYSTEMS 443

solution chosen was to assign two names to each file: a (potentially) long file
name (in Unicode, for compatibility with Windows NT), and an 8 + 3 name for
compatibility with MS-DOS. Files can be accessed by either name. When a file is
created whose name does not obey the MS-DOS naming rules (8 + 3 length, no
Unicode, limited character set, no spaces, etc.), Windows 98 invents an MS-DOS
name for it according to a certain algorithm. The basic idea is to take the first six
characters of the name, convert them to upper case, if need be, and append ~1 to
form the base name. If this name already exists, then the suffix ~2 is used, and so
on. In addition, spaces and extra periods are deleted and certain special characters
are converted to underscores. As an example, a file named The time has come the
walrus said is assigned the MS-DOS name THETIM~1. If a subsequent file is
created with the name The time has come the rabbit said, it is assigned the MS-
DOS name THETIM~2, and so on.

Every file has an MS-DOS file name stored using the directory format of
Fig. 6-6. If a file also has a long name, that name is stored in one or more direc-
tory entries directly preceding the MS-DOS file name. Each long-name entry
holds up to 13 (Unicode) characters. The entries are stored in reverse order, with
the start of the file name just ahead of the MS-DOS entry and subsequent pieces
before it. The format of each long-name entry is given in Fig. 6-7.

10 11 1 1 12 2 4

5 characters 6 characters 00

Bytes

2 characters

Sequence Attributes

Checksum

Figure 6-7. An entry for (part of) a long file name in Windows 98.

An obvious question is: ‘‘How does Windows 98 know whether a directory
entry contains an MS-DOS file name or a (piece of a) long file name?’’ The
answer lies in the Attributes field. For a long-name entry, this field has the value
0x0F, which represents an otherwise impossible combination of attributes. Old
MS-DOS programs that read directories will just ignore it as invalid. Little do they
know. The pieces of the name are sequenced using the first byte of the entry. The
last part of the long name (the first entry in the sequence) is marked by adding 64
to the sequence number. Since only 6 bits are used for the sequence number, the
theoretical maximum for file names is 63 × 13 or 819 characters. In fact they are
limited to 260 characters for historical reasons.

Each long-name entry contains a Checksum field to avoid the following prob-
lem. First, a Windows 98 program creates a file with a long name. Second, the
computer is rebooted to run MS-DOS or Windows 3. Third, an old program there
then removes the MS-DOS file name from the directory but does not remove the

444 FILE SYSTEMS CHAP. 6

long file name preceding it (because it does not know about it). Finally, some
program creates a new file that reuses the newly-freed directory entry. At this
point we have a valid sequence of long-name entries preceeding an MS-DOS file
entry that has nothing to do with that file. The Checksum field allows Windows
98 to detect this situation by verifying that the MS-DOS file name following a long
name does, in fact, belong to it. Of course, with only 1 byte being used, there is
one chance in 256 that Windows 98 will not notice the file substitution.

To see an example of how long names work, consider the example of Fig. 6-8.
Here we have a file called The quick brown fox jumps over the lazy dog. At 42-
characters, it certainly qualifies as a long file name. The MS-DOS name con-
structed from it is THEQUI~1 and is stored in the last entry.

68 d o g A

A

A

A

A S

0
C
K
C
K
C
K
C
K

0

0

0

0

0

0

0

N
T

3 o v e t h

i

y

o

e

j

c

u

k b

l

m p

a

r

s

z

x

u

2 w ofn

1 T h e q

T H E Q U 1
Creation

time
Last
acc

Last
writeUpp Low Size

Bytes
I ~

Figure 6-8. An example of how a long name is stored in Windows 98.

Some redundancy is built into the directory structure to help detect problems
in the event that an old Windows 3 program has made a mess of the directory.
The sequence number byte at the start of each entry is not strictly needed since the
0x40 bit marks the first one, but it provides additional redundancy, for example.
Also, the Low field of Fig. 6-8 (the lower half of the starting cluster) is 0 in all
entries but the last one, again to avoid having old programs misinterpret it and
ruin the file system. The NT byte in Fig. 6-8 is used in NT and ignored in Win-
dows 98. The A byte contains the attributes.

The implementation of the FAT-32 file system is conceptually similar to the
implementation of the FAT-16 file system. However, instead of an array of
65,536 entries, there are as many entries as needed to cover the part of the disk
with data on it. If the first million blocks are used, the table conceptually has 1
million entries. To avoid having all of them in memory at once, Windows 98
maintains a window into the table and keeps only in parts of it in memory at once.

6.4.5 The UNIX V7 File System

Even early versions of UNIX had a fairly sophisticated multiuser file system
since it was derived from MULTICS. Below we will discuss the V7 file system,
the one for the PDP-11 that made UNIX famous. We will examine modern

SEC. 6.4 EXAMPLE FILE SYSTEMS 445

versions in Chap. 10.
The file system is in the form of a tree starting at the root directory, with the

addition of links, forming a directed acyclic graph. File names are up to 14 char-
acters and can contain any ASCII characters except / (because that is the separator
between components in a path) and NUL (because that is used to pad out names
shorter than 14 characters). NUL has the numerical value of 0.

A UNIX directory entry contains one entry for each file in that directory.
Each entry is extremely simple because UNIX uses the i-node scheme illustrated
in Fig. 6-0. A directory entry contains only two fields: the file name (14 bytes)
and the number of the i-node for that file (2 bytes), as shown in Fig. 6-9. These
parameters limit the number of files per file system to 64K.

Bytes 2 14

File name

I-node
number

Figure 6-9. A UNIX V7 directory entry.

Like the i-node of Fig. 6-0, the UNIX i-nodes contains some attributes. The
attributes contain the file size, three times (creation, last access, and last modifica-
tion), owner, group, protection information, and a count of the number of direc-
tory entries that point to the i-node. The latter field is needed due to links. When-
ever a new link is made to an i-node, the count in the i-node is increased. When a
link is removed, the count is decremented. When it gets to 0, the i-node is
reclaimed and the disk blocks are put back in the free list.

Keeping track of disk blocks is done using a generalization of Fig. 6-0 in
order to handle very large files. The first 10 disk addresses are stored in the i-
node itself, so for small files, all the necessary information is right in the i-node,
which is fetched from disk to main memory when the file is opened. For some-
what larger files, one of the addresses in the i-node is the address of a disk block
called a single indirect block. This block contains additional disk addresses. If
this still is not enough, another address in the i-node, called a double indirect
block, contains the address of a block that contains a list of single indirect blocks.
Each of these single indirect blocks points to a few hundred data blocks. If even
this is not enough, a triple indirect block can also be used. The complete picture
is given in Fig. 6-10.

When a file is opened, the file system must take the file name supplied and
locate its disk blocks. Let us consider how the path name /usr/ast/mbox is looked
up. We will use UNIX as an example, but the algorithm is basically the same for
all hierarchical directory systems. First the file system locates the root directory.
In UNIX its i-node is located at a fixed place on the disk. From this i-node, it

446 FILE SYSTEMS CHAP. 6

I-node

Attributes

D
is

k
ad

dr
es

se
s

Single
indirect
block

Double
indirect
block

Triple
indirect
block

Addresses of
data blocks

Figure 6-10. A UNIX i-node.

locates the root directory which can be anywhere on the disk, but say block 1 in
this case.

Then it reads the root directory and looks up the first component of the path,
usr, in the root directory to find the i-node number of the file /usr. Locating an i-
node from its number is straightforward, since each one has a fixed location on
the disk. From this i-node, the system locates the directory for /usr and looks up
the next component, ast, in it. When it has found the entry for ast, it has the i-
node for the directory /usr/ast. From this i-node it can find the directory itself and
look up mbox. The i-node for this file is then read into memory and kept there
until the file is closed. The lookup process is illustrated in Fig. 6-11.

Relative path names are looked up the same way as absolute ones, only start-
ing from the working directory instead of starting from the root directory. Every
directory has entries for . and .. which are put there when the directory is created.
The entry . has the i-node number for the current directory, and the entry for ..
has the i-node number for the parent directory. Thus, a procedure looking up
../dick/prog.c simply looks up .. in the working directory, finds the i-node number
for the parent directory, and searches that directory for dick. No special mechan-
ism is needed to handle these names. As far as the directory system is concerned,
they are just ordinary ASCII strings, just the same as any other names.

SEC. 6.4 EXAMPLE FILE SYSTEMS 447

Root directory
I-node 6
is for /usr

Block 132
is /usr

directory

I-node 26
is for

/usr/ast

Block 406
is /usr/ast
directory

Looking up
usr yields
i-node 6

I-node 6
says that
/usr is in

block 132

/usr/ast
is i-node

26

/usr/ast/mbox
is i-node

60

I-node 26
says that

/usr/ast is in
block 406

1

1

4

7

14

9

6

8

.

..

bin

dev

lib

etc

usr

tmp

6

1

19

30

51

26

45

dick

erik

jim

ast

bal

26

6

64

92

60

81

17

grants

books

mbox

minix

src

Mode
size

times

132

Mode
size

times

406

Figure 6-11. The steps in looking up /usr/ast/mbox.

