Introduction to Oracle: SQL
and PL/SQL

Student Guide * Volume 2

41010GC13
Production 1.3
July 1999
M08945

ORACLE"

Authors

Neena Kochhar
Ellen Gravina
Priya Nathan

Technical Contributors

and Reviewers

Claire Bennet
Christa Miethaner
Tony Hickman
Sherin Nassa
Nancy Greenberg
Hazel Russl|
Kenneth Goetz
Piet van Zon
Ulrike Dietrich
Helen Robertson
Thomas Nguyen
Lisa Jansson
Kuljit Jassar

Publisher
Jerry Brosnan

Copyright © Oracle Corporation, 1998, 1999. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited. If
this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in FAR
52.227-14, Rights in Data-General, including Alternate Ill (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

Oracle and all references to Oracle products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Contents

Preface
Curriculum Map

Introduction
Objectives 1-2
System Development Life Cycle |-3
Data Storage on Different Media [-5
Relational Database Concept -6
Definition of Relational Database |-7
Data Models -8
Entity Relationship Model [-9
Entity Relationship Modeling Conventions 1-10
Relational Database Terminology 1-12
Relating Multiple Tables 1-13
Relational Database Properties [-14
Communicating with a RDBMS Using SQL 1-15
Relational Database Management System [-16
Oracle8: Object Relational Database Management System 1-17
Oracle8i: Internet Platform Database for Internet Computing Features 1-18
Oracle Internet Platform [-19
SQL Statements 1-20
About PL/SQL 1-21
PL/SQL Environment [-22
Tables Used in the Course 1-23
Summary [-24

1 Writing Basic SQL Statements
Objectives 1-2
Capabilities of SQL SELECT Statements 1-3
Basic SELECT Statement 1-4
Writing SQL Statements 1-5
Selecting All Columns 1-6
Selecting Specific Columns 1-7
Column Heading Defaults 1-8
Arithmetic Expressions 1-9

Using Arithmetic Operators 1-10
Operator Precedence 1-11

Using Parentheses 1-13

Defining a Null Value 1-14

Null Values in Arithmetic Expressions 1-15
Defining a Column Alias 1-16

Using Column Aliases 1-17
Concatenation Operator 1-18

Using the Concatenation Operator 1-19
Literal Character Strings 1-20

Using Literal Character Strings 1-21
Duplicate Rows 1-22

Eliminating Duplicate Rows 1-23

SQL and SQL*Plus Interaction 1-24
SQL Statements Versus SQL*Plus Commands
Overview of SQL*Plus 1-26

Logging In to SQL*Plus 1-27
Displaying Table Structure 1-28
SQL*Plus Editing Commands 1-30
SQL*Plus File Commands 1-32
Summary 1-33

Practice Overview 1-34

Restricting and Sorting Data
Objectives 2-2

Limiting Rows Using a Selection 2-3
Limiting Rows Selected 2-4

Using the WHERE Clause 2-5
Character Strings and Dates 2-6
Comparison Operators 2-7

Using the Comparison Operators 2-8
Other Comparison Operators 2-9
Using the BETWEEN Operator 2-10
Using the IN Operator 2-11

Using the LIKE Operator 2-12

Using the IS NULL Operator 2-14
Logical Operators 2-15

Using the AND Operator 2-16

Using the OR Operator 2-17

1-25

Using the NOT Operator 2-18
Rules of Precedence 2-19
ORDER BY Clause 2-22

Sorting in Descending Order 2-23
Sorting by Column Alias 2-24
Sorting by Multiple Columns 2-25
Summary 2-26

Practice Overview 2-27

Single-Row Functions

Objectives 3-2

SQL Functions 3-3

Two Types of SQL Functions 3-4

Single-Row Functions 3-5

Character Functions 3-7

Case Conversion Functions 3-9

Using Case Conversion Functions 3-10
Character Manipulation Functions 3-11

Using the Character Manipulation Functions 3-12
Number Functions 3-13

Using the ROUND Function 3-14

Using the TRUNC Function 3-15

Using the MOD Function 3-16

Working with Dates 3-17

Arithmetic with Dates 3-18

Using Arithmetic Operators with Dates 3-19
Date Functions 3-20

Using Date Functions 3-21

Conversion Functions 3-23

Implicit Datatype Conversion 3-24

Explicit Datatype Conversion 3-26

TO_CHAR Function with Dates 3-29
Elements of Date Format Model 3-30

Using TO_CHAR Function with Dates 3-32
TO_CHAR Function with Numbers 3-33
Using TO_CHAR Function with Numbers 3-34
TO_NUMBER and TO_DATE Functions 3-35
RR Date Format 3-36

NVL Function 3-37

Using the NVL Function 3-38
DECODE Function 3-39

Using the DECODE Function 3-40
Nesting Functions 3-42

Summary 3-44

Practice Overview 3-45

Displaying Data from Multiple Tables
Objectives 4-2

Obtaining Data from Multiple Tables 4-3
What Is a Join? 4-4

Cartesian Product 4-5

Generating a Cartesian Product 4-6

Types of Joins 4-7

What Is an Equijoin? 4-8

Retrieving Records with Equijoins 4-9
Qualifying Ambiguous Column Names 4-10
Additional Search Conditions Using the AND Operator 4-11
Using Table Aliases 4-12

Joining More Than Two Tables 4-13
Non-Equijoins 4-14

Retrieving Records with Non-Equijoins 4-15
Quter Joins 4-16

Using Outer Joins 4-18

Self Joins 4-19

Joining a Table to Itself 4-20

Summary 4-21

Practice Overview 4-22

Aggregating Data Using Group Functions
Objectives 5-2

What Are Group Functions? 5-3

Types of Group Functions 5-4

Using Group Functions 5-5

Using AVG and SUM Functions 5-6

Using MIN and MAX Functions 5-7

Using the COUNT Function 5-8

Vi

Group Functions and Null Values 5-10

Using the NVL Function with Group Functions 5-11
Creating Groups of Data 5-12

Creating Groups of Data: GROUP BY Clause 5-13
Using the GROUP BY Clause 5-14

Grouping by More Than One Column 5-16

Using the GROUP BY Clause on Multiple Columns 5-17
lllegal Queries Using Group Functions 5-18
Excluding Group Results 5-20

Excluding Group Results: HAVING Clause 5-21
Using the HAVING Clause 5-22

Nesting Group Functions 5-24

Summary 5-25

Practice Overview 5-26

Subqueries

Objectives 6-2

Using a Subquery to Solve a Problem 6-3
Subqueries 6-4

Using a Subquery 6-5

Guidelines for Using Subqueries 6-6

Types of Subqueries 6-7

Single-Row Subqueries 6-8

Executing Single-Row Subqueries 6-9

Using Group Functions in a Subquery 6-10

HAVING Clause with Subqueries 6-11

What Is Wrong with This Statement? 6-12

Will This Statement Work? 6-13

Multiple-Row Subqueries 6-14

Using ANY Operator in Multiple-Row Subqueries 6-15
Using ALL Operator in Multiple-Row Subqueries 6-16
Summary 6-17

Practice Overview 6-18

Multiple-Column Subqueries
Objectives 7-2

Multiple-Column Subqueries 7-3
Using Multiple-Column Subqueries 7-4

vii

Column Comparisons 7-6

Nonpairwise Comparison Subquery 7-7
Nonpairwise Subquery 7-8

Null Values in a Subquery 7-9

Using a Subquery in the FROM Clause 7-10
Summary 7-11

Practice Overview 7-12

Producing Readable Output with SQL*Plus
Objectives 8-2

Interactive Reports 8-3

Substitution Variables 8-4

Using the & Substitution Variable 8-5

Using the SET VERIFY Command 8-6

Character and Date Values with Substitution Variables 8-7
Specifying Column Names, Expressions, and Text at Runtime 8-8
Using the && Substitution Variable 8-10

Defining User Variables 8-11

The ACCEPT Command 8-12

Using the ACCEPT Command 8-13

DEFINE and UNDEFINE Commands 8-14

Using the DEFINE Command 8-15

Customizing the SQL*Plus Environment 8-16

SET Command Variables 8-17

Saving Customizations in the 1ogin.sqgl File 8-18
SQL*Plus Format Commands 8-19

The COLUMN Command 8-20

Using the COLUMN Command 8-21

COLUMN Format Models 8-22

Using the BREAK Command 8-23

Using the TTITLE and BTITLE Commands 8-24
Creating a Script File to Run a Report 8-25

Sample Report 8-27

Summary 8-28

Practice Overview 8-29

Manipulating Data
Objectives 9-2
Data Manipulation Language 9-3

viii

10

Adding a New Row to a Table 9-4

The INSERT Statement 9-5

Inserting New Rows 9-6

Inserting Rows with Null Values 9-7

Inserting Special Values 9-8

Inserting Specific Date Values 9-9

Inserting Values by Using Substitution Variables 9-10
Creating a Script with Customized Prompts 9-11
Copying Rows from Another Table 9-12
Changing Data in a Table 9-13

The UPDATE Statement 9-14

Updating Rows in a Table 9-15

Updating with Multiple-Column Subquery 9-16
Updating Rows Based on Another Table 9-17
Updating Rows: Integrity Constraint Error 9-18
Removing a Row from a Table 9-19

The DELETE Statement 9-20

Deleting Rows from a Table 9-21

Deleting Rows Based on Another Table 9-22
Deleting Rows: Integrity Constraint Error 9-23
Database Transactions 9-24

Advantages of COMMIT and ROLLBACK Statements 9-26

Controlling Transactions 9-27

Implicit Transaction Processing 9-28
State of the Data Before COMMIT or ROLLBACK 9-29
State of the Data After COMMIT 9-30
Committing Data 9-31

State of the Data After ROLLBACK 9-32
Rolling Back Changes to a Marker 9-33
Statement-Level Rollback 9-34

Read Consistency 9-35

Implementation of Read Consistency 9-36
Locking 9-37

Summary 9-38

Practice Overview 9-39

Creating and Managing Tables
Objectives 10-2
Database Objects 10-3

11

Naming Conventions 10-4

The CREATE TABLE Statement 10-5
Referencing Another User’'s Tables 10-6
The DEFAULT Option 10-7

Creating Tables 10-8

Tables in the Oracle Database 10-9
Querying the Data Dictionary 10-10
Datatypes 10-11

Creating a Table by Using a Subquery 10-13
The ALTER TABLE Statement 10-15
Adding a Column 10-16

Modifying a Column 10-18

Dropping a Column 10-19

SET UNUSED Option 10-20

Dropping a Table 10-21

Changing the Name of an Object 10-22
Truncating a Table 10-23

Adding Comments to a Table 10-24
Summary 10-25

Practice Overview 10-26

Including Constraints

Objectives 11-2

What Are Constraints? 11-3

Constraint Guidelines 11-4

Defining Constraints 11-5

The NOT NULL Constraint 11-7

The UNIQUE KEY Constraint 11-9

The PRIMARY KEY Constraint 11-11

The FOREIGN KEY Constraint 11-13
FOREIGN KEY Constraint Keywords 11-15
The CHECK Constraint 11-16

Adding a Constraint 11-17

Dropping a Constraint 11-19

Disabling Constraints 11-20

Enabling Constraints 11-21

Cascading Constraints 11-22

Viewing Constraints 11-24

Viewing the Columns Associated with Constraints 11-25
Summary 11-26

Practice Overview 11-27

12 Creating Views
Objectives 12-2
Database Objects 12-4
What Is a View? 12-5
Why Use Views? 12-6
Simple Views and Complex Views 12-7
Creating a View 12-8
Retrieving Data from a View 12-11
Querying a View 12-12
Modifying a View 12-13
Creating a Complex View 12-14
Rules for Performing DML Operations on a View 12-15
Using the WITH CHECK OPTION Clause 12-17
Denying DML Operations 12-18
Removing a View 12-19
Inline Views 12-20
“Top-N” Analysis 12-21
Performing “Top-N” Analysis 12-22
Example of “Top-N” Analysis 12-23
Summary 12-24
Practice Overview 12-26

13 Other Database Objects
Objectives 13-2
Database Objects 13-3
What Is a Sequence? 13-4
The CREATE SEQUENCE Statement 13-5
Creating a Sequence 13-6
Confirming Sequences 13-7
NEXTVAL and CURRVAL Pseudocolumns 13-8
Using a Sequence 13-10
Modifying a Sequence 13-12
Guidelines for Modifying a Sequence 13-13
Removing a Sequence 13-14
What Is an Index? 13-15
How Are Indexes Created? 13-16
Creating an Index 13-17
When to Create an Index 13-18
When Not to Create an Index 13-19
Confirming Indexes 13-20
Function-Based Indexes 13-21

Xi

14

15

16

Removing an Index 13-22

Synonyms 13-23

Creating and Removing Synonyms 13-24
Summary 13-25

Practice Overview 13-26

Controlling User Access

Objectives 14-2

Controlling User Access 14-3

Privileges 14-4

System Privileges 14-5

Creating Users 14-6

User System Privileges 14-7

Granting System Privileges 14-8

What Is a Role? 14-9

Creating and Granting Privileges to a Role 14-10
Changing Your Password 14-11

Object Privileges 14-12

Granting Object Privileges 14-14

Using WITH GRANT OPTION and PUBLIC Keywords 14-15
Confirming Privileges Granted 14-16

How to Revoke Object Privileges 14-17
Revoking Object Privileges 14-18

Summary 14-19

Practice Overview 14-20

SQL Workshop
Workshop Overview 15-2

Declaring Variables

Objectives 16-2

About PL/SQL 16-3

Benefits of PL/SQL 16-4

PL/SQL Block Structure 16-6

Block Types 16-8

Program Constructs 16-9

Use of Variables 16-11

Handling Variables in PL/SQL 16-12
Types of Variables 16-13

Declaring PL/SQL Variables 16-16
Naming Rules 16-18

Assigning Values to Variables 16-19

Xii

Variable Initialization and Keywords 16-20
Scalar Datatypes 16-21

Base Scalar Datatypes 16-22

Scalar Variable Declarations 16-24

The %TYPE Attribute 16-25

Declaring Variables with the % TYPE Attribute 16-26
Declaring Boolean Variables 16-27
PL/SQL Record Structure 16-28

LOB Datatype Variables 16-29

Bind Variables 16-31

Referencing Non-PL/SQL Variables 16-32
DBMS_OUTPUT.PUT_LINE 16-33
Summary 16-34

Practice Overview 16-36

17 Writing Executable Statements
Objectives 17-2
PL/SQL Block Syntax and Guidelines 17-3
Commenting Code 17-6
SQL Functions in PL/SQL 17-7
PL/SQL Functions 17-8
Datatype Conversion 17-9
Nested Blocks and Variable Scope 17-11
Operators in PL/SQL 17-14
Using Bind Variables 17-16
Programming Guidelines 17-17
Code Naming Conventions 17-18
Indenting Code 17-19
Determining Variable Scope 17-20
Summary 17-21
Practice Overview 17-22

18 Interacting with the Oracle Server
Objectives 18-2
SQL Statements in PL/SQL 18-3
SELECT Statements in PL/SQL 18-4
Retrieving Data in PL/SQL 18-6
Manipulating Data Using PL/SQL 18-8
Inserting Data 18-9
Updating Data 18-10
Deleting Data 18-11
Naming Conventions 18-12

xiii

19

20

COMMIT and ROLLBACK Statements 18-14
SQL Cursor 18-15

SQL Cursor Attributes 18-16

Summary 18-18

Practice Overview 18-20

Writing Control Structures

Objectives 19-2

Controlling PL/SQL Flow of Execution 19-3

IF Statements 19-4

Simple IF Statements 19-5

IF-THEN-ELSE Statement Execution Flow 19-6
IF-THEN-ELSE Statements 19-7
IF-THEN-ELSIF Statement Execution Flow 19-8
IF-THEN-ELSIF Statements 19-9

Building Logical Conditions 19-10

Logic Tables 19-11

Boolean Conditions 19-12

Iterative Control: LOOP Statements 19-13
Basic Loop 19-14

FOR Loop 19-16

WHILE Loop 19-19

Nested Loops and Labels 19-21

Summary 19-23

Practice Overview 19-24

Working with Composite Datatypes
Objectives 20-2

Composite Datatypes 20-3

PL/SQL Records 20-4

Creating a PL/SQL Record 20-5
PL/SQL Record Structure 20-7

The %ROWTYPE Attribute 20-8
Advantages of Using %ROWTYPE 20-9
The %ROWTYPE Attribute 20-10
PL/SQL Tables 20-11

Creating a PL/SQL Table 20-12
PL/SQL Table Structure 20-13
Creating a PL/SQL Table 20-14

Xiv

21

22

23

Using PL/SQL Table Methods 20-15
PL/SQL Table of Records 20-16

Example of PL/SQL Table of Records 20-17
Summary 20-18

Practice Overview 20-19

Writing Explicit Cursors

Objectives 21-2

About Cursors 21-3

Explicit Cursor Functions 21-4

Controlling Explicit Cursors 21-5

Declaring the Cursor 21-7

Opening the Cursor 21-9

Fetching Data from the Cursor 21-10
Closing the Cursor 21-12

Explicit Cursor Attributes 21-13

Controlling Multiple Fetches 21-14

The %ISOPEN Attribute 21-15

The %NOTFOUND and %ROWCOUNT Attributes 21-16
Cursors and Records 21-17

Cursor FOR Loops 21-18

Cursor FOR Loops Using Subqueries 21-20
Summary 21-21

Practice Overview 21-23

Advanced Explicit Cursor Concepts
Objectives 22-2

Cursors with Parameters 22-3

The FOR UPDATE Clause 22-5

The WHERE CURRENT OF Clause 22-7
Cursors with Subqueries 22-9

Summary 22-10

Practice Overview 22-11

Handling Exceptions

Objectives 23-2

Handling Exceptions with PL/SQL 23-3
Handling Exceptions 23-4

Exception Types 23-5

Trapping Exceptions 23-6

XV

Trapping Exceptions Guidelines 23-7

Trapping Predefined Oracle Server Errors 23-8
Predefined Exception 23-10

Trapping Non-Predefined Oracle Server Errors 23-11
Non-Predefined Error 23-12

Functions for Trapping Exceptions 23-13
Trapping User-Defined Exceptions 23-15
User-Defined Exception 23-16

Calling Environments 23-17

Propagating Exceptions 23-18
RAISE_APPLICATION_ERROR Procedure 23-19
Summary 23-21

Practice Overview 23-22

Practice Solutions
Table Descriptions and Data

Index

XVi

'J n
=7

Controlling User Access

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Objectives

After completing this lesson, you should
be able to do the following:

* Create users

* Create roles to ease setup and
maintenance of the security model

* Use the GRANT and REVOKE
statements to grant and revoke object
privileges

14-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Lesson Aim

In this lesson, you will learn how to control database access to specific objects and add new users
with different levels of access privileges.

Introduction to Oracle: SQL and PL/SQL 14-2

Controlling User Access
0

oy

Database

administrator S
\/

Username and password
privileges

Users

Y

LGN |
&l

14-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Controlling User Access

In a multiple-user environment, you want to maintain security of the database access and use. With
Oracle Server database security, you can do the following:

» Control database access

» Give access to specific objects in the database

» Confirm given and received privileges with the Oracle data dictionary
» Create synonyms for database objects

Database security can be classified into two categories: system security and data security. System
security covers access and use of the database at the system level, such as username and password,
disk space allocated to users, and system operations allowed by the user. Database security covers
access and use of the database objects and the actions that those users can have on the objects.

Introduction to Oracle: SQL and PL/SQL 14-3

Privileges

» Database security:
- System security
— Data security

» System privileges: Gain access to the
database

* Object privileges: Manipulate the
content of the database objects

* Schema: Collection of objects, such as
tables, views, and sequences

14-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Privileges

Privileges are the right to execute particular SQL statements. The database administrator is a high-
level user with the ability to grant users access to the database and its objects. The users require
system privileges to gain access to the database and object privileges to manipulate the content of the
objects in the database. Users can also be given the privilege to grant additional privileges to other
users or to roles, which are named groups of related privileges.

Schema

A schema is a collection of objects, such as tables, views, and sequences. The schema is owned by a
database user and has the same name as that user.

For more information, see Oracle Server Application Developer’s Guide, Release 8, “Establishing a
Security Policy” section, and Oracle Server Concepts Manual, Release 8, “Database Security” topic.

Introduction to Oracle: SQL and PL/SQL 14-4

System Privileges

* More than 80 privileges are available.

* The DBA has high-level system
privileges:

— Create new users
- Remove users
— Remove tables
— Back up tables

145 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

System Privileges

More than 80 system privileges are available for users and roles. System privileges typically are
provided by the database administrator.

Typical DBA Privileges

System Privilege Operations Authorized

CREATE USER Allows grantee to create other Oracle users (a privilege
required for a DBA role)

DROP USER Drops another user

DROP ANY TABLE Drops a table in any schema

BACKUP ANY TABLE Backs up any table in any schema with the export utility

Introduction to Oracle: SQL and PL/SQL 14-5

Creating Users

The DBA creates users by using the
CREATE USER statement.

CREATE USER user
IDENTIFIED BY password;

SQL> CREATE USER scott
2 IDENTIFIED BY tiger;
User created.

14-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Creating a User

The DBA creates the user by executing the CREATE USER statement. The user does not have any
privileges at this point. The DBA can then grant a number of privileges to that user. These privileges
determine what the user can do at the database level.

The slide gives the abridged syntax for creating a user.

In the syntax:
user 1s the name of the user to be created

password specifies that the user must log in with this password

For more information, see Oracle Server SOL Reference, Release 8, “GRANT” (System Privileges
and Roles) and “CREATE USER.”

Introduction to Oracle: SQL and PL/SQL 14-6

User System Privileges

* Once a user is created, the DBA can grant
specific system privileges to a user.

GRANT privilege [, privilege...]

TO user [, user...];

* An application developer may have the
following system privileges:

— CREATE SESSION

- CREATE TABLE

— CREATE SEQUENCE
- CREATE VIEW

- CREATE PROCEDURE

14-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Typical User Privileges
Now that the DBA has created a user, the DBA can assign privileges to that user.

System Privilege Operations Authorized

CREATE SESSION Connect to the database

CREATE TABLE Create tables in the user’s schema

CREATE SEQUENCE Create a sequence in the user’s schema

CREATE VIEW Create a view in the user’s schema

CREATE PROCEDURE Create a stored procedure, function, or package in the user’s
schema

In the syntax:
privilege is the system privilege to be granted

user 1s the name of the user

Introduction to Oracle: SQL and PL/SQL 14-7

Granting System Privileges

The DBA can grant a user specific system
privileges.

SQL> GRANT create table, create sequence, create view
2 TO scott;

Grant succeeded.

14-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Granting System Privileges

The DBA uses the GRANT statement to allocate system privileges to the user. Once the user has
been granted the privileges, the user can immediately use those privileges.

In the example on the slide, user Scott has been assigned the privileges to create tables, sequences,
and views.

Introduction to Oracle: SQL and PL/SQL 14-8

What Is a Role?

R ‘If

\)) £ 1 '} R
S T N W W ad, 1o W, W
\/ \/ \/ Users \/ \/ \/

> Privileges > >

Allocating privileges Allocating privileges
without a role with a role
14-9 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

What Is a Role?

A role is a named group of related privileges that can be granted to the user. This method makes
granting and revoking privileges easier to perform and maintain.

A user can have access to several roles, and several users can be assigned the same role. Roles
typically are created for a database application.

Creating and Assigning a Role

First, the DBA must create the role. Then the DBA can assign privileges to the role and users to the
role.

Syntax
CREATE ROLE role;
where: role 1s the name of the role to be created

Now that the role is created, the DBA can use the GRANT statement to assign users to the role as well
as assign privileges to the role.

Introduction to Oracle: SQL and PL/SQL 14-9

Creating and Granting Privileges
to a Role

SQL> CREATE ROLE manager;
Role created.

SQL> GRANT create table, create view
2 to manager;
Grant succeeded.

SQL> GRANT manager to BLAKE, CLARK;
Grant succeeded.

14-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Creating a Role

The example on the slide creates a role manager and then allows the managers to create tables and
views. It then grants Blake and Clark the role of managers. Now Blake and Clark can create tables
and views.

Introduction to Oracle: SQL and PL/SQL 14-10

Changing Your Password

* The DBA creates your user account and
initializes your password.

* You can change your password by
using the ALTER USER statement.

SQL> ALTER USER scott
2 IDENTIFIED BY lion;
User altered.

14-11 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Changing Your Password

The DBA creates an account and initializes a password for every user. You can change your
password by using the ALTER USER statement.

Syntax
ALTER USER user IDENTIFIED BY password;
where: user is the name of the user
password specifies the new password

Although this statement can be used to change your password, there are many other options. You
must have the ALTER USER privilege to change any other option.

For more information, see Oracle Server SQL Reference, Release 8, “ALTER USER.”

Introduction to Oracle: SQL and PL/SQL 14-11

Object Privileges

Object
Privilege Table | View |Sequence | Procedure
ALTER V V
DELETE V V
EXECUTE V
INDEX V
INSERT V V
REFERENCES V
SELECT v v v
UPDATE V V
1412 Copyright © Oracle Corporation, 1999. All rights reserved. (R ACLE "

Object Privileges

An object privilege is a privilege or right to perform a particular action on a specific table, view,
sequence, or procedure. Each object has a particular set of grantable privileges. The table on the slide
lists the privileges for various objects. Note that the only privileges that apply to a sequence are
SELECT and ALTER. UPDATE, REFERENCES, and INSERT can be restricted by specifying a
subset of updatable columns. A SELECT can be restricted by creating a view with a subset of
columns and granting SELECT privilege on the view. A grant on a synonym is converted to a grant
on the base table referenced by the synonym.

Introduction to Oracle: SQL and PL/SQL 14-12

Object Privileges

* Object privileges vary from object to object.
 An owner has all the privileges on the object.

* An owner can give specific privileges on that
owner’s object.

GRANT object priv [(columns)]
ON object
TO {user| role| PUBLIC}

[WITH GRANT OPTION] ;

14-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Granting Object Privileges

Different object privileges are available for different types of schema objects. A user automatically
has all object privileges for schema objects contained in the user’s schema. A user can grant any
object privilege on any schema object that the user owns to any other user or role. If the grant
includes the GRANT OPTION, the grantee can further grant the object privilege to other users;
otherwise, the grantee can use the privilege but cannot grant it to other users.

In the syntax:

object priv is an object privilege to be granted

ALL specifies al object privileges.

columns specifies the column from atable or view on which privileges
are granted

ON object is the object on which the privileges are granted

TO identifies to whom the privilege is granted

PUBLIC grants object privilegesto all users

WITH GRANT OPTION allows the grantee to grant the object privileges to other users
and roles

Introduction to Oracle: SQL and PL/SQL 14-13

Granting Object Privileges

* Grant query privileges on the EMP table.

SQL> GRANT select
2 ON emp

3 TO sue, rich;
Grant succeeded.

» Grant privileges to update specific
columns to users and roles.

SQL> GRANT update (dname, loc)
2 ON dept

3 TO scott, manager;
Grant succeeded.

14-14 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Guidelines

» To grant privileges on an object, the object must be in your own schema or you must have been
granted the object privileges WITH GRANT OPTION.

» An object owner can grant any object privilege on the object to any other user or role of the database.
» The owner of an object automatically acquires all object privileges on that object.

The first example on the slide grants users Sue and Rich the privilege to query your EMP table. The second
example grants UPDATE privileges on specific columns in the DEPT table to Scott and to the manager
role.

If Sue or Rich now have to SELECT data from the emp table, the syntax they will haveto useis:
SQL> SELECT *
2 FROM scott.emp;
Alternatively, they can create a synonym for the table and SELECT from the synonym.
SQL> CREATE SYNONYM emp FOR scott.emp
SQL> SELECT * FROM emp;

Note: DBASs generally allocate system privileges; any user who owns an object can grant object privileges.

Introduction to Oracle: SQL and PL/SQL 14-14

Using WITH GRANT OPTION
and PUBLIC Keywords

* Give a user authority to pass along the

privileges.
SQL> GRANT select, insert
2 ON dept

3 TO scott

4 WITH GRANT OPTION;
Grant succeeded.

* Allow all users on the system to query
data from Alice’s DEPT table.

SQL> GRANT select
2 ON alice.dept

3 TO PUBLIC;
Grant succeeded.

14-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

WITH GRANT OPTION Keyword

A privilege that is granted WITH GRANT OPTION can be passed on to other users and roles by the

grantee. Object privileges granted WITH GRANT OPTION are revoked when the grantor’s privilege
is revoked.

The example on the slide gives user Scott access to your DEPT table with the privileges to query the
table and add rows to the table. The example also allows Scott to give others these privileges.

PUBLIC Keyword
An owner of a table can grant access to all users by using the PUBLIC keyword.

The second example allows all users on the system to query data from Alice’s DEPT table.

Introduction to Oracle: SQL and PL/SQL 14-15

Confirming Privileges Granted

Data Dictionary Table Description

ROLE_SYS_PRIVS System privileges granted to roles
ROLE_TAB_PRIVS Table privileges granted to roles
USER_ROLE_PRIVS Roles accessible by the user

USER_TAB_PRIVS_MADE | Object privileges granted on the
user’s objects

USER_TAB_PRIVS_RECD Object privileges granted to the
user

USER_COL_PRIVS_MADE | Object privileges granted on the
columns of the user’s objects

USER_COL_PRIVS_RECD | Object privileges granted to the
user on specific columns

14-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Confirming Privileges Granted

If you attempt to perform an unauthorized operation—for example, deleting a row from a table for
which you do not have the DELETE privilege—the Oracle Server will not permit the operation to
take place.

If you receive the Oracle Server error message “table or view does not exist,” you have done either of
the following;:

» Named a table or view that does not exist

+ Attempted to perform an operation on a table or view for which you do not have the
appropriate privilege

You can access the data dictionary to view the privileges that you have. The table on the slide
describes various data dictionary tables.

Introduction to Oracle: SQL and PL/SQL 14-16

How to Revoke Object Privileges

* You use the REVOKE statement to
revoke privileges granted to other
users.

* Privileges granted to others through the
WITH GRANT OPTION will also be
revoked.

REVOKE {privilege [, privilege...]|ALL}
ON object

FROM {user[, user...]|role|PUBLIC}
[CASCADE CONSTRAINTS] ;

14-17 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Revoking Object Privileges

Remove privileges granted to other users by using the REVOKE statement. When you use the
REVOKE statement, the privileges that you specify are revoked from the users that you name and
from any other users to whom those privileges may have been granted through the WITH GRANT
OPTION clause.

In the syntax:

CASCADE is required to remove any referential integrity constraints made to the
CONSTRAINTS object by means of the REFERENCES privilege

For more information, see Oracle Server SQL Reference, Release 8, “REVOKE.”

Introduction to Oracle: SQL and PL/SQL 14-17

Revoking Object Privileges

As user Alice, revoke the SELECT and
INSERT privileges given to user Scott on
the DEPT table.

SQL> REVOKE select, insert
2 ON dept

3 FROM scott;
Revoke succeeded.

14-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Revoking Object Privileges (continued)

The example on the slide revokes SELECT and INSERT privileges given to user Scott on the DEPT
table.

Note: If auser isgranted a privilege WITH GRANT OPTION, that user can aso grant the privilege
WITH GRANT OPTION, so that along chain of granteesis possible, but no circular grants are
permitted. If the owner revokes a privilege from a user who granted the privilege to other users, the
REVOKE cascades to al privileges granted.

For example, if user A grants SELECT privilege on atable to user B including the WITH GRANT
OPTION, user B can grant to user C the SELECT privilege WITH GRANT OPTION, and user C
can then grant to user D the SELECT privilege. If user A the revokes then privilege from user B,
then the privileges granted to users C and D are also revoked.

Introduction to Oracle: SQL and PL/SQL 14-18

Summary

Statement Action

CREATE USER | Allows the DBA to create a user

GRANT Allows the user to give other users
privileges to access the user’s
objects

CREATE ROLE | Allows the DBA to create a collection
of privileges

ALTER USER Allows users to change their

password
REVOKE Removes privileges on an object from
users
14-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Summary

DBASs establish initial database security for users by assigning privileges to the users.

The DBA creates users who must have a password. The DBA 1is also responsible for
establishing the initial system privileges for a user.

Once the user has created an object, the user can pass along any of the available object
privileges to other users or to all users by using the GRANT statement.

A DBA can create roles by using the CREATE ROLE statement to pass along a collection of
system or object privileges to multiple users. Roles make granting and revoking privileges
casier to maintain.

Users can change their password by using the ALTER USER statement.
You can remove privileges from users by using the REVOKE statement.

Data dictionary views allow users to view the privileges granted to them and those that are
granted on their objects.

Introduction to Oracle: SQL and PL/SQL 14-19

Practice Overview

* Granting other users privileges to your
table

* Modifying another user’s table through
the privileges granted to you

* Creating a synonym

* Querying the data dictionary views
related to privileges

14-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Practice Overview

Team up with other students for this exercise of controlling access to database objects.

Introduction to Oracle: SQL and PL/SQL 14-20

Practice 14

L.

What privilege should a user be given to log in to the Oracle Server? Is this a system or an
object privilege?

What privilege should a user be given to create tables?

If you create a table, who can pass along privileges to other users on your table?

You are the DBA. You are creating many users who require the same system privileges.
What would you use to make your job easier?

What command do you use to change your password?

Grant another user access to your DEPT table. Have the user grant you query access to his or
her DEPT table.

Query all the rows in your DEPT table.

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

Add anew row to your DEPT table. Team 1 should add Education as department
number 50. Team 2 should add Administration as department number 50. Make the changes
permanent.

Create a synonym for the other team’s DEPT table.

Introduction to Oracle: SQL and PL/SQL 14-21

Practice 14 (continued)

10. Query all the rows in the other team’s DEPT table by using your synonym.

Team 1 SELECT statement results.

DEPTNO DNAME LOC
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

50 ADMINISTRATION
Team 2 SELECT statement results.

DEPTNO DNAME LOC
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

50 EDUCATION

11. Query the USER _TABLES data dictionary to see information about the tables that you own.

TABLE NAME
BONUS
CUSTOMER
DEPARTMENT
DEPT

DUMMY

EMP
EMPLOYEE
ITEM

MY EMPLOYEE
ORD

PRICE
PRODUCT
SALGRADE

13 rows selected.

Introduction to Oracle: SQL and PL/SQL 14-22

Practice 14 (continued)

12. Query the ALL TABLES data dictionary view to see information about all the tables that you
can access. Exclude tables that are you own.

TABLE NAME OWNER

13. Revoke the SELECT privilege from the other team.

Introduction to Oracle: SQL and PL/SQL 14-23

Introduction to Oracle: SQL and PL/SQL 14-24

19

SQL Workshop

Copyright © Oracle Corporation, 1999. All rights reserved. ORAC'_E ¢

Workshop Overview

 Creating tables and sequences
* Modifying data in the tables

* Modifying a table definition

* Creating a view

» Writing scripts containing SQL and
SQL*Plus commands

» Generating a simple report

15-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Workshop Overview

In this workshop you will build a set of database tables for a video application. Once you create the
tables, you will insert, update, and delete records in a video store database and generate a report. The
database contains only the essential tables.

Note: If you want to build the tables, you can execute the buildtab.sgl script in SQL*Plus. If
you want to drop the tables, you can execute the dropvid.sqgl script in SQL*Plus. Then you can
execute the buildvid.sqgl script in SQL*Plus to create and populate the tables. If you use the
buildvid.sgl script to build and populate the tables, start with Practice #6b.

Introduction to Oracle: SQL and PL/SQL 15-2

Practice 15

1. Create the tables based on the following table instance charts. Choose the appropriate datatypes
and be sure to add integrity constraints.

a. Table name: MEMBER

Column_ | MEMBER | LAST FIRST NAM | ADDRESS CITY PHONE JOIN
Name 1D NAME E DATE
Key PK
Type
Null/ NN,U NN NN
Unique
Default System
Value Date
Datatype | Number VARCHAR?2 | VARCHAR2 | VARCHAR2 | VARCHAR2 | VARCHAR | Date
2
Length 10 25 25 100 30 15
b. Table name: TITLE
Column_ | TITLE ID | TITLE DESCRIPTION | RATING CATEGORY | RELEASE
Name DATE
Key PK
Type
Null/ NN,U NN NN
Unique
Check G, PG, R, DRAMA,
NC17, NR COMEDY,
ACTION,
CHILD,
SCIFL,
DOCUMEN
TARY
Datatype | Number VARCHAR2 | VARCHAR2 VARCHAR2 | VARCHAR?2 | Date
Length 10 60 400 4 20

Introduction to Oracle: SQL and PL/SQL 15-3

Practice 15 (continued)

c. Table name: TITLE _COPY

Column | COPY_ID TITLE_ID STATUS

Name

Key PK PK,FK

Type

Null/ NN,U NN,U NN

Unique

Check AVAILABLE,
DESTROYED,
RENTED,
RESERVED

FK Ref TITLE

Table

FK Ref TITLE ID

Col

Datatype | Number Number VARCHAR?2

Length 10 10 15

d. Table name: RENTAL

Column | BOOK | MEMBER | COPY_ | ACT_RET | EXP RET | TITLE_

Name DATE ID ID DATE DATE ID

Key PK PK,FK1 PK,FK2 PK_FK2

Type

Default System System Date

Value Date + 2 days

FK Ref MEMBER | TITLE TITLE

Table COPY COPY

FK Ref MEMBER | COPY_ TITLE ID

Col ID ID

Datatype | Date Number Number | Date Date Number

Length 10 10 10

Introduction to Oracle: SQL and PL/SQL 15-4

Practice 15 (continued)

e. Table name: RESERVATION

Column RES MEMBER TITLE
Name DATE ID ID

Key PK PK,FK1 PK,FK2
Type

Null/ NN,U NN,U NN
Unique

FK Ref MEMBER TITLE
Table

FK Ref MEMBER _ID TITLE ID
Column

Datatype Date Number Number
Length 10 10

2. Verify that the tables and constraints were created properly by checking the data dictionary.

TABLE NAME
MEMBER
RENTAL
RESERVATION
TITLE

TITLE COPY

CONSTRAINT NAME

MEMBER LAST NAME NN
MEMBER JOIN DATE NN
MEMBER MEMBER ID PK

RENTAL BOOK DATE COPY TITLE PK

RENTAL MEMBER ID FK
RENTAL COPY ID TITLE ID FK

RESERVATION RESDATE MEM TIT PK

RESERVATION MEMBER TID
RESERVATION TITLE ID

17 rows selected.

C TABLE NAME

MEMBER
MEMBER
MEMBER
RENTAL
RENTAL
RENTAL
RESERVATION
RESERVATION
RESERVATION

oW moow ™y og QO

Introduction to Oracle: SQL and PL/SQL 15-5

Practice 15 (continued)

3. Create sequences to uniquely identify each row in the MEMBER table and the TITLE table.

a. Member number for the MEMBER table: start with 101; do not allow caching of the
values. Name the sequence member id_seq.

b. Title number for the TITLE table: start with 92; no caching. Name the sequence
title_id_seq.
¢. Verify the existence of the sequences in the data dictionary.

SEQUENCE NAME INCREMENT BY LAST NUMBER
TITLE ID SEQ 1 92
MEMBER ID SEQ 1 101

4. Add data to the tables. Create a script for each set of data to add.

a. Add movie titles to the TITLE table. Write a script to enter the movie information.
Save the script as p15g4a.sgl. Use the sequences to uniquely identify each title.
Enter the release dates in the DD-MON-YYYY format. Remember that single quotation
marks in a character field must be specially handled. Verify your additions.

Willie and Christmas Too
Alien Again

The Glob

My Day Off

Miracles on Ice

Soda Gang

6 rows selected.

Introduction to Oracle: SQL and PL/SQL 15-6

Practice 15 (continued)

Title Description Rating | Category | Release date
Willie and All of Willie’s friends make | G CHILD 05-0OCT-1995
Christmas a Christmas list for Santa, but
Too Willie has yet to add his own
wish list.
Alien Again | Yet another installation of R SCIFI 19-MAY-1995
science fiction history. Can
the heroine save the planet
from the alien life form?
The Glob A meteor crashes near a NR SCIFI 12-AUG-1995
small American town and
unleashes carnivorous goo in
this classic.
My Day Off | With a little luck and a lot of | PG COMEDY | 12-JUL-1995
ingenuity, a teenager skips
school for a day in New York
Miracles on | A six-year-old has doubts PG DRAMA 12-SEP-1995
Ice about Santa Claus, but she
discovers that miracles really
do exist.
Soda Gang After discovering a cache of | NR ACTION | OI-JUN-1995

drugs, a young couple find
themselves pitted against a
vicious gang,

Introduction to Oracle: SQL and PL/SQL 15-7

Practice 15 (continued)

b. Add data to the MEMBER table. Write a script named p15g4b . sql to prompt users
for the information. Execute the script. Be sure to use the sequence to add the member

numbers.

First_

Name Last Name | Address City Phone Join_Date

Carmen | Velasquez 283 King Seattle 206-899-6666 | 08-MAR-1990
Street

LaDoris | Ngao 5 Modrany Bratislava | 586-355-8882 | 08-MAR-1990

Midori | Nagayama 68 Via Sao Paolo | 254-852-5764 | 17-JUN-1991
Centrale

Mark Quick-to- 6921 King Lagos 63-559-7777 | 07-APR-1990

See Way
Audry | Ropeburn 86 Chu Street | Hong 41-559-87 18-JAN-1991
Kong
Molly Urguhart 3035 Laurier Quebec 418-542-9988 | 18-JAN-1991

Introduction to Oracle: SQL and PL/SQL 15-8

Practice 15 (continued)

c. Add thefollowing movie copiesinthe TITLE _COPY table:
Note: Have thetitle id numbers available for this exercise.

Title Copy Id Status
Willie and Christmas Too | 1 AVAILABLE
Alien Again | AVAILABLE
2 RENTED
The Glob 1 AVAILABLE
My Day Off 1 AVAILABLE
2 AVAILABLE
3 RENTED
Miracles on Ice 1 AVAILABLE
Soda Gang 1 AVAILABLE

d. Add thefollowing rentalsto the RENTAL table:

Note: Title number may be different depending on sequence number.

Title_ | Copy_ Member

Id Id Id Book date | Exp Ret Date Act_Ret_Date
92 1 101 3 days ago 1 day ago 2 days ago

93 2 101 1 day ago 1 day from now

95 3 102 2 days ago Today

97 1 106 4 days ago 2 days ago 2 days ago

Introduction to Oracle: SQL and PL/SQL 15-9

Practice 15 (continued)

5. Create a view named TITLE AVAIL to show the movie titles and the availability of
each copy and its expected return date if rented. Query all rows from the view. Order the
results by title.

TITLE COPY ID STATUS EXP RET D

Alien Again 1 AVAILABLE
Alien Again 2 RENTED 05-NOV-97
Miracles on Ice 1 AVAILABLE
My Day Off 1 AVAILABLE
My Day Off 2 AVAILABLE
My Day Off 3 RENTED 06-NOV-97
Soda Gang 1 AVAILABLE 04-NOV-97
The Glob 1 AVAILABLE
Willie and Christmas Too 1 AVAILABLE 05-NOV-97

9 rows selected.

6. Make changes to data in the tables.

a. Add anew title. The movie is “Interstellar Wars,” which is rated PG and classified as a sci-
fi movie. The release date is 07-JUL-77. The description is “Futuristic interstellar
action movie. Can the rebels save the humans from the evil empire?” Be sure to add a title
copy record for two copies.

b. Enter two reservations. One reservation is for Carmen Velasquez, who wants to rent
“Interstellar Wars.” The other is for Mark Quick-to-See, who wants to rent “Soda Gang.”

Introduction to Oracle: SQL and PL/SQL 15-10

Practice 15 (continued)

c. Customer Carmen Velasquez rents the movie “Interstellar Wars,” copy 1. Remove her
reservation for the movie. Record the information about the rental. Allow the default value
for the expected return date to be used. Verify that the rental was recorded by using the
view you created.

TITLE COPY ID STATUS EXP RET D
Alien Again 1 AVAILABLE
Alien Again 2 RENTED 05-NOV-97
Interstellar Wars 1 RENTED 08-NOV-97
Interstellar Wars 2 AVAILABLE
Miracles on Ice 1 AVAILABLE
My Day Off 1 AVAILABLE
My Day Off 2 AVAILABLE
My Day Off 3 RENTED 06-NOV-97
Soda Gang 1 AVAILABLE 04-NOV-97
The Glob 1 AVAILABLE
Willie and Christmas Too 1 AVAILABLE 05-NOV-97

11 rows selected.

7. Make a modification to one of the tables.

a. Add a PRICE column to the TITLE table to record the purchase price of the video. The
column should have a total length of eight digits and two decimal places. Verify your
modifications.

Name Null? Type

TITLE ID NOT NULL NUMBER (10)
TITLE NOT NULL VARCHAR?2 (60)
DESCRIPTION NOT NULL VARCHAR?2 (400)
RATING VARCHAR?2 (4)
CATEGORY VARCHAR2 (20)
RELEASE DATE DATE

PRICE NUMBER (8, 2)

Introduction to Oracle: SQL and PL/SQL 15-11

Practice 15 (continued)

b. Create ascript named p15g7b . sql to update each video with a price according to the

following list.

Note: Have thetitle id numbers available for this exercise.

Title Price
Willie and Christmas Too 25
Alien Again 35
The Glob 35
My Day Off 35
Miracles on Ice 30
Soda Gang 35
Interstellar Wars 29

¢. Ensure that in the future all titles will contain a price value. Verify the constraint.

CONSTRAINT NAME C SEARCH CONDITION

TITLE PRICE NN C PRICE IS NOT NULL

8. Create a report titled Customer History Report. This report will contain each customer’s
history of renting videos. Be sure to include the customer name, movie rented, dates of the
rental, and duration of rentals. Total the number of rentals for all customers for the reporting
period. Save the script in a file named p1598.sqgl.

MEMBER TITLE BOOK DATE DURATION

Carmen Velasquez Willie and Christmas Too 03-NOV-97 1
Alien Again 09-AUG-938
Interstellar Wars 10-AUG-98

LaDoris Ngao My Day Off 08-AUG-938

Molly Urguhart Soda Gang 06-AUG-98 2

Introduction to Oracle: SQL and PL/SQL 15-12

Declaring Variables

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Objectives

After completing this lesson, you should
be able to do the following:

e List the benefits of PL/SQL

* Recognize the basic PL/SQL block and
its sections

* Describe the significance of variables in
PL/SQL

* Declare PL/SQL variables
e Execute a PL/SQL block

16-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Lesson Aim

This lesson presents the basic rules and structure for writing and executing PL/SQL blocks of code. It
also shows you how to declare variables and assign datatypes to them.

Introduction to Oracle: SQL and PL/SQL 16-2

About PL/SQL

* PL/SQL is an extension to SQL with
design features of programming
languages.

e Data manipulation and query statements
of SQL are included within procedural
units of code.

16-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

About PL/SQL

Procedural Language/SQL (PL/SQL) is Oracle Corporation’s procedural language extension to SQL,
the standard data access language for relational databases. PL/SQL offers modern software
engineering features such as data encapsulation, exception handling, information hiding, and object
orientation, and so brings state-of-the-art programming to the Oracle Server and Toolset.

PL/SQL incorporates many of the advanced features made in programming languages designed
during the 1970s and 1980s. It allows the data manipulation and query statements of SQL to be
included in block-structured and procedural units of code, making PL/SQL a powerful transaction
processing language. With PL/SQL, vou can use SQL statements to finesse Oracle data and PL/SQL
control statements to process the data.

Introduction to Oracle: SQL and PL/SQL 16-3

Benefits of PL/SQL

Integration % ‘ﬁ ‘,L
| =
I

|
—-—

Application

m
= - >

Shared Oracle Server
library

16-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Integration

PL/SQL plays a central role to both the Oracle Server (through stored procedures, stored functions,
database triggers, and packages) and Oracle development tools (through Oracle Developer
component triggers).

Oracle Developer applications make use of shared libraries that hold code (procedures and functions)
and can be accessed locally or remotely. Oracle Developer consists of Oracle Forms, Oracle Reports,
and Oracle Graphics.

SQL datatypes can also be used in PL/SQL. Combined with the direct access that SQL provides,
these shared datatypes integrate PL/SQL with the Oracle Server data dictionary. PL/SQL bridges the
gap between convenient access to database technology and the need for procedural programming
capabilitics.

PL/SQL in Oracle Tools

Many Oracle tools, including Oracle Developer, have their own PL/SQL engine, which is
independent of the engine present in the Oracle Server.

The engine filters out SQL statements and sends them individually to the SQL statement executor in
the Oracle Server. It processes the remaining procedural statements in the procedural statement
executor, which is in the PL/SQL engine.

The procedural statement executor processes data that is local to the application (that is already inside
the client environment, rather than the database). This reduces work sent to the Oracle Server and the
number of memory cursors required.

Introduction to Oracle: SQL and PL/SQL 16-4

Benefits of PL/SQL

Improve performance

SQL

Application saL > Other DBMSs

SQL

IF...THEN
SQL Oracle with
Application ELSE PL/SQL
SQL
END IF;
SQL
16-5 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Improved Performance

PL/SQL can improve the performance of an application. The benefits differ depending on the
execution environment.

PL/SQL can be used to group SQL statements together within a single block and to send the
entire block to the server in a single call, thereby reducing networking traffic. Without PL/SQL,
the SQL statements would be sent to the Oracle Server one at a time. Each SQL statement
results in another call to the Oracle Server and higher performance overhead. In a networked
environment, the overhead can become significant. As the slide illustrates, if your application is
SQL intensive, you can use PL/SQL blocks and subprograms to group SQL statements before
sending them to the Oracle Server for execution.

PL/SQL can also cooperate with Oracle Server application development tools such as Oracle
Developer Forms and Reports. By adding procedural processing power to these tools, PL/SQL
boosts performance.

Note: Procedures and functions declared as part of a Developer application are distinct from those
stored in the database, although their general structure is the same. Stored subprograms are database
objects and are stored in the data dictionary. They can be accessed by any number of applications,
including Developer applications.

Introduction to Oracle: SQL and PL/SQL 16-5

PL/SQL Block Structure

* DECLARE - Optional
Variables, cursors, user-defined exceptions
* BEGIN - Mandatory
— SQL statements
— PL/SQL statements
* EXCEPTION - Optional
Actions to perform when errors occur [pecLARE
* END; - Mandatory

w
m
o
=

EXCEPTION

END;

16-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

PL/SQL Block Structure

PL/SQL is a block-structured language, meaning that programs can be divided into logical blocks. A
PL/SQL block consists of up to three sections: declarative (optional), executable (required), and
exception handling (optional). Only BEGIN and END keywords are required. You can declare
variables locally to the block that uses them. Error conditions (known as exceptions) can be handled
specifically in the block to which they apply. You can store and change values within a PL/SQL
block by declaring and referencing variables and other identifiers.

The following table describes the three block sections:

Section Description Inclusion

Declarative Contains all variables, constants, cursors, and user- Optional
defined exceptions that are referenced in the
executable and declarative sections

Executable Contains SQL statements to manipulate data in the Mandatory
database and PL/SQL statements to manipulate data
in the block

Exception handling | Specifies the actions to perform when errors and Optional

abnormal conditions arise in the executable section

Introduction to Oracle: SQL and PL/SQL 16-6

PL/SQL Block Structure

DECLARE
v_variable VARCHARZ (5) ;
BEGIN
SELECT column_ name
INTO v_variable
FROM table name;
EXCEPTION
WHEN exception name THEN DECLARE
. BEGIN
—
EXCEPTION
END;
16-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Executing Statements and PL/SQL Blocks from SQL*Plus
» Place a semicolon (;) at the end of a SQL statement or PL/SQL control statement.
» Use aslash (/) to run the anonymous PL/SQL block in the SQL*Plus buffer. When the block is

executed successfully, without unhandled errors or compile errors, the message output should
be as follows:

PL/SQL procedure successfully completed
» Place aperiod () to close a SQL*Plus buffer. A PL/SQL block is treated as one continuous
statement in the buffer, and the semicolons within the block do not close or run the buffer.

Note: In PL/SQL, an error is called an excepftion.

Section keywords DECLARE, BEGIN, and EXCEPTION are not followed by semicolons. However,
END and all other PL/SQL statements do require a semicolon to terminate the statement. You can
string statements together on the same line, but this method is not recommended for clarity or editing.

Introduction to Oracle: SQL and PL/SQL 16-7

Anonymous Procedure Function

[DECLARE] PROCEDURE name FUNCTION name

IS RETURN datatype
IS
BEGIN BEGIN BEGIN
-—-statements -—-statements -—-statements
RETURN value;

[EXCEPTION] [EXCEPTION] [EXCEPTION]

END; END; END;

16-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Block Types

Every unit of PL/SQL comprises one or more blocks. These blocks can be entirely separate or nested
one within another. The basic units (procedures and functions, also known as subprograms, and
anonymous blocks) that make up a PL/SQL program are logical blocks, which can contain any number
of nested subblocks. Therefore, one block can represent a small part of another block, which in turn can
be part of the whole unit of code. Of the two types of PL/SQL constructs available, anonymous blocks
and subprograms, only anonymous blocks are covered in this course.

Anonymous Blocks
Anonymous blocks are unnamed blocks. They are declared at the point in an application where they are
to be executed and are passed to the PL/SQL engine for execution at runtime. You can embed an
anonymous block within a precompiler program and within SQL*Plus or Server Manager. Triggers in
Oracle Developer components consist of such blocks.

Subprograms
Subprograms are named PL/SQL blocks that can take parameters and can be invoked. You can declare
them either as procedures or as functions. Generally you use a procedure to perform an action and a
function to compute a value.
You can store subprograms at the server or application level. Using Oracle Developer components
(Forms, Reports, and Graphics), you can declare procedures and functions as part of the application (a
form or report) and call them from other procedures, functions, and triggers (see next page) within the
same application whenever necessary.
Note: A function is similar to a procedure, except that a function must return a value. Procedures and
functions are covered in the next PL/SQL course.

Introduction to Oracle: SQL and PL/SQL 16-8

Program Constructs

Stored
An(;)r:yn:(ous procedure/
o° DECLARE ‘ function
| 00 o l
Application BEGIN Application
trigger [000 | = procedure/
function
EXCEPTION
| oo o0 l
Database END; ‘ Packaged
trigger procedure/
function
16-9 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Program Constructs

The following table outlines a variety of different PL/SQL program constructs that use the basic
PL/SQL block. They are available based on the environment in which they are executed.

Program

Construct Description Availability

Anonymous Unnamed PL/SQL block that is embedded All PL/SQL environments
block within an application or is issued interactively

Stored procedure
or function

Named PL/SQL block stored in the Oracle
Server that can accept parameters and can be
mvoked repeatedly by name

Oracle Server

procedures, functions, and identifiers

Application Named PL/SQL block stored in an Oracle Oracle Developer
procedure or Developer application or shared library that components—for example,
function can accept parameters and can be invoked Forms

repeatedly by name
Package Named PL/SQL module that groups related Oracle Server and Oracle

Developer components—for
example, Forms

Introduction to Oracle: SQL and PL/SQL 16-9

16-10

Program Constructs

Stored
An(;)r:yn:(ous procedure/
o° DECLARE ‘ function
| 00 o l
Application BEGIN Application
trigger [000 | = procedure/
function
EXCEPTION
| oo o0 l
Database END; ‘ Packaged
trigger procedure/
39 function

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Program Constructs (continued)

Program
Construct

Description

Availability

Database trigger | PL/SQL block that is associated with a
database table and is fired automatically when

triggered by DML statements

Oracle Server

Application
trigger

PL/SQL block that is associated with an Oracle Developer
application event and is fired automatically components—for example,
Forms

Introduction to Oracle: SQL and

PL/SQL 16-10

Use of Variables

Use variables for:

 Temporary storage of data

* Manipulation of stored values
* Reusability

* Ease of maintenance

16-11 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Use of Variables

With PL/SQL you can declare variables and then use them in SQL and procedural statements anywhere
an expression can be used.

Temporary storage of data

Data can be temporarily stored in one or more variables for use when validating data input for
processing later in the data flow process.

Manipulation of stored values
Variables can be used for calculations and other data manipulations without accessing the database.
Reusability

Once declared, variables can be used repeatedly in an application simply by referencing them in
other statements, including other declarative statements.

Ease of maintenance

When using %TYPE and %ROWTYPE (more information on %ROWTYPE is covered in a
subsequent lesson), you declare variables, basing the declarations on the definitions of database
columns. PL/SQL variables or cursor variables previously declared in the current scope

may also use the % TYPE and %ROWTYPE attributes as datatype specifiers. If an underlying
definition changes, the variable declaration changes accordingly at runtime. This provides data
independence, reduces maintenance costs, and allows programs to adapt as the database changes
to meet new business needs.

Introduction to Oracle: SQL and PL/SQL 16-11

Handling Variables in PL/SQL

e Declare and initialize variables in the
declaration section.

» Assign new values to variables in the
executable section.

» Pass values into PL/SQL blocks through
parameters.

* View results through output variables.

16-12 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Handling Variables in PL/SQL

Declare and initialize variables in the declaration section.

You can declare variables in the declarative part of any PL/SQL block, subprogram, or
package. Declarations allocate storage space for a value, specify its datatype, and name the
storage location so that you can reference it. Declarations can also assign an initial value and
impose the NOT NULL constraint.

Assign new values to variables in the executable section.
— The existing value of the variable is replaced with a new one.

— Forward references are not allowed. You must declare a variable before referencing it in
other statements, including other declarative statements.

Pass values into PL/SQL subprograms through parameters.

There are three parameter modes, IN (the default), OUT, and IN OUT. You use the IN
parameter to pass values to the subprogram being called. You use the OUT parameter to return
values to the caller of a subprogram. And you use the IN OUT parameter to pass initial values
to the subprogram being called and to return updated values to the caller. IN and OUT
subprogram parameters are covered in the another course.

View the results from a PL/SQL block through output variables.

You can use reference variables for input or output in SQL data manipulation statements.

Introduction to Oracle: SQL and PL/SQL 16-12

Types of Variables

e PL/SQL variables:
— Scalar
— Composite
— Reference
- LOB (large objects)

* Non-PL/SQL variables: Bind and host
variables

16-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

All PL/SQL variables have a datatype, which specifies a storage format, constraints, and valid range
of values. PL/SQL supports four datatype categories—scalar, composite, reference, and LOB (large
object)—that you can use for declaring variables, constants, and pointers.

» Scalar datatypes hold a single value. The main datatypes are those that correspond to column
types in Oracle Server tables; PL/SQL also supports Boolean variables.

+ Composite datatypes such as records allow groups of fields to be defined and manipulated in
PL/SQL blocks. Composite datatypes are only briefly mentioned in this course.

» Reference datatypes hold values, called poinfers, that designate other program items. Reference
datatypes are not covered in this course.

» LOB datatypes hold values, called locarors, that specify the location of large objects (graphic
images for example) that are stored out of line. LOB datatypes are only briefly mentioned in
this course.

Non-PL/SQL variables include host language variables declared in precompiler programs, screen
fields in Forms applications, and SQL*Plus host variables.

For more information on LOBs, see PL/SQOL User’s Guide and Reference, Release 8§,
“Fundamentals.”

Introduction to Oracle: SQL and PL/SQL 16-13

Types of Variables

 PL/SQL variables:
— Scalar
- Composite
— Reference
- LOB (large objects)

* Non-PL/SQL variables: Bind and host
variables

16-14 Copyright © Oracle Corporation, 1999. All rights reserved. ORACI_G ¢

Using SQL*Plus Variables Within PL/SQL Blocks

PL/SQL does not have input/output capability of its own. You must rely on the environment in
which PL/SQL is executing for passing values into and out of a PL/SQL block.

In the SQL*Plus environment, SQL*Plus substitution variables allow portions of command syntax
to be stored and then edited into the command before it is run. Substitution variables are variables
that you can use to pass runtime values, number or character, into a PL/SQL block. You can
reference them within a PL/SQL block with a preceding ampersand in the same manner as you
reference SQL*Plus substitution variables in a SQL statement. The text values are substituted into
the PL/SQL block before the PL/SQL block is executed. Therefore you cannot substitute different
values for the substitution variables by using a loop. Only one value will replace the substitution
variable.

SQL*Plus host (or “bind”™) variables can be used to pass runtime values out of the PL/SQL block
back to the SQL*Plus environment. You can reference them in a PL/SQL block with a preceding
colon. Bind variables are discussed in further detail later in this lesson.

Introduction to Oracle: SQL and PL/SQL 16-14

Types of Variables
25-OCT-99

“Four score and seven years ago

our fathers brought forth upon
this continent, a new nation,

conceived in LIBERTY, and dedicated

16-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ’

Types of Variables

The slide illustrates the following variable datatypes:
» TRUE represents a Boolean value.
s 25-0CT-99 represents a DATE.
» The photograph represents a BLOB.
» The text of a speech represents a LONG RAW.
+ 256120.08 represents a NUMBER datatype with precision and scale.
» The movie represents a BFILE.
» The city name represents a VARCHAR?2.

Introduction to Oracle: SQL and PL/SQL 16-15

Declaring PL/SQL Variables

Syntax

identifier [CONSTANT] datatype [NOT NULL]

[:= | DEFAULT expr];

Examples

Declare
v;hiredate DATE ;
v;deptno NUMBER (2) NOT NULL := 10;

v_location VARCHARZ2 (13) := 'Atlanta’';
c_comm CONSTANT NUMBER := 1400;

16-16

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Declaring PL/SQL Variables

You need to de
PL/SQL block.

clare all PL/SQL identifiers in the declaration section before referencing them in the
You have the option to assign an initial value. You do not need to assign a value to a
variable in order to declare it. If you refer to other variables in a declaration, you must be sure to

declare them separately in a previous statement.

In the syntax:

identifier is the name of the variable

CONSTANT constrains the variable so that its value cannot change; constants must be
initialized

datatype isascaar, composite, reference, or LOB datatype (This course covers only
scalar and composite datatypes.)

NOT NULL constrains the variable so that it must contain avalue (NOT NULL variables
must beinitialized.)

expr is any PL/SQL expression that can be a literal, another variable, or an

expression involving operators and functions

Introduction to Oracle: SQL and PL/SQL 16-16

Declaring PL/SQL Variables

Guidelines
* Follow naming conventions.

e Initialize variables designated as NOT
NULL and CONSTANT.

* Initialize identifiers by using the
assignment operator (:=) or the
DEFAULT reserved word.

e Declare at most one identifier per line.

16-17 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Guidelines

The assigned expression can be aliterd, another variable, or an expression involving operators and
functions.

Name the identifier according to the same rules used for SQL objects.

You can use naming conventions—for example, v _name to represent a variable and ¢ name to
represent a constant variable.

Initialize the variable to an expression with the assignment operator (:=) or, equivalently, with
the DEFAULT reserved word. If you do not assign an initial value, the new variable contains
NULL by default until you assign it later.

If you use the NOT NULL constraint, you must assign a value.
Declaring only one identifier per line makes code more easily read and maintained.

In constant declarations, the keyword CONSTANT must precede the type sp&hifier.
following declaration names a constant of NUMBER subtype REAL and assigns the value of
50000 to the constant. A constant must be initialized in its declaration; otherwise, you get a
compilation error when the declaration is elaborated (compiled).

v_sal CONSTANT REAL := 50000.00;

Introduction to Oracle: SQL and PL/SQL 16-17

Naming Rules

 Two variables can have the same name,
provided they are in different blocks.

* The variable name (identifier) should not

be the same as the name of table o $0F
columns used in the block. “\,eﬂ“°
- | Co <% e‘s“
DECLARE W et O
empno NUMBER(4) ; \'a“‘a O-\’ \66 N “\Q
BEGIN P@OQ ?\‘\3 9\es
SELECT empno e«,&‘“
INTO empno ‘0‘
FROM emp
WHERE ename = 'SMITH';
END;

16-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Naming Rules

Two objects can have the same name, provided that they are defined in different blocks. Where they
coexist, only the object declared in the current block can be used.

You should not choose the same name (identifier) for a variable as the name of table columns used in
the block. If PL/SQL variables occur in SQL statements and have the same name as a column, the
Oracle Server assumes that it is the column that is being referenced. Although the example code in
the slide works, code written using the same name for a database table and variable name is not easy
to read or maintain.

Consider adopting a naming convention for various objects such as the following example. Using v_
as a prefix representing variable and g representing global variable avoids naming conflicts with
database objects.

DECLARE

v_hiredate date;

g_deptno number (2) NOT NULL := 10;
BEGIN

Note: Identifiers must not be longer than 30 characters. The first character must be a letter; the
remaining characters can be letters, numbers, or special symbols.

Introduction to Oracle: SQL and PL/SQL 16-18

Assigning Values to Variables

Syntax

identifier := expr; I

Examples

Set a predefined hiredate for new
employees.

v_hiredate := '31-DEC-98"'; I

Set the employee name to Maduro.

Vv_ename := 'Maduro'; I

16-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Assigning Values to Variables

To assign or reassign a value to a variable, you write a PL/SQL assignment statement. Y ou must
explicitly name the variable to receive the new value to the left of the assignment operator (:=).

In the syntax:
identifier is the name of the scalar variable
expr can be avariable, literal, or function call, but not a database column
The variable value assignment examples are defined as follows:
» Sectthe identifier v_hiredate to a value of 31-DEC-98.
+ Store the name “Maduro” in the v_ename identifier.

Another way to assign values to variables is to select or fetch database values into it. The following
example, computes a 10% bonus when you select the salary of an employee:

SQL> SELECT sal * 0.10
2 INTO v_bonus
3 FROM emp
4 WHERE empno = 7369;

Then you can use the variable v_bonus in another computation or insert its value into a database table.

Note: To assign a value into a variable from the database, use a SELECT or FETCH statement.

Introduction to Oracle: SQL and PL/SQL 16-19

Variable Initialization and
Keywords
Using:
» Assignment operator (:=)
e DEFAULT keyword
* NOT NULL constraint

16-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Variables are initialized every time a block or subprogram is entered. By default, variables are
mnitialized to NULL. Unless you expressly initialize a variable, its value is undefined.

» Use the assignment operator (:=) for variables that have no typical value.
v_hiredate := '15-SEP-1999'
Note: This assignment is possible only in Oracle8i. Lower versions may require the usage of the
TO_DATE function.

Because the default date format set in the Oracle Server can differ from database to database, you
may want to assign date values in a generic manner, as in the previous example.

+ DEFAULT: You can use the DEFAULT keyword instead of the assignment operator to
nitialize variables. Use DEFAULT for variables that have a typical value.

g _mgr NUMBER (4) DEFAULT 7839;
* NOT NULL: Impose the NOT NULL constraint when the variable must contain a value.

You cannot assign nulls to a variable defined as NOT NULL. The NOT NULL constraint must
be followed by an initialization clause.

v_location VARCHAR2(13) NOT NULL := 'CHICAGO';

Note: String literals must be enclosed in single quotation marks—for example, 'Hello, world'. If there
is a single quotation mark in the string, write a single quotation mark twice—for example, to insert a
value FISHERMAN’S DRIVE, the string would be 'FISHERMAN"S DRIVE'.

Introduction to Oracle: SQL and PL/SQL 16-20

Scalar Datatypes

* Hold a single value
* Have no internal components

25-0OC.T.QQ

“Four score and seven years

ago our fathers brought
forth upon this continent, a
new nation, conceived in
2 56 1 ZQBEQ ,gnd dedicated to
oY r®Eition that all

are created

anta

16-21 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Scalar Datatypes

A scalar datatype holds a single value and has no internal components. Scalar datatypes can be
classified into four categories: number, character, date, and Boolean. Character and number datatypes
have subtypes that associate a base type to a constraint. For example, INTEGER and POSITIVE are
subtypes of the NUMBER base type.

For more information and the complete list of scalar datatypes, see PL/SQL User’s Guide and
Reference, Release 8, “Fundamentals.”

Introduction to Oracle: SQL and PL/SQL 16-21

Base Scalar Datatypes

* VARCHAR2 (maximum_length)
* NUMBER [(precision, scale)]
 DATE

 CHAR [(maximum_length)]

* LONG

* LONG RAW

« BOOLEAN

* BINARY_INTEGER

* PLS_INTEGER

16-22 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Base Scalar Datatypes

Data Type Description

VARCHAR?2 Base type for variable-length character data up to 32,767 bytes. There is no

(maximum_length) default size for VARCHAR?2 variables and constants.

NUMBER Base type for fixed and floating-point numbers.

[(precision, scale)]

DATE Base type for dates and times. DATE values include the time of day in seconds
since midnight. The range for dates 1s between 4712 B.C. and 9999 A.D.

CHAR Base type for fixed-length character data up to 32,767 bytes. If you do not

[(maximum_length)] specify a maximum_length, the default length is set to 1.

LONG Base type for variable-length character data up to 32,760 bytes. The maximum

width of a LONG database column is 2,147,483,647 bytes.

Introduction to Oracle: SQL and PL/SQL 16-22

Base Scalar Datatypes

* VARCHAR2 (maximum_length)
* NUMBER [(precision, scale)]
 DATE

 CHAR [(maximum_length)]

* LONG

* LONG RAW

« BOOLEAN

* BINARY_INTEGER

* PLS_INTEGER

16-23 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Base Scalar Datatypes (continued)

Data type Description

LONG RAW Base type for binary data and byte strings up to 32,760 bytes. LONG RAW
data is not interpreted by PL/SQL.

BOOLEAN Base type that stores one of three possible values used for logical

calculations: TRUE, FALSE, or NULL.

BINARY _INTEGER Base type for integers between -2,147,483,647 and 2,147,483,647.

PLS_INTEGER Base type for signed integers between -2,147,483,647 and 2,147,483,647.
PLS_INTEGER values require less storage and are faster than NUMBER and
BINARY INTEGER values.

Note: The LONG datatype is similar to VARCHAR?2, except that the maximum length of a LONG
value is 32,760 bytes. Therefore, values longer than 32,760 bytes cannot be selected from a LONG
database column into a LONG PL/SQL variable.

Introduction to Oracle: SQL and PL/SQL 16-23

Scalar Variable Declarations

Examples

v_job VARCHAR2 (9) ;

v_count BINARY INTEGER := O;

v_total sal NUMBER(9,2) := 0;
v_orderdate DATE := SYSDATE + 7;

c_tax rate CONSTANT NUMBER(3,2) := 8.25;
v_valid BOOLEAN NOT NULL := TRUE;

16-24 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Declaring Scalar Variables

The examples of variable declaration shown on the slide are defined as follows:

v_job: Declared variable to store an employee job title.
v_count: Declared variable to count the iterations of a loop and initialize the variable to O.

v_total sal: Declared variable to accumulate the total salary for a department and initialize the
variable to 0.

v_orderdate: Declared variable to store the ship date of an order and initialize the variable to
one week from today.

¢ tax rate: Declared a constant variable for the tax rate, which never changes throughout the
PL/SQL block.

v_valid: Declared flag to indicate whether a piece of data is valid or invalid and initialize the
variable to TRUE.

Introduction to Oracle: SQL and PL/SQL 16-24

The % TYPE Attribute

* Declare a variable according to:

- A database column definition

— Another previously declared variable
* Prefix % TYPE with:

- The database table and column

— The previously declared variable
name

16-25 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

The %TYPE Attribute

When you declare PL/SQL variables to hold column values, you must ensure that the variable is of
the correct datatype and precision. If it is not, a PL/SQL error will occur during execution.

Rather than hard coding the datatype and precision of a variable, you can use the %TYPE attribute to
declare a variable according to another previously declared variable or database column. The %TYPE
attribute is most often used when the value stored in the variable will be derived from atable in the
database or if the variable is destined to be written to. To use the attribute in place of the datatype
required in the variable declaration, prefix it with the database table and column name. If referring to
a previously declared variable, prefix the variable name to the attribute.

PL/SQL determines the datatype and size of the variable when the block is compiled, so it is always
compatible with the column used to populate it. This is a definite advantage for writing and
maintaining code, because there is no need to be concerned with column datatype changes made at
the database level. You can also declare a variable according to another previously declared variable
by prefixing the variable name to the attribute.

Introduction to Oracle: SQL and PL/SQL 16-25

Declaring Variables
with the % TYPE Attribute

Examples

V_ename emp .ename%TYPE ;
v_balance NUMBER(7,2) ;

v_min_balance v_balance%TYPE := 10;

16-26 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Declaring Variables with the %TYPE Attribute

Declare variables to store the name of an employee.

V_ename emp .ename¥TYPE ;

Declare variables to store the balance of a bank account, as well as the minimum balance, which
starts out as 10.

v_balance NUMBER (7,2) ;
v_min_balance v_balance%TYPE := 10;

A NOT NULL column constraint does not apply to variables declared using %TYPE. Therefore, if
you declare a variable using the %TYPE attribute using a database column defined as NOT NULL,
you can assign the NULL value to the variable.

Introduction to Oracle: SQL and PL/SQL 16-26

Declaring Boolean Variables

e Only the values TRUE, FALSE, and
NULL can be assigned to a Boolean
variable.

* The variables are connected by the
logical operators AND, OR, and NOT.

* The variables always yield TRUE,
FALSE, or NULL.

* Arithmetic, character, and date
expressions can be used to return a
Boolean value.

16-27 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Declaring Boolean Variables

With PL/SQL you can compare variables in both SQL and procedural statements. These
comparisons, called Boolean expressions, consist of simple or complex expressions separated by
relational operators. In a SQL statement, you can use Boolean expressions to specify the rows in a
table that are affected by the statement. In a procedural statement, Boolean expressions are the basis
for conditional control.

NULL stands for a missing, inapplicable, or unknown value.

Examples
v_sall = 50000;
v_sal2 = 60000;

The following expression yields TRUE:

v_sall < v_sal2
Declare and initialize a Boolean variable:

v_comm_sal BOOLEAN := (v_sall < v_sal2);

Introduction to Oracle: SQL and PL/SQL 16-27

PL/SQL Record Structure

TRUE

23-DEC-98

ATLANTA

PL/SQL table structure

B W N R

SMITH

JONES

NANCY
IM

16-28

T
L VARCHAR2

L BINARY_INTEGER

Copyright © Oracle Corporation, 1999. All rights reserved. C)RACI_G ¢

PL/SQL table structure

B W N R

5000
2345
12

3456

L

L NUMBER

BINARY_INTEGER

Composite Datatypes

Composite datatypes (also known as collections) are TABLE, RECORD, NESTED TABLE, and
VARRAY. You use the RECORD datatype to treat related but dissimilar data as a logical unit. You
use the TABLE datatype to reference and manipulate collections of data as a whole object. Both
RECORD and TABLE datatypes are covered in detail in a subsequent lesson. The NESTED TABLE

and VARRAY datatypes are not covered in this course.

For more information, see PL/SQL User’s Guide and Reference, Release 8, “Collections and

Records.”

Introduction to Oracle: SQL and PL/SQL 16-28

LOB Datatype Variables

Book
(CLOB)

'

Photo
(BLOB)

Movie
(BFILE)

> NCLOB

16-29 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG °

LOB Datatype Variables

With the LOB (large object) Oracle8 datatypes you can store blocks of unstructured data (such as
text, graphic images, video clips, and sound wave forms) up to 4 gigabytes in size. LOB datatypes
allow efficient, random, piecewise access to the data and can be attributes of an object type. LOBs
also support random access to data.

» The CLOB (character large object) datatype is used to store large blocks of single-byte
character data in the database.

» The BLOB (binary large object) datatype is used to store large binary objects in the database in
line (inside the row) or out of line (outside the row).

» The BFILE (binary file) datatype is used to store large binary objects in operating system files
outside the database.

» The NCLOB (national language character large object) datatype is used to store large blocks of
single-byte or fixed-width multibyte NCHAR data in the database, in line or out of line.

Introduction to Oracle: SQL and PL/SQL 16-29

Bind Variables

= My Form
File Edit

JEE e

O/S —
Bind variable

Server
> I N
I N .
I
16-30 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Bind Variables

A bind variable is a variable that you declare in a host environment and then use to pass runtime
values, either number or character, into or out of one or more PL/SQL programs, which can use it as
they would use any other variable. You can reference variables declared in the host or calling
environment in PL/SQL statements, unless the statement is in a procedure, function, or package. This
includes host language variables declared in precompiler programs, screen fields in Oracle Developer
Forms applications, and SQL*Plus bind variables.

Creating Bind Variables

To declare a bind variable in the SQL*Plus environment, you use the command VARIABLE. For
example, you declare a variable of type NUMBER and VARCHAR?2 as follows:

VARIABRLE return_code NUMBER
VARTABLE return msg VARCHAR2 (30)

Both SQL and SQL*Plus can reference the bind variable, and SQL*Plus can display its value.

Introduction to Oracle: SQL and PL/SQL 16-30

Displaying Bind Variables

To display the current value of bind variables in the SQL*Plus environment, you use the command
PRINT. However, PRINT cannot be used inside a PL/SQL block as a SQL*Plus command. The
following example illustrates a PRINT command:

SQL> VARIABLE g n NUMBER

SQL> PRINT g n

Introduction to Oracle: SQL and PL/SQL 16-31

Referencing Non-PL/SQL
Variables

Store the annual salary into a SQL*Plus
host variable.

:g_monthly sal := v _sal / 12; I

 Reference non-PL/SQL variables as host
variables.

* Prefix the references with a colon (:).

16-32 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Assigning Values to Variables

To reference host variables, you must prefix the references with a colon (:) to distinguish them from
declared PL/SQL variables.

Example

This example computes the monthly salary, based upon the annual salary supplied by the user. This
script contains both SQL*Plus commands as well as a complete PL/SQL block.

VARIABLE g monthly sal NUMBER

ACCEPT p_annual sal PROMPT 'Please enter the annual salary: '
DECLARE
v_sal NUMBER (9,2) := &p_annual sal;
BEGIN
:g monthly sal := v_sal/12;
END;
/
PRINT g monthly sal

Introduction to Oracle: SQL and PL/SQL 16-32

DBMS_OUTPUT.PUT_LINE

* An Oracle-supplied packaged procedure

* An alternative for displaying data from a
PL/SQL block

* Must be enabled in SQL*Plus with
SET SERVEROUTPUT ON

16-33 Copyright © Oracle Corporation, 1999. All rights reserved. ORACI_G ¢

Another Option

You have seen that you can declare a host variable, reference it in a PL/SQL block, and then display
its contents in SQL*Plus using the PRINT command. Another option for displaying information from
a PL/SQL block is DBMS OUTPUT.PUT LINE. DBMS OUTPUT is an Oracle-supplied package,
and PUT _LINE is a procedure within that package.
Within a PL/SQL block, reference DBMS OUTPUT.PUT LINE and, in parentheses, the information
you want to print to the screen. The package must first be enabled in your SQL*Plus session. To do
this, execute the SQL*Plus command SET SERVEROUTPUT ON.

Example

This script computes the monthly salary and prints it to the screen, using
DBMS OUTPUT.PUT LINE.

SET SERVEROUTPUT ON
ACCEPT p_annual sal PROMPT 'Please enter the annual salary: '

DECLARE
v_sal NUMBER(9,2) := &p_ annual sal;
BEGIN
v_sal := v_sal/12;
DBMS OUTPUT.PUT LINE ('The monthly salary is ' || TO_CHAR(v_sal));
END;
/

Introduction to Oracle: SQL and PL/SQL 16-33

Summary

* PL/SQL blocks are composed of
the following sections:

DECLARE

— Declarative (optional) B_“_EG,N

— Executable (required) E_m
oo

— Exception handling (optional) |exp.

* A PL/SQL block can be an
anonymous block, procedure, or
function.

16-34 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Summary

A PL/SQL block is the basic, unnamed unit of a PL/SQL program. It consists of a set of SQL or
PL/SQL statements and it performs a single logical function. The declarative part is the first part of a
PL/SQL block and is used for declaring objects such as variables, constants, cursors, and definitions of
error situations called exceptions. The executable part is the mandatory part of a PL/SQL block and
contains SQL and PL/SQL statements for querying and manipulating data. The exception-handling part
is embedded inside the executable part of a block and is placed at the end of the executable part.

An anonymous PL/SQL block is the basic, unnamed unit of a PL/SQL program. Procedures and
functions can be compiled separately and stored permanently in an Oracle database, ready to be
executed.

Introduction to Oracle: SQL and PL/SQL 16-34

Summary

e PL/SQL identifiers:
- Are defined in the declarative section

— Can be of scalar, composite,
reference, or LOB datatype

— Can be based on the structure of
another variable or database object

-~ Can be initialized

16-35 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Summary (continued)

All PL/SQL datatypes are scalar, composite, reference or LOB type. Scalar datatypes do not have any
components within them, while composite datatypes have other datatypes within them. PL/SQL
variables are declared and initialized in the decalrative section.

Introduction to Oracle: SQL and PL/SQL 16-35

Practice Overview

* Determining validity of declarations
* Developing a simple PL/SQL block

16-36 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Practice Overview

This practice reinforces the basics of PL/SQL learned in this lesson, including datatypes, legal
definitions of identifiers, and validation of expressions. You put all these elements together to create
a simple PL/SQL block.

Paper-Based Questions

Questions 1 and 2 are paper-based questions.

Introduction to Oracle: SQL and PL/SQL 16-36

Practice 16

1. Evaluate each of the following declarations. Determine which of them are nof legal and explain

why.
a. DECLARE

v_id NUMBER (4) ;
b. DECLARE

vV X, Vy, v z VARCHARZ2 (10) ;
C. DECLARE

v_birthdate DATE NOT NULL;
d. DECLARE

v_in_stock BOOLEAN := 1;

Introduction to Oracle: SQL and PL/SQL 16-37

Practice 16 (continued)
2. In each of the following assignments, determine the datatype of the resulting expression.

a. v_days to go := v_due date - SYSDATE;

b. v_sender := USER || ': ' || TO_CHAR(v_dept no);

C. v_sum := $100,000 + $250,000;

d. v_flag := TRUE;
€. v.nl :=v.n2 > (2 * v_n3);
f. v_value := NULL;

3. Create an anonymous block to output the phrase “My PL/SQL Block Works™ to the screen.

G MESSAGE

My PL/SQL Block Works

Introduction to Oracle: SQL and PL/SQL 16-38

Practice 16 (continued)
If you have time, complete the following exercise:

4. Create a block that declares two variables. Assign the value of these PL/SQL variables to
SQL*Plus host variables and print the results of the PL/SQL variables to the screen. Execute
your PL/SQL block. Save your PL/SQL block to a file named p16g4 . sgl.

V_CHAR Character (variable length)
V_NUM Number

Assign values to these variables as follows:

Variable Value

V_CHAR The literal '42 is the answer'
V_NUM The first two characters from V_CHAR

Introduction to Oracle: SQL and PL/SQL 16-39

Introduction to Oracle: SQL and PL/SQL 16-40

17

Writing Executable
Statements

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Objectives

After completing this lesson, you should
be able to do the following:

* Recognize the significance of the
executable section

* Write statements in the executable
section

* Describe the rules of nested blocks

e Execute and test a PL/SQL block
* Use coding conventions

17-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Lesson Aim

In this lesson, you will learn how to write executable code in the PL/SQL block. You will also learn
the rules for nesting PL/SQL blocks of code, as well as how to execute and test their PL/SQL code.

Introduction to Oracle: SQL and PL/SQL 17-2

PL/SQL Block Syntax
and Guidelines

e Statements can continue over several
lines.

 Lexical units can be separated by:
- Spaces
— Delimiters
- ldentifiers
— Literals
- Comments

17-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

PL/SQL Block Syntax and Guidelines

Because PL/SQL is an extension of SQL, the general syntax rules that apply to SQL also apply to the
PL/SQL language.
» Lexical units (for example, identifiers and literals) can be separated by one or more spaces or
other delimiters that cannot be confused as being part of the lexical unit. You cannot embed
spaces in lexical units except for string literals and comments.

» Statements can be split across lines, but keywords must not be split.

Delimiters
Delimiters are simple or compound symbols that have special meaning to PL/SQL.
Simple Symbols Compound Symbols
Symbol | Meaning Symbol | Meaning
+ Addition operator < Relational operator
- Subtraction/negation operator I= Relational operator
* Multiplication operator | Concatenation operator
/ Division operator - Single line comment indicator
= Relational operator /* Beginning comment delimiter
@ Remote access indicator */ Ending comment delimiter
; Statement terminator = Assignment operator

For more information, see PL/SQL User’s Guide and Reference, Release 8, “Fundamentals.”

Introduction to Oracle: SQL and PL/SQL 17-3

PL/SQL Block Syntax
and Guidelines

Identifiers
e Can contain up to 30 characters

e Cannot contain reserved words unless
enclosed in double quotation marks

* Must begin with an alphabetic character

e Should not have the same name as a
database table column name

17-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Identifiers

Identifiers are used to name PL/SQL program items and units, which include constants, variables,
exceptions, cursors, cursor variables, subprograms, and packages.

Identifiers can contain up to 30 characters, but they must start with an alphabetic character.

Do not choose the same name for the identifier as the name of columns in a table used in the
block. If PL/SQL identifiers are in the same SQL statements and have the same name as a
column, then Oracle assumes that it is the column that is being referenced.

Reserved words cannot be used as identifiers unless they are enclosed in double quotation
marks (for example, "SELECT").

Reserved words should be written in uppercase to promote readability.

For a complete list of reserved words, see PL/SQL User’s Guide and Reference, Release §,
“Appendix F.”

Introduction to Oracle: SQL and PL/SQL 17-4

PL/SQL Block Syntax and
Guidelines

e | iterals

- Character and date literals must be
enclosed in single quotation marks.

v_ename := 'Henderson'; I

— Numbers can be simple values or
scientific notation.

* A PL/SQL block is terminated by a slash
(/) on a line by itself.

175 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Literals

A literal is an explicit numeric, character, string, or Boolean value not represented by an
identifier.

— Character literals include all the printable characters in the PL/SQL character set: letters,
numerals, spaces, and special symbols.

— Numeric literals can be represented either by a simple value (for example, -32.5) or by
scientific notation (for example, 2E5, meaning 2* (10 to the power of 5) = 200000).

A PL/SQL block is terminated by a slash (/) on a line by itself.

Introduction to Oracle: SQL and PL/SQL 17-5

Commenting Code

* Prefix single-line comments with two
dashes (--).

* Place multi-line comments between the
symbols /* and */.

Example

v_sal NUMBER (9,2);

BEGIN
/* Compute the annual salary based on the

monthly salary input from the user */
v_sal = &p_monthly_sal * 12;
END;

—-— This is the end of the block

ORACLE"

17-6 Copyright © Oracle Corporation, 1999. All rights reserved.

Commenting Code
Comment code to document each phase and to assist with debugging. Comment the PL/SQL code
with two dashes (--) if the comment is on a single line, or enclose the comment between the symbols
/* and */ if the comment spans several lines. Comments are strictly informational and do not enforce
any conditions or behavior on behavioral logic or data. Well-placed comments are extremely valuable

for code readability and future code maintenance.

Example
In the example on the slide, the line enclosed within /* and */ is the comment that explains the code

that follows it.

Introduction to Oracle: SQL and PL/SQL 17-6

SQL Functions in PL/SQL

» Available in procedural statements:
- Single-row number

- Single-row character Same as in SQL
— Datatype conversion
- Date
* Not available in procedural statements:
- DECODE

— Group functions

17-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

SQL Functions in PL/SQL

Most of the functions available in SQL are also valid in PL/SQL expressions:
+ Single-row number functions
+ Single-row character functions
» Datatype conversion functions
* Date functions
» GREATEST, LEAST
* Miscellaneous functions

The following functions are not available in procedural statements:
+ DECODE.

» Group functions: AVG, MIN, MAX, COUNT, SUM, STDDEV, and VARIANCE. Group
functions apply to groups of rows in a table and therefore are available only in SQL statements
i a PL/SQL block.
Example

Compute the sum of all numbers stored in the NUMBER_TABLE PL/SQL table. 7his example
produces a compilation error.
v_total := SUM(number_ table) ;

Introduction to Oracle: SQL and PL/SQL 17-7

PL/SQL Functions

Examples
* Build the mailing list for a company.

v_mailing address := v_name| |CHR(10) ||
v_address| |CHR(10) | |v_statel |
CHR(10) | |v_zip;

e Convert the employee name to lowercase.

V_ename := LOWER (v_ename) ; I

17-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

PL/SQL Functions

PL/SQL provides many powerful functions to help you manipulate data. These built-in functions fall
into the following categories:

» Error reporting
* Number
+ Character
+ Conversion
+ Date
* Miscellaneous
The function examples in the slide are defined as follows:

* Build the mailing address for a company.

» Convert the name to lowercase.

CHR is the SQL function that converts an ASCII code to its corresponding character; 10 is the code
for a line feed.

For more information, see PL/SQL User’s Guide and Reference, Release 8, “Fundamentals.”

Introduction to Oracle: SQL and PL/SQL 17-8

Datatype Conversion

* Convert data to comparable datatypes.

* Mixed datatypes can result in an error
and affect performance.

e Conversion functions:

DECLARE

= TO_CHAR v_date VARCHAR2(15) ;
BEGIN

- TO_DATE SELECT TO_CHAR (hiredate,

_TO NUMBER 'MON. DD, YYYY')

INTO v_date
FROM emp
WHERE empno = 7839;

END;

179 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Datatype Conversion

PL/SQL attempts to convert datatypes dynamically if they are mixed in a statement. For example, if
you assign a NUMBER value to a CHAR variable, then PL/SQL dynamically translates the number
into a character representation, so that it can be stored in the CHAR variable. The reverse situation
also applies, providing that the character expression represents a numeric value.

Providing that they are compatible, you can also assign characters to DATE variables and vice versa.

Within an expression, you should make sure that datatypes are the same. If mixed datatypes occur in
an expression, you should use the appropriate conversion function to convert the data.

Syntax
TO_CHAR (value, fmt)
TO_DATE (value, fmt)

TO_NUMBER (value, fmt)

where: value is a character string, number, or date

fimt is the format model used to convert value

Introduction to Oracle: SQL and PL/SQL 17-9

Datatype Conversion

This statement produces a compilation
error if the variable v_date is declared as
datatype DATE.

v_date := 'January 13, 1998';

To correct the error, use the TO_DATE
conversion function.

v_date := TO _DATE ('January 13, 1998"',
'Month DD, YYYY');

17-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Datatype Conversion

The conversion examples in the slide are defined as follows:

Store a character string representing a date in a variable declared of datatype DATE. This code
causes a syntax error.

To correct the error, convert the string to a date with the TO_DATE conversion function.

PL/SQL attempts conversion if possible, but the success depends on the operations being performed.
It is good programming practice to explicitly perform datatype conversions, because they can
favorably affect performance and remain valid even with a change in software versions.

Introduction to Oracle: SQL and PL/SQL 17-10

Nested Blocks
and Variable Scope

e Statements can be nested wherever an
executable statement is allowed.

* A nested block becomes a statement.

* An exception section can contain
nested blocks.

* The scope of an object is the region of
the program that can refer to the object.

17-11 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Nested Blocks

One of the advantages that PL/SQL has over SQL is the ability to nest statements. Y ou can nest
blocks wherever an executable statement is allowed, thus making the nested block a statement.
Therefore, you can break down the executable part of a block into smaller blocks. The exception
section can also contain nested blocks.

Variable Scope

The scope of an object is the region of the program that can refer to the object. You can reference the
declared variable within the executable section.

Introduction to Oracle: SQL and PL/SQL 17-11

Nested Blocks
and Variable Scope

An identifier is visible in the regions in
which you can reference the unqualified
identifier:

* A block can look up to the enclosing
block.

* A block cannot look down to enclosed
blocks.

17-12 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Identifiers

An identifier is visible in the block in which it is declared and in all nested subblocks, procedures,
and functions. If the block does not find the identifier declared locally, it looks up to the declarative
section of the enclosing (or parent) blocks. The block never looks down to enclosed (or child) blocks
or sideways to sibling blocks.

Scope applies to all declared objects, including variables, cursors, user-defined exceptions, and
constants.

Note: Qualify an identifier by using the block label prefix.

For more information on block labels, see PL/SQL User’s Guide and Reference, Release 8,
“Fundamentals.”

Introduction to Oracle: SQL and PL/SQL 17-12

Nested Blocks
and Variable Scope

Example

x BINARY INTEGER;
BEGIN Scope of x

DECLARE
y NUMBER;
BEGIN Scope of y

END ;

17-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Nested Blocks and Variable Scope

In the nested block shown on the slide, the variable named y can reference the variable named x.
Variable x, however, cannot reference variable y. If the variable named y in the nested block is given
the same name as the variable named x in the outer block its value is valid only for the duration of the
nested block.

Scope

The scope of an identifier is that region of a program unit (block, subprogram, or package) from
which you can reference the identifier.

Visibility
An identifier is visible only in the regions from which you can reference the identifier using an
unqualified name.

Introduction to Oracle: SQL and PL/SQL 17-13

Operators in PL/SQL

* Logical
e Arithmetic

e Concatenation

* Parentheses to
control order of

operations

Same as in

SQL

* Exponential operator (**)

17-14 Copyright © Oracle Corporation, 1999. All rights reserved.

Order of Operations

The operations within an expression are done in a particular order depending on their precedence
(priority). The following table shows the default order of operations from top to bottom:

Operator Operation

** NOT Exponentiation, logical negation

+, - Identity, negation

*/ Multiplication, division

+ - || Addition, subtraction, concatenation
=, I=, <, > <= >= [S NULL, LIKE, Comparison

BETWEEN, IN

AND Conjunction

OR Inclusion

Note: It is not necessary to use parentheses with Boolean expressions, but it does make the text easier

to read.

For more information on operators, see PL/SQL User’s Guide and Reference, Release 8,

“Fundamentals.”

Introduction to Oracle: SQL and PL/SQL 17-14

ORACLE"

Operators in PL/SQL

Examples
* Increment the counter for a loop.

v_count = v_count + 1; I

» Set the value of a Boolean flag.

v_equal := (v_nl = v_n2);

 Validate an employee number if it
contains a value.

v_valid := (v_empno IS NOT NULL) ; I

17-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Operators in PL/SQL

When working with nulls, you can avoid some common mistakes by keeping in mind the following
rules:

+ Comparisons involving nulls always vield NULL.
* Applying the logical operator NOT to a null yields NULL.

» In conditional control statements, if the condition yields NULL, its associated sequence of
statements is not executed.

Introduction to Oracle: SQL and PL/SQL 17-15

Using Bind Variables

To reference a bind variable in PL/SQL,
you must prefix its name with a colon (:).

Example
VARIABLE g_salary NUMBER
DECLARE
v_sal emp.sal%¥TYPE;
BEGIN
SELECT sal
INTO v_sal
FROM emp
WHERE empno = 7369;
:g_salary := v_sal;
END;
/
17-16 Copyright © Oracle Corporation, 1999. All rights reserved.

Printing Bind Variables
In SQL*Plus you can display the value of the bind variable using the PRINT command.

SQL> PRINT g salary

G_SALARY

Introduction to Oracle: SQL and PL/SQL 17-16

Programming Guidelines

Make code maintenance easier by:

 Documenting code with comments

* Developing a case convention for the

code

* Developing naming conventions for
identifiers and other objects

 Enhancing readability by indenting

1717 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Programming Guidelines

Follow these programming guidelines to produce clear code and reduce maintenance when

developing a PL/SQL block.
Code Conventions

The following table gives guidelines for writing code in uppercase or lowercase to help you to
distinguish keywords from named objects.

Category Case Convention Examples

SQL statements Uppercase SELECT, INSERT

PL/SQL keywords Uppercase DECLARE, BEGIN, IF

Datatypes Uppercase VARCHAR2, BOOLEAN
Identifiers and parameters Lowercase v_sal, emp_cursor, g _sal, p_empno
Database tables and columns Lowercase emp, orderdate, deptno

Introduction to Oracle: SQL and PL/SQL 17-17

Code Naming Conventions

Avoid ambiguity:

e The names of local variables and formal
parameters take precedence over the
names of database tables.

* The names of columns take precedence
over the names of local variables.

17-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Code Naming Conventions

The following table shows a set of prefixes and suffixes to distinguish identifiers from other
identifiers, from database objects, and from other named objects.

Identifier Naming Convention Example
Variable v_name v_sal

Constant c_name C_company_name
Cursor name_cursor emp_cursor
Exception e_name ¢_too_many
Table type name_table_type amount_table type
Table name_table order_total_table
Record type name_record_type emp_record type
Record name_record customer_record
SQL*Plus substitution p_name p_sal

variable (also referred to as

substitution parameter)

SQL*Plus global variable g _name g vear sal

(also referred to as host or

bind variable)

Introduction to Oracle: SQL and PL/SQL 17-18

Indenting Code

For clarity, indent each level of code.

Example
DECLARE
v_deptno NUMBER (2) ;
BEGIN v_location VARCHARZ2 (13) ;
IF x=0 THEN BEGIN
SELECT deptno,

loc

INTO v_deptno,
v_location

FROM dept

WHERE dname = 'SALES';

END;

17-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Indenting Code

For clarity, and to enhance readability, indent each level of code. To show structure, you can divide
lines using carriage returns and indent lines using spaces or tabs. Compare the following IF
statements for readability:

IF x>y THEN v_max:=x;ELSE v_max:=y;END IF;

IF x > y THEN

v_max := X;
ELSE

v_max := y;
END IF;

Introduction to Oracle: SQL and PL/SQL 17-19

Determining Variable Scope
Class Exercise

DECLARE
V_SAL NUMBER(7,2) := 60000;
V_coMM NUMBER(7,2) := V_SAL * .20;
V_MESSAGE VARCHAR2 (255) := ' eligible for commission';
BEGIN ...
DECLARE
V_SAL NUMBER(7,2) := 50000;
Vv_coMM NUMBER(7,2) = 0;
V_TOTAL_ COMP NUMBER(7,2) := V_SAL + V_COMM;
BEGIN ...
V_MESSAGE := 'CLERK not'| IV_MESSAGE;
END;
V_MESSAGE := 'SALESMAN' | IV_MESSAGE;
END;

17-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Class Exercise

Evaluate the PL/SQL block on the slide. Determine each of the following values according to the
rules of scoping:

L.

2
3.
4.
5

The value of V_MESSAGE in the subblock.

The value of V_.TOTAL COMP in the main block.
The value of V_.COMM in the subblock.

The value of V_COMM in the main block.

The value of V. MESSAGE in the main block.

Introduction to Oracle: SQL and PL/SQL 17-20

Summary

* PL/SQL block structure: Nesting
blocks and scoping rules

e PL/SQL programming:
- Functions
— Datatype conversions

DECLARE
— Operators =
)]
— Bind variables EXCEPTION

— Conventions and guidelines [enp;

17-21 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Summary

A block can have any number of nested blocks defined within its executable part. Blocks defined
within a block are called sub-blocks. You can nest blocks only in executable part of a block.

PL/SQL provides many powerful functions to help you manipulate data. Conversion functions
convert a value from one datatype to another. Generally, the form of the function names follows
the convention datatype TO datatype. The first datatype is the input datatype. The second datatype
is the output datatype.

Comparison operators compare one expression to another. The result is always true, false, or null.
Typically, you use comparison operators in conditional control statements and in the WHERE
clause of SQL data manipulation statements. The relational operators allow you to compare
arbitrarily complex expressions.

Variables declared in SQL*Plus are called bind variables. To reference these variables in PL/SQL
programs, they should be preceded by a colon.

Introduction to Oracle: SQL and PL/SQL 17-21

Practice Overview

* Reviewing scoping and nesting rules
* Developing and testing PL/SQL blocks

17-22 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Practice Overview

This practice reinforces the basics of PL/SQL presented in the lesson, including the rules for nesting
PL/SQL blocks of code as well as how to execute and test their PL/SQL code.

Paper-Based Questions

Questions 1 and 2 are paper-based questions.

Introduction to Oracle: SQL and PL/SQL 17-22

Practice 17

PL/SQL Block
DECLARE
v_weightNUMBER(3) := 600;
vV_message VARCHAR2 (255) := 'Product 10012';
BEGIN
/* SUB-BLOCK */
DECLARE
v_weight NUMBER(3) := 1;
vV_message VARCHAR2 (255) := 'Product 11001';
v_new_locn VARCHAR?2 (50) := 'Europe':;
BEGIN
v_weight := v_weight + 1;
v_new_locn := 'Western ' || v_new_locn;
END;
v_weight := v_weight + 1;
v_message := v_message || ' is in stock';
v_new_locn := 'Western ' || v_new_locn;
END;

1. Evaluate the PL/SQL block above and determine the datatype and value of each of the following
variables according to the rules of scoping.

a. The value of V_.WEIGHT in the subblock is:

b. The value of V.NEW _LOCN in the subblock is:

c. The value of V_.WEIGHT in the main block is:

d. The value of V_.MESSAGE in the main block is:

¢. The value of V_.NEW_LOCN in the main block is:

Introduction to Oracle: SQL and PL/SQL 17-23

Practice 17 (continued)

Scope Example
DECLARE
v_customer VARCHARZ2 (50)

'Womansport';
v_credit rating VARCHARZ2 (50)
BEGIN

'EXCELLENT' ;

DECLARE
v_customer NUMBER (7) := 201;
v_name VARCHAR2 (25) := 'Unisports';

- - - - - =~

‘~~ - ‘~__— ‘~__ -

-—— - -—— - —— = e
.- - - -~ - -

~
~~_____.._—‘

END ;

2. Suppose you embed a subblock within a block, as shown above. You declare two variables,
V_CUSTOMER and V_CREDIT RATING, in the main block. You also declare two variables,
V_CUSTOMER and V. NAME, in the subblock. Determine the values and datatypes for each of the
following cases.

a. The value of V_CUSTOMER in the subblock is:

b. The value of V_NAME in the subblock is:

c. The value of V_CREDIT RATING in the subblock is:

d. The value of V_.CUSTOMER in the main block is:

¢. The value of V_.NAME in the main block is:

f. The value of V_CREDIT _RATING in the main block is:

Introduction to Oracle: SQL and PL/SQL 17-24

Practice 17 (continued)

3.

4.

Create and execute a PL/SQL block that accepts two numbers through SQL*Plus substitution
variables. The first number should be divided by the second number and have the second
number added to the result. The result should be stored in a PL/SQL variable and printed on the
screen, or the result should be written to a SQL*Plus variable and printed to the screen.

a. When a PL/SQL variable is used:
Please enter the first number: 2
Please enter the second number: 4

4.5

PL/SQL procedure successfully completed.
b. When a SQL*Plus variable is used:
Please enter the first number: 2

Please enter the second number: 4
PL/SQL procedure successfully completed.

G_RESULT

Build a PL/SQL block that computes the total compensation for one year. The annual salary
and the annual bonus percentage are passed to the PL/SQL block through SQL*Plus substitution

variables, and the bonus needs to be converted from a whole number to a decimal (for example, 15 to
.15). If the salary is null, set it to zero before computing the total compensation. Execute the PL/SQL

block. Reminder: Use the NVL function to handle null values.

Note: To test the NVL function, type NULL at the prompt; pressing [Return] results in a missing
expression error.

Please enter the salary amount: 50000
Please enter the bonus percentage: 10

PL/SQL procedure successfully completed.

G_TOTAL

Introduction to Oracle: SQL and PL/SQL 17-25

Introduction to Oracle: SQL and PL/SQL 17-26

18

Interacting with
the Oracle Server

Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Objectives

After completing this lesson, you should
be able to do the following:

* Write a successful SELECT statement in
PL/SQL

* Declare the datatype and size of a
PL/SQL variable dynamically

* Write DML statements in PL/SQL
e Control transactions in PL/SQL

* Determine the outcome of SQL DML
statements

18-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Lesson Aim

In this lesson, you will learn to embed standard SQL SELECT, INSERT, UPDATE, and DELETE
statements in PL/SQL blocks. You will also learn how to control transactions and determine the
outcome of SQL DML statements in PL/SQL.

Introduction to Oracle: SQL and PL/SQL 18-2

SQL Statements in PL/SQL

e Extract a row of data from the database
by using the SELECT command. Only a
single set of values can be returned.

 Make changes to rows in the database
by using DML commands.

e Control a transaction with the COMMIT,
ROLLBACK, or SAVEPOINT command.

e Determine DML outcome with implicit
cursors.

18-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Overview

When you need to extract information from or apply changes to the database, you must use SQL.
PL/SQL supports full data manipulation language and transaction control commands within SQL.
You can use SELECT statements to populate variables with values queried from a row in a table.
Your DML (data manipulation) commands can process multiple rows.

Comparing SQL and PL/SQL Statement Types

A PL/SQL block is not a transaction unit. Commits, savepoints, and rollbacks are independent
of blocks, but you can issue these commands within a block.

PL/SQL does not support data definition language (DDL), such as CREATE TABLE, ALTER
TABLE, or DROP TABLE.

PL/SQL does not support data control language (DCL), such as GRANT or REVOKE.

For more information about the DBMS SQL package, see Oracle8 Server Application Developer’s
Guide, Release 8.

Introduction to Oracle: SQL and PL/SQL 18-3

SELECT Statements in PL/SQL

Retrieve data from the database with
SELECT.

Syntax

SELECT select list

INTO {variable name[, variable name]...
| record name}

FROM table

WHERE condition;

18-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Retrieving Data Using PL/SQL
Use the SELECT statement to retrieve data from the database.

In the syntax:

select_list isalist of at least one column and can include SQL expressions, row
functions, or group functions

variable name isthe scalar variable to hold the retrieved value

record_name isthe PL/SQL RECORD to hold the retrieved values
table specifies the database table name
condition is composed of column names, expressions, constants, and comparison

operators, including PL/SQL variables and constants
Take advantage of the full range of Oracle Server syntax for the SELECT statement.

Remember that host variables must be prefixed with a colon.

Introduction to Oracle: SQL and PL/SQL 18-4

SELECT Statements in PL/SQL

The INTO clause is required.

Example
DECLARE
v_deptno NUMBER (2) ;
v_loc VARCHAR?2 (15) ;
BEGIN
SELECT deptno, loc
INTO v_deptno, v_loc
FROM dept
WHERE dname = 'SALES';
END;

18-5 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

INTO Clause

The INTO clause is mandatory and occurs between the SELECT and FROM clauses. It is used to
specify the names of variables to hold the values that SQL returns from the SELECT clause. You
must give one variable for each item selected, and their order must correspond to the items selected.

You use the INTO clause to populate either PL/SQL variables or host variables.
Queries Must Return One and Only One Row

SELECT statements within a PL/SQL block fall into the ANSI classification of Embedded SQL, for
which the following rule applies: queries must return one and only one row. More than one row or no
row generates an error.

PL/SQL deals with these errors by raising standard exceptions, which you can trap in the exception
section of the block with the NO DATA FOUND and TOO MANY ROWS exceptions (exception
handling is covered in a subsequent lesson). You should code SELECT statements to return a single
TOW.

Introduction to Oracle: SQL and PL/SQL 18-5

Retrieving Data in PL/SQL

Retrieve the order date and the ship date
for the specified order.

Example
DECLARE
v_orderdate ord.orderdate%TYPE;
v_shipdate ord.shipdate%TYPE;
BEGIN
SELECT orderdate, shipdate
INTO v_orderdate, v_shipdate
FROM ord
WHERE id = 620;
END;

18-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Guidelines
Follow these guidelines to retrieve data in PL/SQL:
» Terminate each SQL statement with a semicolon (;).
* The INTO clause is required for the SELECT statement when it is embedded in PL/SQL.

» The WHERE clause is optional and can be used to specify input variables, constants, literals, or
PL/SQL expressions.

» Specify the same number of output variables in the INTO clause as database columns in the
SELECT clause. Be sure that they correspond positionally and that their datatypes are
compatible.

Introduction to Oracle: SQL and PL/SQL 18-6

Retrieving Data in PL/SQL

Return the sum of the salaries for all
employees in the specified department.

Example
DECLARE
v_sum sal emp.sal%TYPE;
v_deptno NUMBER NOT NULL := 10;
BEGIN
SELECT SUM(sal) =-- group function
INTO v_sum sal
FROM emp
WHERE deptno = v_deptno;
END;

18-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Guidelines (continued)

» To ensure that the datatypes of the identifiers match the datatypes of the columns, use the

%TYPE attribute. The datatype and number of variables in the INTO clause match those in the
SELECT list.

» Use group functions, such as SUM, in a SQL statement, because group functions apply to
groups of rows in a table.

Note: Group functions cannot be used in PL/SQL syntax. They are used in SQL statements within a
PL/SQL block.

Introduction to Oracle: SQL and PL/SQL 18-7

Manipulating Data Using PL/SQL

Make changes to database tables by using
DML commands:

* INSERT
 UPDATE INSERT 5
e DELETE
U PDATE
DELETE
18-8 Copyright © Oracle Corporation, 1999. All rights reserved. C)RACLG °

Manipulating Data Using PL/SQL

You manipulate data in the database by using the DML (data manipulation) commands. You can
issue the DML commands INSERT, UPDATE, and DELETE without restriction in PL/SQL.
Including COMMIT or ROLLBACK statements in the PL/SQL code releases row locks (and table
locks).

» The INSERT statement adds new rows of data to the table.
» The UPDATE statement modifics existing rows in the table.

e The DELETE statement removes unwanted rows from the table.

Introduction to Oracle: SQL and PL/SQL 18-8

Inserting Data

Add new employee information to the
EMP table.

Example

BEGIN
INSERT INTO emp (empno, ename, Jjob, deptno)
VATLUES (empno_sequence.NEXTVAL, 'HARDING',

'CLERK', 10);
END;

18-9 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Inserting Data
» Use SQL functions, such as USER and SYSDATE.
» Generate primary key values by using database sequences.
» Derive values in the PL/SQL block.
* Add column default values.

Note: There is no possibility for ambiguity with identifiers and column names in the INSERT
statement. Any identifier in the INSERT clause must be a database column name.

Introduction to Oracle: SQL and PL/SQL 18-9

Updating Data

Increase the salary of all employees in the
EMP table who are Analysts.

Example
DECLARE
v_sal increase emp.sal%TYPE := 2000;
BEGIN
UPDATE emp
SET sal = sal + v_sal increase
WHERE job = 'ANALYST';
END;

18-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Updating and Deleting Data

There may be ambiguity in the SET clause of the UPDATE statement because although the identifier
on the left of the assignment operator is always a database column, the identifier on the right can be
cither a database column or a PL/SQL variable.

Remember that the WHERE clause is used to determine which rows are affected. If no rows are
modified, no error occurs, unlike the SELECT statement in PL/SQL.

Note: PL/SQL variable assignments always use := and SQL column assignments always use =.
Recall that if column names and identifier names are identical in the WHERE clause, the Oracle
Server looks to the database first for the name.

Introduction to Oracle: SQL and PL/SQL 18-10

Deleting Data

Delete rows that belong to department 10
from the EMP table.

Example

DECLARE

v_deptno emp.deptno$TYPE := 10;
BEGIN

DELETE FROM emp

WHERE deptno = v_deptno;
END;

18-11 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Deleting Data

Delete a specified order.

DECLARE
v_ordid ord.ordid%TYPE := 605;
BEGIN
DELETE FROM item
WHERE ordid = v_ordid;
END;

Introduction to Oracle: SQL and PL/SQL 18-11

Naming Conventions

* Use a naming convention to avoid
ambiguity in the WHERE clause.

 Database columns and identifiers
should have distinct names.

e Syntax errors can arise because PL/SQL
checks the database first for a column
in the table.

18-12 Copyright © Oracle Corporation, 1999. All rights reserved. C)RACLG ¢

Naming Conventions

Avoid ambiguity in the WHERE clause by adhering to a naming convention that distinguishes
database column names from PL/SQL variable names.

Database columns and identifiers should have distinct names.

Syntax errors can arise because PL/SQL checks the database first for a column in the table.

Introduction to Oracle: SQL and PL/SQL 18-12

Naming Conventions

DECLARE

shipdate
ordid
BEGIN
SELECT
INTO
FROM
WHERE
END;
sSQL> /
DECLARE

*

ORA-01422:

ORA-06512:

orderdate ord.orderdate%TYPE;

ord.shipdate%TYPE;
ord.ordid%TYPE := 601;

orderdate, shipdate
orderdate, shipdate
ord

ordid = ordid;

ERROR at line 1:

exact fetch returns more than requested

number of rows

at line 6

18-13

Copyright © Oracle Corporation, 1999. All rights reserved.

ORACLE"

Naming Conventions (continued)

The example shown on the slide is defined as follows: Retrieve the date ordered and the date shipped

from the ord table for order number 601. This example raises an unhandled runtime exception.

PL/SQL checks whether an identifier is a column in the database; if not, it is assumed to be a PL/SQL

1dentifier.

Note: There is no possibility for ambiguity in the SELECT clause because any identifier in the

SELECT clause must be a database column name. There is no possibility for ambiguity in the INTO
clause because identifiers in the INTO clause must be PL/SQL variables. Only in the WHERE clause

is there the possibility of confusion.

More information on TOO_MANY ROWS and other exceptions are covered in a subsequent lesson.

Introduction to Oracle: SQL and PL/SQL 18-13

COMMIT and ROLLBACK
Statements

e |Initiate a transaction with the first DML
command to follow a COMMIT or
ROLLBACK.

e Use COMMIT and ROLLBACK SQL
statements to terminate a transaction
explicitly.

18-14 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Controlling Transactions

You control the logic of transactions with COMMIT and ROLLBACK SQL statements, rendering
some groups of database changes permanent while discarding others. As with Oracle Server, DML
transactions start at the first command to follow a COMMIT or ROLLBACK and end on the next
successful COMMIT or ROLLBACK. These actions may occur within a PL/SQL block or as a result
of events in the host environment (for example, ending a SQL*Plus session automatically commits the
pending transaction). To mark an intermediate point in the transaction processing, use SAVEPOINT.
Syntax

COMMIT [WORK]:;

SAVEPOINT savepoint name;
ROLLBACK [WORK];
ROLLBACK [WORK] TO [SAVEPOINT] savepoint name;

where: WORK is for compliance with ANSI standards

Note: The transaction control commands are all valid within PL/SQL, although the host environment
may place some restriction on their use.

You can also include explicit locking commands (such as LOCK TABLE and SELECT ... FOR
UPDATE) in a block (a subsequent lesson will cover more information on the FOR UPDATE
command). They stay in effect until the end of the transaction. Also, one PL/SQL block does not
necessarily imply one transaction.

Introduction to Oracle: SQL and PL/SQL 18-14

SQL Cursor

* A cursor is a private SQL work area.
* There are two types of cursors:

- Implicit cursors

- Explicit cursors

* The Oracle Server uses implicit cursors
to parse and execute your SQL
statements.

» Explicit cursors are explicitly declared
by the programmer.

18-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

SQL Cursor

Whenever you issue a SQL statement, the Oracle Server opens an area of memory in which the
command is parsed and executed. This area is called a cursor.

When the executable part of a block issues a SQL statement, PL/SQL creates an implicit cursor,
which has the SQL identifier. PL/SQL manages this cursor automatically. The programmer explicitly
declares and names an explicit cursor. There are four attributes available in PL/SQL that can be
applied to cursors.

Note: More information about explicit cursors is covered in a subsequent lesson.

For more information, see PL/SQL User’s Guide and Reference, Release 8, “Interaction with
Oracle.”

Introduction to Oracle: SQL and PL/SQL 18-15

SQL Cursor Attributes

Using SQL cursor attributes, you can test
the outcome of your SQL statements.

SQL%ROWCOUNT | Number of rows affected by the
most recent SQL statement (an
integer value)

SQL%FOUND Boolean attribute that evaluates to
TRUE if the most recent SQL
statement affects one or more rows

SQL%NOTFOUND Boolean attribute that evaluates to
TRUE if the most recent SQL
statement does not affect any rows

SQL%ISOPEN Always evaluates to FALSE because
PL/SQL closes implicit cursors
immediately after they are executed

18-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °
SQL Cursor Attributes

SQL cursor attributes allow you to evaluate what happened when the implicit cursor was last used.

You use these attributes in PL/SQL statements such as functions. You cannot use them in SQL

statements.

You can use the attributes SQL%ROWCOUNT, SQL%FOUND, SQL%NOTFOUND, and

SQL%ISOPEN in the exception section of a block to gather information about the execution of a data
manipulation statement. PL/SQL does not consider a DML statement that affects no rows to have

failed, unlike the SELECT statement, which returns an exception.

Introduction to Oracle: SQL and PL/SQL 18-16

SQL Cursor Attributes

Delete rows that have the specified order
number from the ITEM table. Print the
number of rows deleted.

Example
VARIABLE rows_deleted VARCHARZ (30)
DECLARE
v;prdid NUMBER := 605;
BEGIN
DELETE FROM item
WHERE ordid = v_ordid;
:rows_deleted := (SQL%ROWCOUNT | |
' rows deleted.’');
END;
/
PRINT rows_deleted

18-17 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

SQL Cursor Attributes (continued)

The example shown on the slide is defined as follows: Delete the rows from the ord table for order

number 605. Using the SQL%ROWCOUNT, you print the number of rows deleted.

Introduction to Oracle: SQL and PL/SQL 18-17

Summary

e Embed SQL in the PL/SQL block:
SELECT, INSERT, UPDATE, DELETE

e Embed transaction control statements
in a PL/SQL block:

COMMIT, ROLLBACK, SAVEPOINT

18-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Summary

The DML commands INSERT, UPDATE and DELETE can be used in PL/SQL programs without
any restriction. The COMMIT statement ends the current transaction and makes permanent any
changes made during that transaction. The ROLLBACK statement ends the current transaction
and undoes any changes made during that transaction. SAVEPOINT names and marks the current
point in the processing of a transaction. Used with the ROLLBACK TO statement, savepoints let
you undo parts of a transaction instead of the whole transaction.

Introduction to Oracle: SQL and PL/SQL 18-18

Summary

* There are two cursor types: implicit and
explicit.

* Implicit cursor attributes verify the
outcome of DML statements:

- SQL%ROWCOUNT
- SQL%FOUND

- SQL%NOTFOUND
- SQL%ISOPEN

» Explicit cursors are defined by the
programmer.

18-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Summary (continued)

An implicit cursor is declared by PL/SQL for each SQL data manipulation statement. PL/SQL
provides four attributes for each cursor. These attributes provide you with useful information about
the operations that are performed with cursors. Explicit cursors are defined by the programmer.

Introduction to Oracle: SQL and PL/SQL 18-19

Practice Overview

* Creating a PL/SQL block to select data
from a table

» Creating a PL/SQL block to insert data
into a table

» Creating a PL/SQL block to update data
in a table

» Creating a PL/SQL block to delete a
record from a table

18-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Practice Overview

In this practice, you create procedures to select, input, update, and delete information in a table, using
basic SQL query and DML statements within a PL/SQL block.

Introduction to Oracle: SQL and PL/SQL 18-20

Practice 18

1. Create a PL/SQL block that selects the maximum department number in the DEPT table and stores
it in a SQL*Plus variable. Print the results to the screen. Save your PL/SQL block to a file named
pl8gl.sqgl.

G_MAX_ DEPTNO

2. Modify the PL/SQL block you created in exercise 1 to insert a new department into the DEPT table.
Save your PL/SQL block to a file named p18g2.sqgl.

a. Rather than printing the department number retrieved from exercise 1, add 10 to it and use it as
the department number for the new department.

b. Use a SQL*Plus substitution variable for the department name.
¢. Leave the location null for now.
d. Execute the PL/SQL block.

Please enter the department name: EDUCATION
PL/SQL procedure successfully completed.
¢. Display the new department that you created.

DEPTNO DNAME LOC

50 EDUCATION

3. Create a PL/SQL block that updates the location for an existing department. Save your PL/SQL
block to a file named p18g3.sqgl.

a. Use a SQL*Plus substitution variable for the department number.
b. Use a SQL*Plus substitution variable for the department location.
c. Test the PL/SQL block.

Please enter the department number: 50
Please enter the department location: HOUSTON

PL/SQL procedure successfully completed.

Introduction to Oracle: SQL and PL/SQL 18-21

Practice 18 (continued)

d. Display the department number, department name, and location for the updated department.

C.

DEPTNO DNAME LOC

50 EDUCATION HOUSTON

Display the department that you updated.

4. Create a PL/SQL block that deletes the department created in exercise 2. Save your PL/SQL block
to a file named p18g4.sgl.

a.
b.

C.

Use a SQL*Plus substitution variable for the department number.
Print to the screen the number of rows affected.
Test the PL/SQL block.

Please enter the department number: 50

PL/SQL procedure successfully completed.

G_RESULT

What happens if you enter a department number that does not exist?

Please enter the department number: 99

PL/SQL procedure successfully completed.

G_RESULT

. Confirm that the department has been deleted.

no rows selected

Introduction to Oracle: SQL and PL/SQL 18-22

19

Writing Control Structures

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Objectives
After completing this lesson, you should
be able to do the following:

* |dentify the uses and types of control
structures

e Construct an IF statement

e Construct and identify different loop
statements

* Use logic tables

e Control block flow using nested loops
and labels

19-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Lesson Aim

In this lesson, you will learn about conditional control within the PL/SQL block by using IF
statements and loops.

Introduction to Oracle: SQL and PL/SQL 19-2

Controlling PL/SQL Flow
of Execution

You can change the logical flow of
statements using conditional IF
statements and loop control structures.

Conditional IF statements:
* I[F-THEN-END IF

e IF-THEN-ELSE-END IF

e IF-THEN-ELSIF-END IF

[|

v

19-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

You can change the logical flow of statements within the PL/SQL block with a number of control
structures. This lesson addresses two types of PL/SQL control structures: conditional constructs with
the IF statement and LOOP control structures (covered later in this lesson).

There are three forms of IF statements:
IF-THEN-END IF
IF-THEN-ELSE-END IF
IF-THEN-ELSIF-END IF

Introduction to Oracle: SQL and PL/SQL 19-3

IF Statements
Syntax

IF condition THEN
statements;

[ELSIF condition THEN
statements;]

[ELSE
statements;]

END IF;

Simple IF statement:

Set the manager ID to 22 if the employee
name is Osborne.

IF v_ename = 'OSBORNE' THEN
v_mgr := 22;
END IF;

19-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

IF Statements

The structure of the PL/SQL IF statement is similar to the structure of IF statements in other
procedural languages. It allows PL/SQL to perform actions selectively based on conditions.

In the syntax:

condition is a Boolean variable or expression (TRUE, FALSE, or NULL) (It
is associated with a sequence of statements, which is executed only
if the expression yields TRUE.)

THEN is a clause that associates the Boolean expression that precedes it
with the sequence of statements that follows it

statements can be one or more PL/SQL or SQL statements (They may include
further IF statements containing several nested IFs, ELSEs, and ELSIFs.)
ELSIF is a keyword that introduces a Boolean expression (If the first condition

vields FALSE or NULL then the ELSIF keyword introduces additional
conditions.)

ELSE is a keyword that if control reaches it, the sequence of statements that follows
it is executed

Introduction to Oracle: SQL and PL/SQL 19-4

Simple IF Statements

Set the job title to Salesman, the department
number to 35, and the commission to 20%
of the current salary if the last name is
Miller.

Example

IF v_ename = 'MILLER' THEN
v_job = 'SALESMAN';
v_deptno = 35;
V_new_comm = sal * 0.20;

END IF;

19-5 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Simple IF Statements

In the example on the slide, PL/SQL performs these three actions (setting the v_job, v_deptno, and
v_new_comm variables) only if the condition is TRUE. If the condition is FALSE or NULL, PL/SQL
ignores them. In either case, control resumes at the next statement in the program following END IF.

Guidelines

* You can perform actions selectively based on conditions being met.

* When writing code, remember the spelling of the keywords:
— ELSIF is one word.

— END IF is two words.

+ Ifthe controlling Boolean condition is TRUE, the associated sequence of statements is
executed; if the controlling Boolean condition is FALSE or NULL, the associated sequence of
statements is passed over. Any number of ELSIF clauses is permitted.

» There can be at most one ELSE clause.

» Indent the conditionally executed statements for clarity.

Introduction to Oracle: SQL and PL/SQL 19-5

IF-THEN-ELSE Statement
Execution Flow

TRUE FALSE
IF condition
THEN actions ELSE actions
(including further IFs) (including further IFs)

! !
'

19-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

IF-THEN-ELSE Statement Execution Flow

If the condition is FALSE or NULL, you can use the ELSE clause to carry out other actions. As with the
simple IF statement, control resumes in the program from the END IF. For example:
IF conditionl THEN
statementl;
ELSE
statement?2;
END IF;

Nested IF Statements

Either set of actions of the result of the first IF statement can include further IF statements before
specific actions are performed. The THEN and ELSE clauses can include IF statements. Each nested IF
statement must be terminated with a corresponding END IF.

IF conditionl THEN
statementl;
ELSE
IF condition2 THEN
statement?2;
END IF;
END IF;

Introduction to Oracle: SQL and PL/SQL 19-6

IF-THEN-ELSE Statements

Set a flag for orders where there are fewer
than five days between order date and
ship date.

Example

IF v_shipdate - v_orderdate < 5 THEN

v_ship flag := 'Acceptable';
ELSE

v_ship flag := 'Unacceptable';
END IF;

19-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Example

Set the job to Manager if the employee name is King. If the employee name is other than King, set
the job to Clerk.

IF v ename 'KING' THEN

v_job ' MANAGER' ;
ELSE

v_job := 'CLERK';
END IF;

Introduction to Oracle: SQL and PL/SQL 19-7

IF-THEN-ELSIF
Statement Execution Flow

IF condition

ELSIF
condition

THEN actions

TRUE FALSE
THEN actions
19-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ’

IF-THEN-ELSIF Statement Execution Flow

Determine an employee’s bonus based upon the employee’s department.

IF v_deptno = 10 THEN

v_comm := 5000;

ELSIF v_deptno = 20 THEN
v_comm := 7500;

ELSE
v_comm := 2000;

END IF;

In the example, the variable v_comm will be used to update the COMM column in the EMP table and
v_deptno represents an employee’s department number.

Introduction to Oracle: SQL and PL/SQL 19-8

IF-THEN-ELSIF Statements

For a given value, calculate a percentage
of that value based on a condition.

Example

IF v_start > 100 THEN

v_start := 2 * v_start;
ELSIF v_start >= 50 THEN

v_start := .5 * v_start;
ELSE

v_start := .1 * v_start;
END IF;

19-9 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

IF-THEN-ELSIF Statements

When possible, use the ELSIF clause instead of nesting IF statements. The code is easier to read and
understand, and the logic is clearly identified. If the action in the ELSE clause consists purely of
another IF statement, it is more convenient to use the ELSIF clause. This makes the code clearer by
removing the need for nested END IFs at the end of each further set of conditions and actions.

Example

IF conditionl THEN
statementl;

ELSIF condition2 THEN
statement?2;

ELSIF condition3 THEN
statement3;

END IF;

The example IF-THEN-ELSIF statement above is further defined as follows:

For a given value, calculate a percentage of the original value. If the value is more than 100, then the
calculated value is two times the starting value. If the value is between 50 and 100, then the
calculated value is 50% of the starting value. If the entered value is less than 50, then the calculated
value is 10% of the starting value.

Note: Any arithmetic expression containing null values evaluates to null.

Introduction to Oracle: SQL and PL/SQL 19-9

Building Logical Conditions

* You can handle null values with the IS
NULL operator.

e Any arithmetic expression containing a
null value evaluates to NULL.

* Concatenated expressions with null
values treat null values as an empty
string.

19-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Building Logical Conditions

You can build a simple Boolean condition by combining number, character, or date expressions with
a comparison operator. In general, handle null values with the IS NULL operator.

Null in Expressions and Comparisons
+ The IS NULL condition evaluates to TRUE only if the variable it is checking is NULL.

* Any expression containing a null value evaluates to NULL, with the exception of a
concatenated expression, which treats the null value as an empty string.

Examples
Both these expressions evaluate to NULL if v_sal is NULL.
v_sal > 1000

v_sal * 1.1

In the following example the string does not evaluate to NULL if v_string is NULL.

'"PL' | |v_string]| | 'SQL'

Introduction to Oracle: SQL and PL/SQL 19-10

Logic Tables

Build a simple Boolean condition with a

comparison operator.

OR |TRUE |FALSE | NULL NOT
TRUE | TRUE | TRUE | TRUE TRUE |FALSE
FALSE |TRUE |FALSE | NULL J|FALSE | TRUE
NULL |TRUE | NULL | NULL NULL | NULL
19-11 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Boolean Conditions with Logical Operators

You can build a complex Boolean condition by combining simple Boolean conditions with the logical
operators AND, OR, and NOT. In the logic tables shown in the slide, FALSE takes precedence on an
AND condition and TRUE takes precedence in an OR condition. AND returns TRUE only if both of

its operands are TRUE. OR returns FALSE only if both of its operands are FALSE. NULL AND

TRUE always evaluate to NULL because it is not known if the second operand evaluates to TRUE or

not.

Note: The negation of NULL (NOT NULL) results in a null value because null values are

indeterminate.

Introduction to Oracle: SQL and PL/SQL 19-11

Boolean Conditions

What is the value of V_FLAG in each case?

v_flag := v_reorder flag AND v_available flag;

V_REORDER_FLAG V_AVAILABLE FLAG | V_FLAG
TRUE TRUE TRUE
TRUE FALSE FALSE
NULL TRUE NULL
NULL FALSE FALSE
19-12 Copyright © Oracle Corporation, 1999, All rights reserved. (OIRACLE”

Building Logical Conditions
The AND logic table can help you evaluate the possibilities for the Boolean condition on the slide.

Introduction to Oracle: SQL and PL/SQL 19-12

Iterative Control: LOOP
Statements

* Loops repeat a statement or sequence
of statements multiple times.

* There are three loop types:
- Basic loop
- FOR loop

— WHILE loop {\}

19-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Iterative Control: LOOP Statements

PL/SQL provides a number of facilities to structure loops to repeat a statement or sequence of
statements multiple times.

Looping constructs are the second type of control structure:

» Basic loop to provide repetitive actions without overall conditions

* FOR loops to provide iterative control of actions based on a count

* WHILE loops to provide iterative control of actions based on a condition

» EXIT statement to terminate loops
For more information, see PL/SQL User’s Guide and Reference, Release 8, “Control Structures.”
Note: Another type of FOR LOOP, cursor FOR LOOP, is discussed in a subsequent lesson.

Introduction to Oracle: SQL and PL/SQL 19-13

Basic Loop
Syntax

LOOP —-- delimiter
statementl; -- statements
EXIT [WHEN condition]; -- EXIT statement

END LOOP; —-—- delimiter

where: condition is a Boolean variable or
expression (TRUE, FALSE,
or NULL) ;

19-14 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Basic Loop

The simplest form of LOOP statement is the basic (or infinite) loop, which encloses a sequence of
statements between the keywords LOOP and END LOOP. Each time the flow of execution reaches
the END LOOP statement, control is returned to the corresponding LOQOP statement above it. A basic
loop allows execution of its statement at least once, even if the condition is already met upon entering
the loop. Without the EXIT statement, the loop would be infinite.

The EXIT Statement

You can terminate a loop using the EXIT statement. Control passes to the next statement after the
END LOOP statement. You can issue EXIT either as an action within an IF statement or as a
standalone statement within the loop. The EXIT statement must be placed inside a loop. In the latter
case, you can attach a WHEN clause to allow conditional termination of the loop. When the EXIT
statement is encountered, the condition in the WHEN clause is evaluated. If the condition vields
TRUE, the loop ends and control passes to the next statement after the loop. A basic loop can contain
multiple EXIT statements.

Introduction to Oracle: SQL and PL/SQL 19-14

Basic Loop

Example

DECLARE
v_ordid item.ordid$TYPE := 601;
v_counter NUMBER(2) := 1;
BEGIN
LOOP
INSERT INTO item(ordid, itemid)
VALUES (v_ordid, v_counter);

v_counter := v_counter + 1;
EXIT WHEN v_counter > 10;
END LOOP;
END;

19-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Basic Loop (continued)

The basic loop example shown on the slide is defined as follows: Insert the first 10 new line items for
order number 601.

Note: A basic loop allows execution of its statements at least once, even if the condition has been met
upon entering the loop, provided the condition is placed in the loop such that it is not checked until
after these statements. However, if the exit condition is placed at the top of the loop, before any of the
other executable statements, and that condition is true, the loop will be exited and the statements
never executed.

Introduction to Oracle: SQL and PL/SQL 19-15

FOR Loop
Syntax

FOR counter in [REVERSE]
lower bound. .upper bound LOOP
statementl;
statement2;

END LOOP;

* Use a FOR loop to shortcut the test for
the number of iterations.

* Do not declare the counter; it is
declared implicitly.

19-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

FOR Loop

FOR loops have the same general structure as the basic loop. In addition, they have a control statement
at the front of the LOOP keyword to determine the number of iterations that PL/SQL performs.

In the syntax:

counter is an implicitly declared integer whose value automatically increases or
decreases (decreases if the REVERSE keyword is used) by 1 on each
iteration of the loop until the upper or lower bound is reached

REVERSE causes the counter to decrement with each iteration from the upper bound
to the lower bound (Note that the lower bound is still referenced first.)

lower bound specifies the lower bound for the range of counter values

upper bound specifies the upper bound for the range of counter values

Do not declare the counter; it is declared implicitly as an integer.

Note: The sequence of statements is executed each time the counter is incremented, as determined by
the two bounds. The lower bound and upper bound of the loop range can be literals, variables, or
expressions, but must evaluate to integers. If the lower bound of the loop range evaluates to alarger
integer than the upper bound, the sequence of statements will not be executed.

For example, statementl is executed only once:

FOR i IN 3..3 LOOP statementl, END LOOP;

Introduction to Oracle: SQL and PL/SQL 19-16

FOR Loop

Guidelines

» Reference the counter within the loop
only; it is undefined outside the loop.

» Use an expression to reference the
existing value of a counter.

* Do not reference the counter as the target
of an assignment.

19-17 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

FOR Loop (continued)

Note: The lower and upper bounds of a LOOP statement do not need to be numeric literals. They can
be expressions that convert to numeric values.

Example
DECLARE
v_lower NUMBER := 1;
v_upper NUMBER := 100;

BEGIN
FOR i IN v_lower..v_upper LOOP

END LOOP;
END;

Introduction to Oracle: SQL and PL/SQL 19-17

FOR Loop

Insert the first 10 new line items for order
number 601.

Example
DECLARE
v_ordid item.ordid$TYPE := 601;
BEGIN

FOR i IN 1..10 LOOP
INSERT INTO item(ordid, itemid)
VALUES (v_ordid, 1i);
END LOOP;
END;

19-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

For Loop

The example shown on the slide is defined as follows: Insert the first 10 new line items for order
number 601. This is done using a FOR loop.

Introduction to Oracle: SQL and PL/SQL 19-18

WHILE Loop

Syntax

WHILE condition LOOP - Condition is
statementl; evaluated at the
statement2; beginning of

each iteration.

END LOOP;

Use the WHILE loop to repeat statements
while a condition is TRUE.

19-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

WHILE Loop

You can use the WHILE loop to repeat a sequence of statements until the controlling condition is no
longer TRUE. The condition is evaluated at the start of each iteration. The loop terminates when the
condition is FALSE. If the condition is FALSE at the start of the loop, then no further iterations are
performed.

In the syntax:

condition isaBoolean variable or expression (TRUE, FALSE, or NULL)
Statement can be one or more PL/SQL or SQL statements

If the variables involved in the conditions do not change during the body of the loop, then the
condition remains TRUE and the loop does not terminate.

Note: If the condition yields NULL, the loop is bypassed and control passes to the next statement.

Introduction to Oracle: SQL and PL/SQL 19-19

WHILE Loop

Example

ACCEPT p _new_order PROMPT 'Enter the order number: '
ACCEPT p_items -

PROMPT 'Enter the number of items in this order: '
DECLARE
v_count NUMBER (2) := 1;
BEGIN
WHILE v_count <= &p items LOOP
INSERT INTO item (ordid, itemid)
VALUES (&p_new_order, v_count);
v_count := v_count + 1;
END LOOP;
COMMIT;

END;
/

19-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

WHILE Loop (continued)

In the example on the slide, line items are being added to the ITEM table for a specified order. The
user is prompted for the order number (p_new_order) and the number of items in this order (p_items).
With each iteration through the WHILE loop, a counter (v_count) is incremented. If the number of
iterations is less than or equal to the number of items for this order, the code within the loop is
executed and a row is inserted into the ITEM table. Once the counter exceeds the number of items for
this order, the condition controlling the loop evaluates to false and the loop is terminated.

Introduction to Oracle: SQL and PL/SQL 19-20

Nested Loops and Labels

* Nest loops to multiple levels.

* Use labels to distinguish between
blocks and loops.

 Exit the outer loop with the EXIT
statement referencing the label.

19-21 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Nested Loops and Labels

You can nest loops to multiple levels. You can nest FOR, WHILE, and basic loops within one
another. The termination of a nested loop does not terminate the enclosing loop unless an exception
was raised. However, you can label loops and exit the outer loop with the EXIT statement.

Label names follow the same rules as other identifiers. A label is placed before a statement, either on
the same line or on a separate line. Label loops by placing the label before the word LOOP within
label delimiters (<</abel>>).

If the loop is labeled, the label name can optionally be included after the END LOOP statement for
clarity.

Introduction to Oracle: SQL and PL/SQL 19-21

Nested Loops and Labels

BEGIN
<<Outer_loop>>
LOOP
v_counter := v_counter+l;
EXIT WHEN v_counter>10;
<<Inner_ loop>>
LOOP

EXIT Outer loop WHEN total done = 'YES';
—-- Leave both loops

EXIT WHEN inner done = 'YES';

—-- Leave inner loop only

END LOOP Inner loop;

END LOOP Outer loop;
END;

19-22 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Nested Loops and Labels

In the example on the slide, there are two loops. The outer loop is identified by the label,
<<Quter_Loop>> and the inner loop is identified by the label <<Inner Loop>>. loops by placing the
label before the word LOOP within label delimiters (<</abe/>>). The inner loop is nested within the
outer loop. The label names are included after the END LOOP statement for clarity.

Introduction to Oracle: SQL and PL/SQL 19-22

Summary

Change the logical flow of statements by
using control structures.

e Conditional (IF statement)
e Loops:

- Basic loop

- FOR loop

— WHILE loop

- EXIT statement

19-23 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Summary

A conditional control construct checks for the validity of a condition and accordingly performs a
corresponding action. You use the IF construct to perform a conditional execution of statements.

An iterative control construct executes a sequence of statements repeatedly, as long as a specified
condition holds TRUE. You use the various loop constructs to perform iterative operations.

Introduction to Oracle: SQL and PL/SQL 19-23

Practice Overview

* Performing conditional actions using
the IF statement

* Performing iterative steps using the
loop structure

19-24 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Practice Overview

In this practice, you create PL/SQL blocks that incorporate loops and conditional control structures.

Introduction to Oracle: SQL and PL/SQL 19-24

Practice 19

1. Runthe script 1ab19 1.sqgl to create the MESSAGES table. Write a PL/SQL block to
msert numbers into the MESSAGES table.

a.
. Commit before the end of the block.

b

C.

Insert the numbers 1 to 10, excluding 6 and 8.

Select from the MESSAGES table to verify that your PL/SQL block worked.

RESULTS

= O 10 s Ww N R

2. Create a PL/SQL block that computes the commission amount for a given employee based
on the employee’s salary.

a.

Run the script 1ab19 2.sqgl to insert a new employee into the EMP table.
Note: The employee will have a NULL salary.

. Accept the employee number as user input with a SQL*Plus substitution variable.

. Ifthe employee’s salary is less than $1,000, set the commission amount for the employee

to 10% of'the salary.

If the employee’s salary is between $1,000 and $1,500, set the commission amount for the
employee to 15% of the salary.

e. If the employee’s salary exceeds $1,500, set the commission amount for the employee to
20% of the salary.
f. If the employee’s salary is NULL, set the commission amount for the employee to 0.
g. Commit,
h. Test the PL/SQL block for each case using the following test cases, and check each
updated commission.
Employee Number Salary Resulting Commission
7369 800 80
7934 1300 195
7499 1600 320
8000 NULL 0

Introduction to Oracle: SQL and PL/SQL 19-25

Practice 19 (continued)

EMPNO ENAME SAL COMM
8000 DOE 0
7499 ALLEN 1600 320
7934 MILLER 1300 185
7369 SMITH 800 80

If you have time, complete the following exercises:

3. Modify the p19g4 . sql file to insert the text “Number is odd™ or “Number is even,” depending
on whether the value is odd or even, into the MESSAGES table. Query the MESSAGES
table to determine if your PL/SQL block worked.

RESULTS

Number 1s even

4. Add anew column called STARS, of datatype VARCHAR? and length 50, to the EMP table for
storing asterisk (*).

5. Create a PL/SQL block that rewards an employee by appending an asterisk in the STARS
column for every $100 of the employee’s salary. Save your PL/SQL block to a file called
plSg5.sqgl.

a. Accept the employee ID as user input with a SQL*Plus substitution variable.
b. Initialize a variable that will contain a string of asterisks.

¢. Append an asterisk to the string for every $100 of the salary amount. For example, if the
employee has a salary amount of $800, the string of asterisks should contain eight asterisks. If the
employee has a salary amount of $1250, the string of asterisks should contain 13 asterisks.

d. Update the STARS column for the employee with the string of asterisks.
e. Commit.
f. Test the block for employees who have no salary and for an employee who has a salary.

Please enter the employee number: 7934
PL/SQL procedure successfully completed.

Please enter the employee number: 8000
PL/SQL procedure successfully completed.

EMPNO SAL STARS

8000
7934 1300 ***Fkkkkhkkkk

Introduction to Oracle: SQL and PL/SQL 19-26

20

Working with Composite
Datatypes

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Objectives

After completing this lesson, you should
be able to do the following:

* Create user-defined PL/SQL records

e Create a record with the %ROWTYPE
attribute

e Create a PL/SQL table
e Create a PL/SQL table of records

* Describe the difference between
records, tables, and tables of records

20-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Lesson Aim

In this lesson, you will learn more about composite datatypes and their uses.

Introduction to Oracle: SQL and PL/SQL 20-2

Composite Datatypes

e Types:

- PL/SQL RECORDS

- PL/SQL TABLES
e Contain internal components
e Are reusable

20-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

RECORDS and TABLES

Like scalar variables, composite variables have a datatype also. Composite datatypes (also known as
collections) are RECORD, TABLE, Nested TABLE, and VARRAY . You use the RECORD datatype
to treat related but dissimilar data as a logical unit. You use the TABLE datatype to reference and
manipulate collections of data as a whole object. The Nested TABLE and VARRAY datatypes are
not covered in this course.

A record is a group of related data items stored in fields, each with its own name and datatype. A
table contains a column and a primary key to give you array-like access to rows. Once defined, tables
and records can be reused.

For more information, see PL/SQL User’s Guide and Reference, Release 8, “Collections and
Records.”

Introduction to Oracle: SQL and PL/SQL 20-3

PL/SQL Records

* Must contain one or more components of
any scalar, RECORD, or PL/SQL TABLE
datatype, called fields

e Are similar in structure to records in a 3GL

* Are not the same as rows in a database
table

» Treat a collection of fields as a logical unit

» Are convenient for fetching a row of data
from a table for processing

20-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

PL/SQL Records

A record is a group of related data items stored in fields, each with its own name and datatype. For
example, suppose you have different kinds of data about an employee, such as name, salary, hire
date, and so on. This data is dissimilar in type but logically related. A record that contains such fields
as the name, salary, and hire date of an employee lets you treat the data as a logical unit. When you
declare a record type for these fields, they can be manipulated as a unit.

Each record defined can have as many fields as necessary.

Records can be assigned initial values and can be defined as NOT NULL.
Fields without initial values are initialized to NULL.

The DEFAULT keyword can also be used when defining fields.

You can define RECORD types and declare user-defined records in the declarative part of any
block, subprogram, or package.

You can declare and reference nested records. A record can be the component of another
record.

Introduction to Oracle: SQL and PL/SQL 20-4

Creating a PL/SQL Record

Syntax

TYPE type name IS RECORD
(field declaration[, field declaration]..);
identifier type name;

Where field declaration is

field_name { field_type | variable3TYPE
| table.column%TYPE | table$ROWTYPE}
[[NOT NULL] {:= | DEFAULT} expr]

20-5 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Defining and Declaring a PL/SQL Record
To create a record, you define a RECORD type and then declare records of that type.
In the syntax:

type_name is the name of the RECORD type (This identifier is used to declare
records.)

field_name is the name of afield within the record

fidd_type is the datatype of the field (It represents any PL/SQL datatype
except REF CURSOR. Y ou can use the %TY PE and %ROWTY PE
attributes.)

expr isthefield type or aninitia value

The NOT NULL constraint prevents the assigning of nulls to those fields. Be sure to initialize NOT
NULL fields.

Introduction to Oracle: SQL and PL/SQL 20-5

Creating a PL/SQL Record

Declare variables to store the name, job,
and salary of a new employee.

Example

TYPE emp record type IS RECORD

(ename VARCHAR2 (10) ,
job VARCHAR2 (9) ,
sal NUMBER(7,2)) ;
emp record emp record type;

20-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Creating a PL/SQL Record

Field declarations are like variable declarations. Each field has a unique name and a specific
datatype. There are no predefined datatypes for PL/SQL records, as there are for scalar variables.
Therefore, you must create the datatype first and then declare an identifier using that datatype.

The following example shows that you can use the % TYPE attribute to specify a field datatype:

DECLARE
TYPE emp record type IS RECORD
(empno NUMBER (4) NOT NULL := 100,
ename emp .ename¥TYPE,
job emp . Job%TYPE) ;

emp record emp record type;

Note: You can add the NOT NULL constraint to any field declaration to prevent the assigning of
nulls to that field. Remember, ficlds declared as NOT NULL must be initialized.

Introduction to Oracle: SQL and PL/SQL 20-6

PL/SQL Record Structure

Field1 (datatype) Field2 (datatype) Field3 (datatype)

Example

Field1 (datatype) Field2 (datatype) Field3 (datatype)

=3 empno number(4) ename varchar2(10) job varchar2(9)

20-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Referencing and Initializing Records

Fields in a record are accessed by name. To reference or initialize an individual field, you use dot
notation and the following syntax:

record name.field name

For example, you reference field job in record emp record as follows:

emp record.job ...

You can then assign a value to the record field as follows:

emp record.job := 'CLERK';

In a block or subprogram, user-defined records are instantiated when you enter the block or
subprogram and cease to exist when you exit the block or subprogram.

Assigning Values to Records

You can assign a list of common values to a record by using the SELECT or FETCH statement.
Make sure that the column names appear in the same order as the fields in your record. You can also
assign one record to another if they have the same datatype. A user-defined record and a
%ROWTYPE record never have the same datatype.

Introduction to Oracle: SQL and PL/SQL 20-7

The %ROWTYPE Attribute

* Declare a variable according to a
collection of columns in a database
table or view.

* Prefix %ROWTYPE with the database
table.

* Fields in the record take their names
and datatypes from the columns of the
table or view.

20-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Declaring Records with the %ROWTYPE Attribute

To declare a record based on a collection of columns in a database table or view, you use the
%ROWTYPE attribute. The ficlds in the record take their names and datatypes from the columns of the
table or view. The record can also store an entire row of data fetched from a cursor or cursor variable.

In the following example, a record is declared using %ROWTYPE as a datatype specifier.

DECLARE
emp record emp3¥ROWTYPE ;

The record, emp record, will have a structure consisting of the following fields, each representing a
column in the EMP table.

Note: This is not code, but simply the structure of the composite variable.

(empno NUMBER (4) ,
ename VARCHAR2 (10) ,
job VARCHAR2 (9) ,
mgr NUMRBER (4) ,
hiredate DATE,

sal NUMBER(7,2) ,
comm NUMBER(7,2) ,
deptno NUMBER (2))

Introduction to Oracle: SQL and PL/SQL 20-8

Advantages of Using
%ROWTYPE

 The number and datatypes of the
underlying database columns may not
be known.

 The number and datatypes of the
underlying database column may
change at runtime.

e The attribute is useful when retrieving a
row with the SELECT statement.

20-9 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Declaring Records with the %ROWTYPE Attribute (continued)

Syntax
DECLARE
identifier reference%ROWTYPE ;
where: identifier is the name chosen for the record as a whole

reference 1s the name of the table, view, cursor, or cursor variable on which the
record is to be based (You must make sure that this reference is valid
when you declare the record that is, the table or view must exist.)

To reference an individual field, you use dot notation and the following syntax:
record name.field name
For example, you reference field comm in record emp_record as follows:

emp record.comm

You can then assign a value to the record field as follows:

emp record.comm := 750;

Introduction to Oracle: SQL and PL/SQL 20-9

The %ROWTYPE Attribute

Examples

Declare a variable to store the same
information about a department as it is
stored in the DEPT table.

dept_record dept%ROWTYPE ; I

Declare a variable to store the same
information about an employee as it is
stored in the EMP table.

emp record emp%ROWTYPE ; I
20-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢
Examples

The first declaration on the slide creates a record with the same field names and field datatypes as a row
in the DEPT table. The fields are DEPTNO, DNAME, and LOCATION.

The second declaration creates a record with the same field names and field datatypes as a row in the
EMP table. The fields are EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, and DEPTNO.

In the following example, an employee is retiring. Information about this employee is added to a table
holding information about retired employees. The user supplies the employee’s number.

DECLARE
emp_rec emp¥ROWTYPE ;
BEGIN

SELECT * INTO emp_rec

FROM emp

WHERE empno = &employee number;

INSERT INTO retired emps(empno, ename, job, mgr, hiredate,
leavedate, sal, comm, deptno)

VALUES (emp rec.empno, emp rec.ename, emp rec.]job, emp rec.mgr,
emp rec.hiredate, SYSDATE, emp rec.sal, emp_ rec.comm,
emp rec.deptno) ;

COMMIT ;

END;

Introduction to Oracle: SQL and PL/SQL 20-10

PL/SQL Tables

* Are composed of two components:

- Primary key of datatype
BINARY_INTEGER

— Column of scalar or record datatype

* Increase dynamically because they are
unconstrained

20-11 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

PL/SQL Tables

Objects of type TABLE are called PL/SQL tables. They are modeled as (but not the same as)
database tables. PL/SQL tables use a primary key to give you array-like access to rows.

A PL/SQL table:
Is similar to an array
Must contain two components:
— A primary key of datatype BINARY INTEGER that indexes the PL/SQL TABLE
— A column of a scalar or record datatype, which stores the PL/SQL TABLE elements

Can increase dynamically because it is unconstrained

Introduction to Oracle: SQL and PL/SQL 20-11

Creating a PL/SQL Table
Syntax

TYPE type name IS TABLE OF
{column_ type | variable$%TYPE
| table.column$TYPE} [NOT NULL]
[INDEX BY BINARY INTEGER];
identifier type name;

Declare a PL/SQL table to store names.
Example

TYPE ename table type IS TABLE OF emp.ename%TYPE
INDEX BY BINARY INTEGER;
ename table ename table type;

20-12 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Creating a PL/SQL Table
There are two steps involved in creating a PL/SQL table.

1. Declare a TABLE datatype.
2. Declare a variable of that datatype.
In the syntax:

type_name isthe name of the TABLE type (It is atype specifier used in subsequent
declarations of PL/SQL tables.)

column_type isany scalar (not composite) datatype such as VARCHAR2, DATE, or
NUMBER (You can use the %TY PE attribute to provide the column
datatype.)

identifier is the name of the identifier that represents an entire PL/SQL table

The NOT NULL constraint prevents nulls from being assigned to the PL/ SQL TABLE of that type.
Do not initialize the PL/SQL TABLE.

Declare a PL/SQL table to store dates.

DECLARE
TYPE date table type IS TABLE OF DATE
INDEX BY BINARY_ INTEGER;
date table date table type;

Introduction to Oracle: SQL and PL/SQL 20-12

PL/SQL Table Structure

Primary key Column
1 Jones
2 Smith
3 Maduro
BINARY_INTEGER Scalar
20-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

PL/SQL Table Structure

Like the size of a database table, the size of a PL/SQL table is unconstrained. That is, the number of
rows in a PL/SQL table can increase dynamically, so your PL/SQL table grows as new rows are
added.

PL/SQL tables can have one column and a primary key, neither of which can be named. The column
can belong to any scalar or record datatype, but the primary key must belong to type
BINARY INTEGER. You cannot initialize a PL/SQL table in its declaration.

Introduction to Oracle: SQL and PL/SQL 20-13

Creating a PL/SQL Table

DECLARE
TYPE ename_table type IS TABLE OF emp.ename3TYPE
INDEX BY BINARY INTEGER;
TYPE hiredate table type IS TABLE OF DATE
INDEX BY BINARY INTEGER;

ename table ename_ table type;

hiredate table hiredate table type;
BEGIN

ename table(l) := 'CAMERON';

hiredate table(8) := SYSDATE + 7;

IF ename_ table.EXISTS (1) THEN
INSERT INTO

20-14 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

Creating a PL/SQL Table

There are no predefined datatypes for PL/SQL tables, as there are for scalar variables. Therefore you
must create the datatype first and then declare an identifier using that datatype.

Referencing a PL/SQL Table
Syntax

pl/sgl table name (primary key value)
where: primary_key value belongs to type BINARY INTEGER.
Reference the third row in a PL/SQL table ename table.

ename table (3)

The magnitude range of a BINARY INTEGER is —2147483647 ... 2147483647, so the primary key
value can be negative. Indexing need not start with 1.

Note: The table EXISTS(1) statement returns TRUE if at least one row with index 7 is returned. Use
the EXISTS statement to prevent an error that is raised in reference to a non-existing table element.

Introduction to Oracle: SQL and PL/SQL 20-14

Using PL/SQL Table Methods

The following methods make PL/SQL
tables easier to use:

* EXISTS * NEXT

e COUNT « EXTEND
* FIRST and LAST * TRIM

* PRIOR DELETE

20-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

A PL/SQL Table method is a built-in procedure or function that operates on tables and is called using
dot notation. The methods noted with an asterisk below are available for PL/SQL version 8 tables only.

Syntax

table name.method name| (parameters)]
Method Description
EXISTS(n) Returns TRUE if the nth element in a PL/SQL table exists.
COUNT Returns the number of elements that a PL/SQL table currently contains.
FIRST Returns the first and last (smallest and largest) index numbers in a PL/SQL
LAST table. Returns NULL if the PL/SQL table is empty.
PRIOR(n) Returns the index number that precedes index # in a PL/SQL table.
NEXT(n) Returns the index number that succeeds index » in a PL/SQL table.

EXTEND(n, i)* | Increases the size of a PL/SQL table.

EXTEND appends one null element to a PL/SQL table.

EXTEND(») appends » null elements to a PL/SQL table.
EXTEND(n, i) appends 7 copies of the ith element to a PL/SQL table.

TRIM* TRIM removes one element from the end of a PL/SQL table.
TRIM(#) removes # elements from the end of a PL/SQL table.
DELETE DELETE removes all elements from a PL/SQL table.

DELETE(n) removes the nth element from a PL/SQL table.
DELETE(m, n) removes all elements in the range m ... » from a PL/SQL table.

Introduction to Oracle: SQL and PL/SQL 20-15

PL/SQL Table of Records

* Define a TABLE variable with a permitted
PL/SQL datatype.

* Declare a PL/SQL variable to hold
department information.

Example

DECLARE

TYPE dept table type IS TABLE OF dept%ROWTYPE
INDEX BY BINARY INTEGER;
dept table dept table type;

-— Each element of dept table is a record

20-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

PL/SQL Table of Records

Because only one table definition is needed to hold information about all of the fields of a database
table, the table of records greatly increases the functionality of PL/SQL tables.

Referencing a Table of Records

In the example given on the slide, you can refer to fields in the dept_table record because each element
of'this table is a record.

Syntax
table (index) .field
Example
dept table(15).loc := 'Atlanta';

LOC represents a field in DEPT _TABLE.

Note: You can use the %ROWTYPE attribute to declare a record that represents a row in a database
table. The difference between the %ROWTY PE attribute and the composite datatype RECORD is that

RECORD allows you to specify the datatypes of fields in the record or to declare fields of your own.

Introduction to Oracle: SQL and PL/SQL 20-16

Example of PL/SQL Table of
Records

DECLARE
TYPE e table type IS TABLE OF emp.Ename%Type

INDEX BY BINARY INTEGER;
e _tab e table type;
BEGIN
e tab(l) := 'SMITH';
UPDATE emp
SET sal = 1.1 * sal
WHERE Ename = e tab(l);
COMMIT;
END;
/

20-17 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Example PL/SQL Table of Records

The example on the slide declares a PL/SQL table ¢ table type. Using this PL/SQL table, another
table, e _tab, is declared. In the executable section of the PL/SQL block, the ¢ _tab table is used to

update the salary of the employee, Smith.

Introduction to Oracle: SQL and PL/SQL 20-17

Summary

* Define and reference PL/SQL variables
of composite datatypes:

— PL/SQL records
- PL/SQL tables
— PL/SQL table of records

* Define a PL/SQL record by using the
%ROWTYPE attribute.

20-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Summary

A PL/SQL record is a collection of individual fields that represent a row in the table. They are
unique and each row has its own name and datatype. The record as a whole does not have any
value. By using records you can group the data into one structure and then manipulate this
structure into one entity or logical unit. This helps to reduce coding, and keeps the code easier to
maintain and understand.

Like PL/SQL records, the table is another composite datatype. PL/SQL tables are objects of type
TABLE and look similar to database tables but with slight difference. PL/SQL tables use a
primary key to give you array like access to row. The size of a PL/SQL table is unconstrained.
PL/SQL table can have one column and a primary key, neither of which can be named. The
column can have any datatype, but the primary key must be of the type BINARY INTEGER.

A PL/SQL table of records enhances the functionality of PL/SQL tables, since only one table
definition is required to hold information about all the fields.

The %ROWTYPE is used to declare a compound variable whose type is the same as that of a row
of a database table.

Introduction to Oracle: SQL and PL/SQL 20-18

Practice Overview

* Declaring PL/SQL tables
* Processing data by using PL/SQL tables
e Declaring a PL/SQL record

* Processing data by using a PL/SQL
record

20-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Practice Overview
In this practice, you define, create, and use PL/SQL tables and a PL/SQL record.

Introduction to Oracle: SQL and PL/SQL 20-19

Practice 20

1. Create a PL/SQL block to retrieve the name of each department from the DEPT table and print
cach department name to the screen, incorporating a PL/SQL table.

a. Declare a PL/SQL table, MY DEPT TABLE, to temporarily store the name of the
departments.

b. Using a loop, retrieve the name of all departments currently in the DEPT table and store
them in the PL/SQL table. Each department number is a multiple of 10.

¢. Using another loop, retrieve the department names from the PL/SQL table and print them to
the screen, using DBMS OUTPUT.PUT LINE.
SQL> START p20 1
ACCOUNTING
RESEARCH
SALES
OPERATIONS

PL/SQL procedure successfully completed.

2. Write a PL/SQL block to print information about a given order.
a. Declare a PL/SQL record based on the structure of the ORD table.

b. Use a SQL*Plus substitution variable to retrieve all information about a specific order and
store that information into the PL/SQL record.

¢. Use DBMS OUTPUT. PUT LINE to print selected information about the order.
SQL> START p20 2
Please enter an order number: 614

Order 614 was placed on 01-FEB-87 and shipped on 05-FEB-87 for a
total of $23,940.00

PL/SQL procedure successfully completed.

Introduction to Oracle: SQL and PL/SQL 20-20

Practice 20 (continued)
If you have time, complete the following exercise.

3. Modify the block you created in practice 1 to retrieve all information about each department from
the DEPT table and print the information to the screen, incorporating a PL/SQL table of records.

a. Declare a PL/SQL table, MY DEPT TABLE, to temporarily store the number, name, and
location of all the departments.

b. Using a loop, retrieve all department information currently in the DEPT table and store it in
the PL/SQL table. Each department number is a multiple of 10.

¢. Using another loop, retrieve the department information from the PL/SQL table and print it
to the screen, using DBMS OUTPUT.PUT_LINE.

SQL> START p20_3

Dept. 10, ACCOUNTING is located in NEW YORK
Dept. 20, RESEARCH is located in DALLAS
Dept. 30, SALES is located in CHICAGO

Dept. 40, OPERATIONS is located in BOSTON

PL/SQL procedure successfully completed.

Introduction to Oracle: SQL and PL/SQL 20-21

Introduction to Oracle: SQL and PL/SQL 20-22

Writing Explicit Cursors

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Objectives

After completing this lesson, you should
be able to do the following:

* Distinguish between an implicit and an
explicit cursor

* Use a PL/SQL record variable
e Write a cursor FOR loop

21-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Lesson Aim

In this lesson, you will learn the differences between implicit and explicit cursors. You will also learn
when and why to use an explicit cursor.

You may need to use a multiple-row SELECT statement in PL/SQL to process many rows. To
accomplish this, you declare and control explicit cursors, which are used in loops, including the
cursor FOR loop.

Introduction to Oracle: SQL and PL/SQL 21-2

About Cursors

Every SQL statement executed by the
Oracle Server has an individual cursor
associated with it:

 Implicit cursors: Declared for all DML
and PL/SQL SELECT statements

e Explicit cursors: Declared and named
by the programmer

21-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Implicit and Explicit Cursors

The Oracle Server uses work areas called private SOL areas to execute SQL statements and to store
processing information. You can use PL/SQL cursors to name a private SQL areca and access its
stored information. The cursor directs all phases of processing.

Cursor Type Description

Implicit Implicit cursors are declared by PL/SQL implicitly for all DML and
PL/SQL SELECT statements, including queries that return only one row.

Explicit For queries that return more than one row. Explicit cursors are declared and
named by the programmer and manipulated through specific statements in
the block’s executable actions.

Implicit Cursors

The Oracle Server implicitly opens a cursor to process each SQL statement not associated with an
explicitly declared cursor. PL/SQL lets you refer to the most recent implicit cursor as the SQL cursor.

You cannot use the OPEN, FETCH, and CLOSE statements to control the SQL cursor, but you can
use cursor attributes to get information about the most recently executed SQL statement.

Introduction to Oracle: SQL and PL/SQL 21-3

Explicit Cursor Functions

Active set

7369 SMITH CLERK
7566 JONES MANAGER

Cursor Current row
7876 ADAMS CLERK
7902 FORD ANALYST
21-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Explicit Cursors
Use explicit cursors to individually process each row returned by a multiple-row SELECT statement.

The set of rows returned by a multiple-row query is called the active set. Its size is the number of
rows that meet your search criteria. The diagram on the slide shows how an explicit cursor “points”
to the current row in the active set. This allows your program to process the rows one at a time.

A PL/SQL program opens a cursor, processes rows returned by a query, and then closes the cursor.
The cursor marks the current position in the active set.

Explicit cursor functions:
» Can process beyond the first row returned by the query, row by row
» Keep track of which row is currently being processed
» Allow the programmer to manually control them in the PL/SQL block

Note: The fetch for an implicit cursor is an array fetch, and the existence of a second row still raises
the TOO MANY ROWS exception. Furthermore, you can use explicit cursors to perform multiple
fetches and to re-execute parsed queries in the work area.

Introduction to Oracle: SQL and PL/SQL 21-4

Controlling Explicit Cursors

‘ No
Yes

DECLARE [OPEN [FETCH CLOSE

* Createa ° Identify * Load the Test for * Release

named the active current existing the active
SQL area set row into rows set
variables e Return to
FETCH if
rows
found
21-5 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Explicit Cursors (continued)

Now that you have a conceptual understanding of cursors, review the steps to use them. The syntax
for each step can be found on the following pages.

Controlling Explicit Cursors Using Four Comm ands
1. Declare the cursor by naming it and defining the structure of the query to be performed
within it.
2. Open the cursor. The OPEN statement executes the query and binds any variables that are

referenced. Rows identified by the query are caled the active set and are now available for
fetching.

3. Fetch data from the cursor. In the flow diagram shown on the slide, after each fetch you test
the cursor for any existing row. If there are no more rows to process, then you need to close the
Cursor.

4. Close the cursor. The CLOSE statement rel eases the active set of rows. It is now possible to
reopen the cursor to establish afresh active set.

Introduction to Oracle: SQL and PL/SQL 21-5

Controlling Explicit Cursors

Open the cursor.

Vs

- Pointer
[
[

Cursor

row from the cursor.

Fetch a

Vs

— Pointer
[
\Cursor —

tinue until empty.

Vs

Con

o:>o|

Pointer
\Cursor

Close the cursor.

21-6

Copyright © Oracle Corporation, 1999. All rights reserved.

ORACLE"

Explicit Cursors (continued)

You use the OPEN, FETCH, and CLOSE statements to control a cursor. The OPEN statement

executes the query associated with the cursor, identifies the active set, and positions the cursor

(pointer) before the first row. The FETCH statement retrieves the current row and advances the
Cursor.

cursor to the next row. When the last row has been processed, the CLOSE statement disables the

Introduction to Oracle: SQL and PL/SQL 21-6

Declaring the Cursor

Syntax

CURSOR cursor name IS

select statement;

* Do not include the INTO clause in the
cursor declaration.

* If processing rows in a specific

sequence is required, use the ORDER
BY clause in the query.

21-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Explicit Cursor Declaration

Use the CURSOR statement to declare an explicit cursor. You can reference variables within the
query, but you must declare them before the CURSOR statement.

In the syntax:
cursor_name is a PL/SQL identifier
select statement is a SELECT statement without an INTO clause

Note: Do not include the INTO clause in the cursor declaration because it appears later in the FETCH
statement.

Introduction to Oracle: SQL and PL/SQL 21-7

Declaring the Cursor

Example

DECLARE
CURSOR emp cursor IS
SELECT empno, ename
FROM emp;

CURSOR dept cursor IS
SELECT *

FROM dept
WHERE deptno = 10;
BEGIN

21-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Explicit Cursor Declaration (continued)

Retrieve the employees one by one.

DECLARE
V_empno emp .empno%TYPE ;
V_ename emp .ename¥TYPE ;

CURSOR emp cursor IS
SELECT empno, ename
FROM emp ;

BEGIN

Note: You can reference variables in the query, but you must declare them before the CURSOR
statement.

Introduction to Oracle: SQL and PL/SQL 21-8

Opening the Cursor
Syntax

OPEN cursor name; I

* Open the cursor to execute the query
and identify the active set.

* If the query returns no rows, no
exception is raised.

e Use cursor attributes to test the
outcome after a fetch.

21-9 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

OPEN Statement

Open the cursor to execute the query and identify the active set, which consists of all rows that meet
the query search criteria. The cursor now points to the first row in the active set.

In the syntax:
cursor_name is the name of the previously declared cursor
OPEN is an executable statement that performs the following operations:

1. Dynamically allocates memory for a context area that eventually contains crucial processing
information.

2. Parses the SELECT statement.

Binds the input variables—that is, sets the value for the input variables by obtaining their
memory addresses.

4. Identifies the active set—that is, the set of rows that satisfy the search criteria. Rows in the
active set are not retrieved into variables when the OPEN statement is executed. Rather, the
FETCH statement retricves the rows.

5. Positions the pointer just before the first row in the active set.

Note: If the query returns no rows when the cursor is opened, PL/SQL does not raise an exception.
However, you can test the status of the cursor after a fetch.

For cursors declared using the FOR UPDATE clause, the OPEN statement also locks those rows. The
FOR UPDATE clause is discussed in a later lesson.

Introduction to Oracle: SQL and PL/SQL 21-9

Fetching Data from the Cursor

Syntax

FETCH cursor name INTO [variablel, variableZ,

| record name];

e Retrieve the current row values into
variables.

* Include the same number of variables.

 Match each variable to correspond to
the columns positionally.

* Test to see if the cursor contains rows.

21-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

FETCH Statement

The FETCH statement retrieves the rows in the active set one at a time. After each fetch, the cursor
advances to the next row in the active set.

In the syntax:

cursor_name is the name of the previously declared cursor
variable is an output variable to store the results
record name is the name of the record in which the retrieved data is stored (The record

variable can be declared using the %ROWTYPE attribute.)
Guidelines:

* Include the same number of variables in the INTO clause of the FETCH statement as columns in
the SELECT statement, and be sure that the datatypes are compatible.

* Match each variable to correspond to the columns positionally.
+ Altematively, define a record for the cursor and reference the record in the FETCH INTO clause.

» Test to see if the cursor contains rows. If a fetch acquires no values, there are no rows left to
process in the active set and no error is recorded.

Note: The FETCH statement performs the following operations:
1. Advances the pointer to the next row in the active set.
2. Reads the data for the current row into the output PL/SQL variables.

Introduction to Oracle: SQL and PL/SQL 21-10

Fetching Data from the Cursor

Examples

FETCH emp cursor INTO v_empno, Vv_ename; I

OPEN defined cursor;

LOOP
FETCH defined cursor INTO defined variables
EXIT WHEN ...;
-— Process the retrieved data
END;

21-11 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

FETCH Statement (continued)

You use the FETCH statement to retrieve the current row values into output variables. After the
fetch, you can manipulate the variables by further statements. For each column value returned by the
query associated with the cursor, there must be a corresponding variable in the INTO list. Also, their
datatypes must be compatible.

Retrieve the first 10 employees one by one.

DECLARE
v_empno emp.empno3¥TYPE;
Vv_ename emp.ename?3TYPE;
CURSOR emp cursor IS
SELECT empno, ename
FROM emp ;
BEGIN
OPEN emp cursor;
FOR i IN 1..10 LOOP
FETCH emp_cursor INTO v_empno, V_ename;

END LOOP;
END ;

Introduction to Oracle: SQL and PL/SQL 21-11

Closing the Cursor

Syntax

CLOSE cursor name; I

* Close the cursor after completing the
processing of the rows.

* Reopen the cursor, if required.

* Do not attempt to fetch data from a
cursor once it has been closed.

21-12 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

CLOSE Statement

The CLOSE statement disables the cursor, and the active set becomes undefined. Close the cursor
after completing the processing of the SELECT statement. This step allows the cursor to be reopened,
if required. Therefore, you can establish an active set several times.

In the syntax:
cursor_name is the name of the previously declared cursor.

Do not attempt to fetch data from a cursor once it has been closed, or the INVALID CURSOR
exception will be raised.

Note: The CLOSE statement rel eases the context area.

Although it is possible to terminate the PL/SQL block without closing cursors, you should get
into the habit of closing any cursor that you declare explicitly in order to free up resources.

There is amaximum limit to the number of open cursors per user, which is determined by the
OPEN_CURSORS parameter in the database parameter field. OPEN_CURSORS = 50 by default.

FOR i IN 1..10 LOOP
FETCH emp_cursor INTO v_empno, V_ename;

END LOOP;
CLOSE emp_cursor;
END;

Introduction to Oracle: SQL and PL/SQL 21-12

Explicit Cursor Attributes

Obtain status information about a cursor.

Attribute Type Description

%ISOPEN Boolean | Evaluates to TRUE if the cursor
is open

%NOTFOUND |Boolean | Evaluates to TRUE if the most
recent fetch does not return a row

%FOUND Boolean | Evaluates to TRUE if the most
recent fetch returns a row;
complement of %NOTFOUND

%ROWCOUNT | Number Evaluates to the total number of
rows returned so far

21-13

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Explicit Cursor Attributes

As with implicit cursors, there are four attributes for obtaining status information about a cursor.
When appended to the cursor variable name, these attributes return useful information about the
execution of a data manipulation statement.

Note: You cannot reference cursor attributes directly in a SQL statement.

Introduction to Oracle: SQL and PL/SQL 21-13

Controlling Multiple Fetches

* Process several rows from an explicit
cursor using a loop.

* Fetch a row with each iteration.

e Use the % NOTFOUND attribute to write
a test for an unsuccessful fetch.

» Use explicit cursor attributes to test the
success of each fetch.

21-14 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Controlling Multiple Fetches from Explicit Cursors

To process several rows from an explicit cursor, you typically define a loop to perform a fetch on
cach iteration. Eventually all rows in the active set are processed, and an unsuccessful fetch sets the
%NOTFOUND attribute to TRUE. Use the explicit cursor attributes to test the success of each fetch
before any further references are made to the cursor. If you omit an exit criterion, an infinite loop
results.

For more information, see PL/SQL User’s Guide and Reference, Release 8, “Interaction With
Oracle.”

Introduction to Oracle: SQL and PL/SQL 21-14

The %ISOPEN Attribute

* Fetch rows only when the cursor is
open.

e Use the %ISOPEN cursor attribute
before performing a fetch to test
whether the cursor is open.

Example

IF NOT emp cursor$ISOPEN THEN
OPEN emp cursor;

END IF;

LOOP

FETCH emp cursor...

21-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Explicit Cursor Attributes

* You can fetch rows only when the cursor is open. Use the %ISOPEN cursor attribute to
determine whether the cursor is open, if necessary.

» Fetch rows in a loop. Use cursor attributes to determine when to exit the loop.

» Use the %ROWCOUNT cursor attribute to retrieve an exact number of rows, fetch the rows in
a numeric FOR loop, or fetch the rows in a simple loop and determine when to exit the loop.

Note: %ISOPEN retumns the status of the cursor: TRUE if open and FALSE if not. It is not usually
necessary to inspect %ISOPEN.

Introduction to Oracle: SQL and PL/SQL 21-15

The %NOTFOUND
and % ROWCOUNT Attributes

e Use the % ROWCOUNT cursor attribute
to retrieve an exact number of rows.

* Use the %NOTFOUND cursor attribute
to determine when to exit the loop.

21-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Example

Retrieve the first 10 employees one by one.
DECLARE
v_empno emp.empno%¥TYPE;
v_ename emp.ename3¥TYPE;
CURSOR emp cursor IS
SELECT empno, ename
FROM emp ;
BEGIN
OPEN emp cursor;
LOOP
FETCH emp_cursor INTO v_empno, V_ename;
EXTIT WHEN emp cursor¥ROWCOUNT > 10 OR emp cursor3¥NOTFOUND;

END LOOP;
CLOSE emp cursor;
END ; -
Note: Before the first fetch, %NOTFOUND evaluates to NULL. So if FETCH never executes
successfully, the loop is never exited. That is because the EXIT WHEN statement executes only if its
WHEN condition is true. To be safe, you might want to use the following EXIT statement:

EXTT WHEN emp cursor3¥NOTFOUND OR emp cursor3NOTFOUND IS NULL;
If using %ROWCOUNT, add a test for no rows in the cursor by using the %NOTFOUND attribute,

because the row count is not incremented if the fetch does not retrieve any rows.
Introduction to Oracle: SQL and PL/SQL 21-16

Cursors and Records

Process the rows of the active set

conveniently by fetching values into a
PL/SQL RECORD.

Example

DECLARE
CURSOR emp cursor IS
SELECT empno, ename
FROM emp;
emp record emp cursorsROWTYPE;
BEGIN
OPEN emp cursor;
LOOP

FETCH emp cursor INTO emp record;

21-17 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Cursors and Records

You have already seen that you can define records to use the structure of columns in a table. You can
also define a record based on the selected list of columns in an explicit cursor. This is convenient for
processing the rows of the active set, because you can simply fetch into the record. Therefore, the
values of the row are loaded directly into the corresponding fields of the record.

Example

Use a cursor to retrieve employee numbers and names and populate a temporary database table with
this information.

DECLARE
CURSOR emp cursor IS
SELECT empno, ename
FROM emp ;
emp record emp cursor3¥ROWTYPE;
BEGIN
OPEN emp cursor;
LOOP
FETCH emp cursor INTO emp_ record;
EXTIT WHEN emp cursor3¥NOTFOUND;
INSERT INTO temp list (empid, empname)
VALUES (emp record.empno, emp_record.ename) ;
END LOOP;
COMMIT ;
CLOSE emp_cursor;
END ;

Introduction to Oracle: SQL and PL/SQL 21-17

Cursor FOR Loops
Syntax

FOR record_name IN cursor name LOOP
statementl;

statement?2;

END LOOP;

 The cursor FOR loop is a shortcut to
process explicit cursors.

* Implicit open, fetch, and close occur.
* The record is implicitly declared.

21-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Cursor FOR Loops

A cursor FOR loop processes rows in an explicit cursor. It is a shortcut because the cursor is opened,
rows are fetched once for each iteration in the loop, and the cursor is closed automatically when all
rows have been processed. The loop itself is terminated automatically at the end of the iteration
where the last row was fetched.

In the syntax:

record name is the name of the implicitly declared record
cursor_name is a PL/SQL identifier for the previously declared cursor
Guidelines

» Do not declare the record that controls the loop. Its scope is only in the loop.
» Test the cursor attributes during the loop, if required.

* Supply the parameters for a cursor, if required, in parentheses following the cursor name in the
FOR statement. More information on cursor parameters is covered in a subsequent lesson.

* Do not use a cursor FOR loop when the cursor operations must be handled manually.

Note: You can define a query at the start of the loop itself. The query expression is called a SELECT
substatement, and the cursor is internal to the FOR loop. Because the cursor is not declared with a
name, you cannot test its attributes.

Introduction to Oracle: SQL and PL/SQL 21-18

Cursor FOR Loops

Retrieve employees one by one until no
more are left.

Example

DECLARE
CURSOR emp cursor IS
SELECT ename, deptno
FROM emp;
BEGIN
FOR emp record IN emp cursor LOOP
—- implicit open and implicit fetch occur
IF emp record.deptno = 30 THEN

END LOOP; -- implicit close occurs
END;

21-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Example

Retrieve employees one by one and print out a list of those employees currently working in the Sales
department. The example from the slide is completed below.
SET SERVEROUTPUT ON
DECLARE
CURSOR emp cursor IS
SELECT ename, deptno
FROM emp ;
BEGIN
FOR emp record IN emp cursor LOOP
—-—implicit open and implicit fetch occur
IF emp record.deptno = 30 THEN
DEMS OUTPUT.PUT LINE ('Employee ' || emp_record.ename
|| ' works in the Sales Dept. ') :;
END IF;
END LOOP; —-—-implicit close occurs
END ;
/

Introduction to Oracle: SQL and PL/SQL 21-19

Cursor FOR Loops
Using Subqueries

No need to declare the cursor.
Example

BEGIN
FOR emp record IN (SELECT ename, deptno
FROM emp) LOOP
—- implicit open and implicit fetch occur

IF emp record.deptno = 30 THEN

END LOOP; -- implicit close occurs
END;

21-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Cursor FOR Loops Using Subqueries

You do not need to declare a cursor because PL/SQL lets you substitute a subquery. This example
does the same thing as the one on the previous page. It is complete code for the slide above.

SET SERVEROUTPUT ON
BEGIN
FOR emp record IN (SELECT ename, deptno
FROM emp) LOOP
—-—implicit open and implicit fetch occur
IF emp record.deptno = 30 THEN
DEMS OUTPUT.PUT LINE ('Employee ' || emp_record.ename
|| ' works in the Sales Dept. ') :;
END IF;
END LOOP; —-—-implicit close occurs
END ;
/

Introduction to Oracle: SQL and PL/SQL 21-20

Summary

e Cursor types:

— Implicit cursors: Used for all DML
statements and single-row queries.

- Explicit cursors: Used for queries of
zero, one, or more rows.

* You can manipulate explicit cursors.

* You can evaluate the cursor status by
using cursor attributes.

* You can use cursor FOR loops.

21-21 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Summary

An implicit cursor is declared by PL/SQL for each SQL data manipulation statement. PL/SQL lets
you refer to the most recent implicit cursor as the SQL cursor. PL/SQL provides four attributes for
cach cursor. These attributes provide you with useful information about the operations that are
performed with cursors. you can use the cursor attribute by appending it to the name of an explicit
cursor. You may use these attributes only in PL/SQL statements.

PL/SQL allows you to process rows returned by a multi-row query. To individually process a row
in a set of one or more rows returned by a query, you can declare an explicit cursor.

Introduction to Oracle: SQL and PL/SQL 21-21

Example
Retrieve the first 5 line items for an order one by one. As each product is processed for the order,
calculate the new total for the order and print it to the screen.
SET SERVEROUTPUT ON
ACCEPT p_ordid PROMPT 'Please enter the order number: '

DECLARE
v_prodid item.prodid%TYPE;
v_item total NUMBER (11,2);
v_order total NUMBER (11,2) := O;

CURSOR item cursor IS
SELECT prodid, actualprice * gty

FROM item
WHERE ordid = &p_ordid;
BEGIN
OPEN item cursor;
LOOP

FETCH item cursor INTO v_prodid, v_item total;
EXIT WHEN item cursor3%ROWCOUNT > 5 OR
item cursor%NOTFOUND;
v_order total := v_order total + v_item total;
DBMS OUTPUT.PUT LINE ('Product number ' || TO_CHAR (v_prodid)
' brings this order to a total of ' ||
TO_CHAR (v_order total, 1$999,999.99')) ;
END LOOP;
CLOSE item cursor;

END;
/

Introduction to Oracle: SQL and PL/SQL 21-22

Practice Overview

* Declaring and using explicit cursors to
query rows of a table

* Using a cursor FOR loop

* Applying cursor attributes to test the
cursor status

21-23 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Practice Overview

This practice applies your knowledge of cursors to process a number of rows from a table and
populate another table with the results using a cursor FOR loop.

Introduction to Oracle: SQL and PL/SQL 21-23

Practice 21

L.

Run the script 1ab21 1.sqgl to create a new table for storing employees and their salaries.

SQL> CREATE TABLE top_dogs
2 (name VARCHAR2 (25) ,
3 salary NUMBER (11,2)) ;

2. Create a PL/SQL block that determines the top employees with respect to salaries.

. Accept a number # as user input with a SQL*Plus substitution parameter.

. In aloop, get the last names and salaries of the top » people with respect to salary in the

EMP table.

. Store the names and salaries in the TOP_DOGS table.
d. Assume that no two employees have the same salary.

. Test a variety of special cases, such as » = 0 or where » is greater than the number

of employees in the EMP table. Empty the TOP_DOGS table after each test.

Please enter the number of top money makers: 5
NAME SALARY

KING 5000
FORD 3000
SCOTT 3000
JONES 2975
BLAKE 2850

Consider the case where several employees have the same salary. If one person is listed, then
all people who have the same salary should also be listed.

a. For example, if the user enters a value of 2 for », then King, Ford, and Scott should be

displayed. (These employees are tied for second highest salary)

. If the user enters a value of 3, then King, Ford, Scott, and Jones should be displayed.
. Delete all rows from TOP_DOGS and test the practice.

Please enter the number of top money makers: 2
NAME SALARY

KING 5000
FORD 3000
SCOTT 3000

Introduction to Oracle: SQL and PL/SQL 21-24

Practice 21 (continued)

Please enter the number of top money makers: 3

NAME SALARY
KING 5000
FORD 3000
SCOTT 3000
JONES 2975

Introduction to Oracle: SQL and PL/SQL 21-25

Introduction to Oracle: SQL and PL/SQL 21-26

22

Advanced Explicit Cursor
Concepts

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Objectives

After completing this lesson, you should
be able to do the following:

* Write a cursor that uses parameters

e Determine when a FOR UPDATE clause
in a cursor is required

* Determine when to use the WHERE
CURRENT OF clause

* Write a cursor that uses a subquery

22-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Lesson Aim

In this lesson, you will learn more about writing explicit cursors, specifically about writing cursors
that use parameters.

Introduction to Oracle: SQL and PL/SQL 22-2

Cursors with Parameters

Syntax

CURSOR cursor name

[(parameter name datatype, ...)]
IS

select statement;

* Pass parameter values to a cursor when
the cursor is opened and the query is
executed.

* Open an explicit cursor several times
with a different active set each time.

22-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Cursors with Parameters

Parameters allow values to be passed to a cursor when it is opened and to be used in the query when it
executes. This means that you can open and close an explicit cursor several times in a block, returning
a different active set on each occasion.

Each formal parameter in the cursor declaration must have a corresponding actual parameter in the
OPEN statement. Parameter datatypes are the same as those for scalar variables, but you do not give
them sizes. The parameter names are for references in the query expression of the cursor.

In the syntax:
cursor_name is a PL/SQL identifier for the previously declared cursor

parameter name is the name of a parameter (Parameter stands for the
following syntax.)

cursor parameter name [IN] datatype [{:= | DEFAULT} expr]
datatype is a scalar datatype of the parameter
select statement is a SELECT statement without the INTO clause

When the cursor is opened, you pass values to each of the parameters positionally. You can pass values
from PL/SQL or host variables as well as from literals.

Note: The parameter notation does not offer greater functionality; it simply allows you to specify input
values easily and clearly. This is particularly useful when the same cursor is referenced repeatedly.

Introduction to Oracle: SQL and PL/SQL 22-3

Cursors with Parameters

Pass the department number and job title
to the WHERE clause.

Example

DECLARE
CURSOR emp cursor
(p_deptno NUMBER, p_ job VARCHAR2) IS

SELECT empno, ename

FROM emp

WHERE deptno = v_deptno

AND job = v_job;
BEGIN

OPEN emp cursor (10, 'CLERK');

22-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Parameter datatypes are the same as those for scalar variables, but you do not give them sizes. The
parameter names are for references in the cursor’s query.

In the following example, two variables and a cursor are declared. The cursor is defined with two

parameters.
DECLARE
v_emp_ Jjob emp.job%TYPE := 'CLERK';
V_ename emp .ename¥TYPE ;
CURSOR emp_ cursor (p_deptno NUMBER, p_Jjob VARCHAR2) IS
SELECT

Either of the following statements opens the cursor:

OPEN emp cursor (10, v_emp job) ;
OPEN emp cursor (20, 'ANALYST') ;

You can pass parameters to the cursor used in a cursor FOR loop:

DECLARE
CURSOR emp_ cursor (p_deptno NUMBER, p_Jjob VARCHAR2) IS
SELECT
BEGIN
FOR emp record IN emp cursor (10, 'ANALYST') LOOP

Introduction to Oracle: SQL and PL/SQL 22-4

The FOR UPDATE Clause

Syntax

SELECT ...
FROM

FOR UPDATE [OF column reference] [NOWAIT];

» Explicit locking lets you deny access for
the duration of a transaction.

* Lock the rows before the update or
delete.

22-5 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

The FOR UPDATE Clause

You may want to lock rows before you update or delete rows. Add the FOR UPDATE clause in the
cursor query to lock the affected rows when the cursor is opened. Because the Oracle Server releases

locks at the end of the transaction, you should not commit across fetches from an explicit cursor if
FOR UPDATE is used.

In the syntax:
column_reference is a column in the table against which the query is performed (A
list of columns may also be used.)

NOWAIT returns an Oracle error if the rows are locked by another session

The FOR UPDATE clause is the last clause in a select statement, even after the ORDER BY, if one
exists.

When querying multiple tables, you can use the FOR UPDATE clause to confine row locking to
particular tables. Rows in a table are locked only if the FOR UPDATE clause refers to a column in
that table.

Exclusive row locks are taken on the rows in the active set before the OPEN returns when the FOR
UPDATE clause is used.

Introduction to Oracle: SQL and PL/SQL 22-5

The FOR UPDATE Clause

Retrieve the employees who work in
department 30.

Example

DECLARE
CURSOR emp cursor IS
SELECT empno, ename, sal
FROM emp
WHERE deptno = 30
FOR UPDATE OF sal NOWAIT;

22-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

The FOR UPDATE Clause (continued)

Note: If the Oracle Server cannot acquire the locks on the rows it needs in a SELECT FOR
UPDATE, it waits indefinitely. You can use the NOWAIT clause in the SELECT FOR UPDATE
statement and test for the error code that retumns because of failure to acquire the locks in a loop.
Therefore, you can retry opening the cursor # times before terminating the PL/SQL block. If you
have a large table, you can achieve better performance by using the LOCK TABLE statement to lock
all rows in the table. However, when using LOCK TABLE, you cannot use the WHERE CURRENT
OF clause and must use the notation WHERE column = identifier.

It is not mandatory that the FOR UPDATE OF clause refers to a column, but it is recommended for
better readability and maintenance.

Introduction to Oracle: SQL and PL/SQL 22-6

The WHERE CURRENT OF

Clause
Syntax

WHERE CURRENT OF cursor ; I

* Use cursors to update or delete the
current row.

* Include the FOR UPDATE clause in the
cursor query to lock the rows first.

e Use the WHERE CURRENT OF clause to
reference the current row from an
explicit cursor.

22-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

The WHERE CURRENT OF Clause

When referencing the current row from an explicit cursor, use the WHERE CURRENT OF clause.
This allows you to apply updates and deletes to the row currently being addressed, without the need
to explicitly reference ROWID. You must include the FOR UPDATE clause in the cursor query so
that the rows are locked on OPEN.

In the syntax:

cursor is the name of a declared cursor (The cursor must have been
declared with the FOR UPDATE clause.)

Introduction to Oracle: SQL and PL/SQL 22-7

The WHERE CURRENT OF Clause

Example

DECLARE
CURSOR sal cursor IS
SELECT sal

FROM emp

WHERE deptno = 30

FOR UPDATE OF sal NOWAIT;
BEGIN

FOR emp record IN sal cursor LOOP
UPDATE emp

SET sal = emp record.sal * 1.10
WHERE CURRENT OF sal cursor;

END LOOP;

COMMIT;

END;

22-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

The WHERE CURRENT OF Clause (continued)

You can update rows based on criteria from a cursor.

Additionally, you can write your DELETE or UPDATE statement to contain the WHERE
CURRENT OF cursor name clause to refer to the latest row processed by the FETCH statement.
When vou use this clause, the cursor you reference must exist and must contain the FOR UPDATE
clause in the cursor query; otherwise, you will receive an error. This clause allows you to apply
updates and deletes to the currently addressed row without the need to explicitly reference the
ROWID pseudo-column.

Example

The slide example loops through each employee in department 30, raising each salary by 10%. The
WHERE CURRENT OF clause in the UPDATE statement refers to the currently fetched record.

Introduction to Oracle: SQL and PL/SQL 22-8

Cursors with Subqueries

Example

DECLARE
CURSOR my cursor IS
SELECT tl.deptno, tl.dname, t2.STAFF
FROM dept tl1l, (SELECT deptno,
count (*) STAFF
FROM emp
GROUP BY deptno) t2
WHERE tl.deptno = t2.deptno
AND t2.STAFF >= 5;

22-9 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Subqueries

A subquery is a query (usually enclosed by parentheses) that appears within another SQL data
manipulation statement. When evaluated, the subquery provides a value or set of values to the
statement.

Subqueries are often used in the WHERE clause of a select statement. They can also be used in the
FROM clause, creating a temporary data source for that query. In this example, the subquery creates
a data source consisting of department numbers and employee head count in cach department (known
as the alias STAFF). A table alias, t2, refers to this temporary data source in the FROM clause. When
this cursor is opened, the active set will contain the department number, department name, and
employee head count for those departments that have a head count greater than or equal to 5.

A subquery or correlated subquery can be used.

Introduction to Oracle: SQL and PL/SQL 22-9

Summary

* You can return different active sets
using cursors with parameters.

* You can define cursors with subqueries
and correlated subqueries.

* You can manipulate explicit cursors
with commands:

- FOR UPDATE Clause
- WHERE CURRENT OF Clause

22-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Summary

An explicit cursor can take parameters. In a query, you can specify a cursor parameter wherever a
constant can appear. An advantage of using parameters is that you can decide the active set at run
time. PL/SQL provides a method to modify the rows that have been retrieved by the cursor. The
method consists of two parts. The FOR UPDATE clause in the cursor declaration and the WHERE
CURRENT OF clause in an UPDATE or DELETE statement.

Introduction to Oracle: SQL and PL/SQL 22-10

Practice Overview

* Declaring and using explicit cursors
with parameters

» Using a cursor FOR UPDATE

22-11 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Practice Overview

This practice applies your knowledge of cursors with parameters to process a number of rows from
multiple tables.

Introduction to Oracle: SQL and PL/SQL 22-11

Practice 22

1. Use a cursor to retrieve the department number and the department name from the
dept table. Pass the department number to another cursor to retrieve from the emp
table the details of employee name, job, hiredate, and salary of all the employees
who work in that department.

Department Number : 10 Department Name : ACCOUNTING

KING PRESIDENT 17-NOV-81 5000
CLARK MANAGER 09-JUN-81 2450
MILLER CLERK 23-JAN-82 1300

Department Number : 20 Department Name : RESEARCH

JONES MANAGER 02-APR-81 2975
FORD ANALYST 03-DEC-81 3000
SMITH CLERK 17-DEC-80 800
SCOTT ANALYST 09-DEC-82 3000
ADAMS CLERK 12-JAN-83 1100

Department Number : 30 Department Name : SALES

BLAKE MANAGER 01-MAY-81 2850
MARTIN SALESMAN 28-SEP-81 1250
ALLEN SALESMAN 20-FEB-81 1600
TURNER SALESMAN 08-SEP-81 1500
JAMES CLERK 03-DEC-81 950

WARD SALESMAN 22-FEB-81 1250

Department Number : 40 Department Name : OPERATIONS

2. Modify p19g5. sqgl to incorporate the FOR UPDATE and WHERE CURRENT
OF functionality in cursor processing.

EMPNO SAL STARS

8000

7900 95 *kkkkKkKkk kK

7844 1500 ***kkkkrkhkkrkk k&K

Introduction to Oracle: SQL and PL/SQL 22-12

= -f)
25

Handling Exceptions

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Objectives

After completing this lesson, you should
be able to do the following:

» Define PL/SQL exceptions
* Recognize unhandled exceptions

e List and use different types of PL/SQL
exception handlers

e Trap unanticipated errors

e Describe the effect of exception
propagation in nested blocks

e Customize PL/SQL exception messages

23-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Lesson Aim

In this lesson, you will learn what PL/SQL exceptions are and how to deal with them using
predefined, non-predefined, and user-defined exception handlers.

Introduction to Oracle: SQL and PL/SQL 23-2

Handling Exceptions with PL/SQL

 What is an exception?
Identifier in PL/SQL that is raised during
execution

* How is it raised?
— An Oracle error occurs.
- You raise it explicitly.
* How do you handle it?
— Trap it with a handler.
- Propagate it to the calling environment.

23-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Overview

An exception is an identifier in PL/SQL, raised during the execution of a block that terminates its
main body of actions. A block always terminates when PL/SQL raises an exception, but you specify
an exception handler to perform final actions.

Two Methods for Raising an Exception

» An Oracle error occurs and the associated exception is raised automatically. For example, if the
error ORA-01403 occurs when no rows are retrieved from the database in a SELECT
statement, then PL/SQL raises the exception NO_DATA FOUND.

* You raise an exception explicitly by issuing the RAISE statement within the block. The
exception being raised may be either user defined or predefined.

Introduction to Oracle: SQL and PL/SQL 23-3

Handling Exceptions

Trap the exception Propagate the exception

DECLARE DECLARE
| l | l
BEGIN BEGIN .
Exception | | | !Exce:ptlgn
i ised is raise
'S FAISe | EXCEPTION EXCEPTION
| l |
Exception)) Exception is
is trapped END; END; | not trapped
Exception
propagates to calling
environment
23-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Trapping an Exception

If the exception is raised in the executable section of the block, processing branches to the
corresponding exception handler in the exception section of the block. If PL/SQL successfully
handles the exception, then the exception does not propagate to the enclosing block or environment.
The PL/SQL block terminates successfully.

Propagating an Exception

If the exception is raised in the executable section of the block and there is no corresponding
exception handler, the PL/SQL block terminates with failure and the exception is propagated to the
calling environment.

Introduction to Oracle: SQL and PL/SQL 23-4

Exception Types

* Predefined Oracle Server

Implicitly
* Non-predefined Oracle Server raised
* User-defined Explicitly raised
23-5 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Exception Types

You can program for exceptions to avoid disruption at runtime. There are three types of exceptions.

Exception Description Directions for Handling

Predefined Oracle One of approximately 20 errors | Do not declare and allow the

Server error that occur most often in Oracle Server to raise them
PL/SQL code implicitly

Non-predefined Oracle | Any other standard Oracle Declare within the declarative

Server error Server error section and allow the Oracle

Server to raise them implicitly

User-defined error A condition that the developer | Declare within the declarative

determines is abnormal. section and raise explicitly

Note: Some application tools with client-side PL/SQL, such as Oracle Developer Forms, have their
own exceptions.

Introduction to Oracle: SQL and PL/SQL 23-5

Trapping Exceptions
Syntax

EXCEPTION
WHEN exceptionl [OR exception2 . . .] THEN
statementl;

statementZ2;

[WHEN exception3 [OR exception4d . . .] THEN
statementl;
statement2;
I |
[WHEN OTHERS THEN
statementl;

statementZ2;

-1

23-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Trapping Exceptions

You can trap any error by including a corresponding routine within the exception handling section of
the PL/SQL block. Each handler consists of a WHEN clause, which specifies an exception, followed
by a sequence of statements to be executed when that exception is raised.

In the syntax:

exception 1s the standard name of a predefined exception or the name of a user-
defined exception declared within the declarative section

Statement 1s one or more PL/SQL or SQL statements

OTHERS 1s an optional exception-handling clause that traps unspecified exceptions

WHEN OTHERS Exception Handler

The exception-handling section traps only those exceptions specified; any other exceptions are not
trapped unless you use the OTHERS exception handler. This traps any exception not yet handled. For
this reason, OTHERS is the last exception handler defined.

The OTHERS handler traps a// exceptions not already trapped. Some Oracle tools have their own

predefined exceptions that you can raise to cause events in the application. OTHERS also traps these
exceptions.

Introduction to Oracle: SQL and PL/SQL 23-6

Trapping Exceptions Guidelines

« WHEN OTHERS is the last clause.

« EXCEPTION keyword starts exception-
handling section.

e Several exception handlers are allowed.

* Only one handler is processed before
leaving the block.

23-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Guidelines
Begin the exception-handling section of the block with the keyword EXCEPTION.

Define several exception handlers, each with its own set of actions, for the block.

When an exception occurs, PL/SQL processes only one handler before leaving the block.
Place the OTHERS clause after all other exception-handling clauses.

You can have at most one OTHERS clause.

Exceptions cannot appear in assignment statements or SQL statements.

Introduction to Oracle: SQL and PL/SQL 23-7

Trapping Predefined
Oracle Server Errors

* Reference the standard name in the
exception-handling routine.

e Sample predefined exceptions:
- NO_DATA _FOUND
- TOO_MANY_ROWS
— INVALID_CURSOR
- ZERO_DIVIDE
— DUP_VAL _ON_INDEX

23-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Trapping Predefined Oracle Server Errors

Trap a predefined Oracle Server error by referencing its standard name within the corresponding
exception-handling routine.

For a complete list of predefined exceptions, see PL/SQL User’s Guide and Reference, Release 8,
“Error Handling.”

Note: PL/SQL declares predefined exceptions in the STANDARD package.

It is a good idea to always consider the NO DATA FOUND and TOO MANY ROWS exceptions,
which are the most common.

Introduction to Oracle: SQL and PL/SQL 23-8

Predefined Exceptions

Oracle
Server
Error
Exception Name Number Description
ACCESS_INTO NULL ORA-063530 | Attempted to assign values to the attributes of
an uninitialized object
COLLECTION_IS NULL ORA-06531 | Attempted to apply collection methods other
than EXISTS to an uninitialized nested table
or varray
CURSOR_ALREADY_OPEN ORA-06511 | Attempted to open an already open cursor
DUP_VAL ON INDEX ORA-00001 | Attempted to insert a duplicate value
INVALID_CURSOR ORA-01001 | Illegal cursor operation occurred
INVALID NUMBER ORA-01722 | Conversion of character string to number fails
LOGIN_DENIED ORA-01017 | Logging on to Oracle with an invalid username
or password
NO_DATA FOUND ORA-01403 | Single row SELECT returned no data
NOT_LOGGED_ON ORA-01012 | PL/SQL program issucs a database call
without being connected to Oracle
PROGRAM_ERROR ORA-06501 | PL/SQL has an internal problem
ROWTYPE MISMATCH ORA-06504 | Host cursor variable and PL/SQL cursor
variable involved in an assignment have
mcompatible return types
STORAGE _ERROR ORA-06500 | PL/SQL ran out of memory or memory is
corrupted
SUBSCRIPT BEYOND COUNT | ORA-06533 | Referenced a nested table or varray element
using an index number larger than the number
of elements in the collection
SUBSCRIPT_OUTSIDE LIMIT | ORA-06532 | Referenced a nested table or varray element
using an index number that is outside the legal
range (—1 for example)
TIMEOUT _ON_RESOURCE ORA-00051 | Time-out occurred while Oracle is waiting for a
resource
TOO_MANY ROWS ORA-01422 | Single-row SELECT returned more than one
row
VALUE ERROR ORA-06502 | Arithmetic, conversion, truncation, or size-
constraint error occurred
ZERO_DIVIDE ORA-01476 | Attempted to divide by zero

Introduction to Oracle: SQL and PL/SQL 23-9

Predefined Exception
Syntax

BEGIN
EXCEPTION
WHEN NO DATA FOUND THEN
statementl;,
statement2;
WHEN TOO MANY ROWS THEN
statementl;
WHEN OTHERS THEN
statementl;,
statement2,

statement3;
END;

23-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Trapping Predefined Oracle Server Exceptions

Only one exception is raised and handled at any time.

Introduction to Oracle: SQL and PL/SQL 23-10

Trapping Non-Predefined Oracle
Server Errors

Declare

—3p- Associate

Declarative section

'

Reference

Exception-handling

section

* Name the

exception EXCEPTION_INIT

23-11

* Code the PRAGMA

* Handle the
raised
exception

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Trapping Non-Predefined Oracle Server Errors

You trap a non-predefined Oracle Server error by declaring it first, or by using the OTHERS handler.
The declared exception is raised implicitly. In PL/SQL, the pragma EXCEPTION _INIT tells the
compiler to associate an exception name with an Oracle error number. That allows you to refer to any
internal exception by name and to write a specific handler for it.

Note: PRAGMA (also called pseudoinstructions) is the keyword that signifies that the statement is a
compiler directive, which is not processed when the PL/SQL block is executed. Rather, it directs the

PL/SQL compiler to interpret all occurrences of the exception name within the block as the
associated Oracle Server error number.

Introduction to Oracle: SQL and PL/SQL 23-11

Non-Predefined Error

Trap for Oracle Server error number
—2292, an integrity constraint violation.

®»©

v_deptno dept.deptno%TYPE := &p deptno;
BEGIN
DELETE FROM dept
WHERE deptno = v_deptno;
COMMIT;
EXCEPTIO
= THEN @
DBEMS OUTPUT.PUT LINE ('Cannot remove dept ' ||
TO_CHAR(v_deptno) || '. Employees exist. ')’
END;

23-12 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Trapping a Non-Predefined Oracle Server Exception
1. Declare the name for the exception within the declarative section.
Syntax)
exception EXCEPTION;
where: exception is the name of the exception.

2. Associate the declared exception with the standard Oracle Server error number using the
PRAGMA EXCEPTION INIT statement.

Syntax
PRAGMA EXCEPTION INIT (exception, error number);
where: exception is the previously declared exception.
error_number is a standard Oracle Server error number.
3. Reference the declared exception within the corresponding exception-handling routine.

Example

If there are employees in a department, print a message to the user that the department cannot be
removed.

For more information, see Oracle Server Messages, Release 8.

Introduction to Oracle: SQL and PL/SQL 23-12

Functions for Trapping
Exceptions
« SQLCODE

Returns the numeric value for the error
code

* SQLERRM
Returns the message associated with the
error number

23-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Error Trapping Functions

When an exception occurs, you can identify the associated error code or error message by using two
functions. Based on the values of the code or message, you can decide what subsequent action to take
based on the error.

SQLCODE returns the number of the Oracle error for internal exceptions. You can pass an error
number to SQLERRM, which then returns the message associated with the error number.

Function Description

SQLCODE Returns the numeric value for the error code (You can assign it to a
NUMBER variable.)

SQLERRM Returns character data containing the message associated with the error
number

Example SQLCODE Values

SQLCODE Value | Description

0 No exception encountered

1 User-defined exception

+100 NO_DATA_ FOUND exception

negative number Another Oracle Server error number

Introduction to Oracle: SQL and PL/SQL 23-13

Functions for Trapping Exceptions
Example

DECLARE
Vv_error_code NUMBER;
V_error message VARCHAR?2 (255) ;
BEGIN

EXCEPTION

WHEN OTHERS THEN

ROLLBACK;
v_error code := SQLCODE ; -
Vv_error message := SQLERRM ; -

INSERT INTO errors

VALUES (v_error code, Vv_error message);
END;

23-14 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Error-Trapping Functions

When an exception is trapped in the WHEN OTHERS exception handler, you can use a set of generic
functions to identify those errors.

The example on the slide illustrates the values of SQLCODE and SQLERRM being assigned to
variables and then those variables being used in a SQL statement.

Truncate the value of SQLERRM to a known length before attempting to write it to a variable.

Introduction to Oracle: SQL and PL/SQL 23-14

Trapping User-Defined

Exceptions
Declare »| Raise » Reference
Declarative Executable Exception-handling
section section section
* Name the * Explicitly raise * Handle the
exception the exception by raised
using the RAISE exception
statement

23-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Trapping User-Defined Exceptions
PL/SQL lets you define your own exceptions. User-defined PL/SQL exceptions must be:

» Declared in the declare section of a PL/SQL block
» Raised explicitly with RAISE statements

Introduction to Oracle: SQL and PL/SQL 23-15

User-Defined Exception

Example

DECLARE

BEGIN <:>
UPDATE product
SET descrip = '&product description'
WHERE prodid = &product number;

IF SQL%NOTFOUND THEN

END IF;
COMMIT;
EXCEPTION
= THEN
DBMS OUTPUT.PUT LINE('Invalid product number.');
END;
23-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Trapping User-Defined Exceptions (continued)
You trap a user-defined exception by declaring it and raising it explicitly.
1. Declare the name for the user-defined exception within the declarative section.
Syntax
exception EXCEPTION;
where: exception is the name of the exception
2. Use the RAISE statement to raise the exception explicitly within the executable section.
Syntax
RAISE exception;
where: exception is the previously declared exception
3. Reference the declared exception within the corresponding exception handling routine.
Example

This block updates the description of a product. The user supplies the product number and the new
description. If the user enters a product number that does not exist, no rows will be updated in the
PRODUCT table. Raise an exception and print a message to the user alerting them that an invalid
product number was entered.

Note: Use the RAISE statement by itself within an exception handler to raise the same exception
back to the calling environment.

Introduction to Oracle: SQL and PL/SQL 23-16

Calling Environments

SQL*Plus Displays error number and message
to screen

Procedure Displays error number and message

Builder to screen

Oracle Accesses error number and message

Developer in a trigger by means of the

Forms ERROR_CODE and ERROR_TEXT
packaged functions

Precompiler Accesses exception number through

application the SQLCA data structure

An enclosing Traps exception in exception-

PL/SQL block handling routine of enclosing block

23-17 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Propagating Exceptions

Instead of trapping an exception within the PL/SQL block, propagate the exception to allow the
calling environment to handle it. Each calling environment has its own way of displaying and

accessing CITOTS.

Introduction to Oracle: SQL and PL/SQL 23-17

Propagating Exceptions

Subblocks can handle
an exception or pass
the exception to the
enclosing block.

DECLARE
e no_rows exception;
e integrity exception;

PRAGMA EXCEPTION INIT (e integrity, -2292);
BEGIN
FOR c_record IN emp cursor LOOP

BEGIN
SELECT ...
UPDATE ...
IF SQLNOTFOUND THEN
RAISE €& no_rows;
END IF;
EXCEPTION
WHEN e integrity THEN ...
WHEN e no rows THEN ...
END;

END LOOP;
EXCEPTION
WHEN NO DATA FOUND THEN .
WHEN TOO MANY ROWS THEN .
END;

23-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Propagating an Exception in a Subblock

When a subblock handles an exception, it terminates normally, and control resumes in the enclosing

block immediately after the subblock END statement.

However, if PL/SQL raises an exception and the current block does not have a handler for that

exception, the exception propagates in successive enclosing blocks until it finds a handler. If none of

these blocks handle the exception, an unhandled exception in the host environment results.

When the exception propagates to an enclosing block, the remaining executable actions in that block

are bypassed.

One advantage of this behavior is that you can enclose statements that require their own exclusive
error handling in their own block, while leaving more general exception handling to the enclosing

block.

Introduction to Oracle: SQL and PL/SQL 23-18

RAISE_APPLICATION_ERROR
Procedure

Syntax

raise application_error (error number,
message[, {TRUE | FALSE}]);

» A procedure that lets you issue user-
defined error messages from stored

subprograms
 Called only from an executing stored
subprogram
23-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

RAISE_APPLICATION_ERROR Procedure

Use the RAISE_ APPLICATION_ ERROR procedure to communicate a predefined exception
interactively by returning a nonstandard error code and error message. With

RAISE APPLICATION ERROR, you can report errors to your application and avoid returning
unhandled exceptions.

In the syntax:

error_number is a user specified number for the exception between —20000 and
-20999.

message is the user-specified message for the exception. It is a character
string up to 2,048 bytes long.

TRUE | FALSE is an optional Boolean parameter (If TRUE, the error is placed on

the stack of previous errors. If FALSE, the default, the error
replaces all previous errors.)

Example
EXCEPTION
WHEN NO DATA FOUND THEN
RAISE APPLICATION ERROR (-20201,

'Manager is not a valid employee.') ;
END;

Introduction to Oracle: SQL and PL/SQL 23-19

RAISE_APPLICATION_ERROR
Procedure

e Used in two different places:
— Executable section
— Exception section

e Returns error conditions to the user in a
manner consistent with other Oracle
Server errors

23-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Example

DELETE FROM emp
WHERE mgr = v_mgr;
IF SQL$NOTFOUND THEN
RAISE APPLICATION ERROR(-20202,'This is not a valid manager') ;
END IF;

Introduction to Oracle: SQL and PL/SQL 23-20

Summary

» Exception types:
— Predefined Oracle Server error
— Non-predefined Oracle Server error
— User-defined error

e Exception trapping

e Exception handling:

- Trap the exception within the PL/SQL
block.

- Propagate the exception.

23-21 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Summary

PL/SQL implements error handling via exceptions and exception handlers. Predefined exceptions are
error conditions that are defined by Oracle server. Non-Predefined exceptions are any other standard
Oracle Server error. Exceptions that are specific to your application or onges that you can anticipate
while creating the application are user-defined exceptions.

Once an error has occurred, (an exception has been raised) the control is transferred to the exception
handling part of the PL/SQL block. If an associated exception is there in the exception-handling part,
the code specified with the exception handler is executed. If an associated exception handler is not
found in the current block and the current block is nested, the control will propagate to outer block, if
any. If an exception handler is not found in the outer block(s) too, PL/SQL reports an error.

Introduction to Oracle: SQL and PL/SQL 23-21

Practice Overview

 Handling named exceptions

» Creating and invoking user-defined
exceptions

23-22 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Practice Overview

In this practice, you create exception handlers for specific situations.

Introduction to Oracle: SQL and PL/SQL 23-22

Practice 23

1. Write a PL/SQL block to select the name of the employee with a given salary value.

a.

If the salary entered returns more than one row, handle the exception with an appropriate
exception handler and insert into the MESSAGES table the message “More than one
employee with a salary of <salary>.”

. If the salary entered does not return any rows, handle the exception with an appropriate

exception handler and insert into the MESSAGES table the message “No employee with
a salary of <salary>."

If the salary entered returns only one row, insert into the MESSAGES table the
employee’s name and the salary amount.

Handle any other exception with an appropriate exception handler and insert into the
MESSAGES table the message “Some other error occurred.”

. Test the block for a variety of test cases.

RESULTS

SMITH - 800
More than one employee with a salary of 3000
No employee with a salary of 6000

2. Modify p18g3.sqgl to add an exception handler.

a.

Write an exception handler for the error to pass a message to the user that the specified
department does not exist.

. Execute the PL/SQL block by entering a department that does not exist.

Please enter the department number: 50
Please enter the department location: HOUSTON

PL/SQL procedure successfully completed.

G MESSAGE

Department 50 is an invalid department

3. Write a PL/SQL block that prints the number of employees who make plus or minus $100
of the salary value entered.

a.

b.

C.

If there is no employee within that salary range, print a message to the user indicating
that is the case. Use an exception for this case.

If there are one or more employees within that range, the message should indicate
how many employees are in that salary range.

Handle any other exception with an appropriate exception handler. The message should
indicate that some other error occurred.

Introduction to Oracle: SQL and PL/SQL 23-23

Practice 23 (continued)

Please enter the salary: 800
PL/SQL procedure successfully completed.

G MESSAGE

There is/are 1 employee(s) with a salary between 700 and 900

Please enter the salary: 3000
PL/SQL procedure successfully completed.

G MESSAGE

There is/are 3 employee(s) with a salary between 2900 and 3100

Please enter the salary: 6000
PL/SQL procedure successfully completed.

G MESSAGE

There is no employee salary between 5900 and 6100

Introduction to Oracle: SQL and PL/SQL 23-24

Practice Solutions

Practice 1 Solutions
1. Initiate a SQL*Plus session using the user ID and password provided by the instructor.

2. SQL*Plus commands access the database.
False

3. Will the SELECT statement executes successfully?
True

SQL> SELECT ename, job, sal Salary
2 FROM emp ;
4. Will the SELECT statement executes successfully?
True
SQL> SELECT *

2 FROM salgrade;

5. There are four coding errors in this statement. Can you identify them?

SQL> SELECT empno, ename
2 salary x 12 ANNUAL SALARY
3 FROM emp ;

— The EMP table does not contain a column called salary. The column is called sal.
— The multiplication operator is *, not x, as shown in line 2.

— The ANNUAL SALARY alias cannot include spaces. The alias should read
ANNUAL_SALARY or be enclosed in double quotation marks.

— A comma is missing after the column, ENAME.
6. Show the structure of the DEPT table. Select all data from the DEPT table.

SQIL> DESCRIBE dept
SQL> SELECT *
2 FROM dept;

7. Show the structure of the EMP table. Create a query to display the name, job, hire date, and
employee number for each employee, with employee number appearing first. Save your SQL
statement to a file named p1g7.sgl.

SQL> DESCRIBE emp

SQL> SELECT empno, ename, Jjob, hiredate
2 FROM emp ;

SQL> SAVE plg7.sqgl

Created file plg7.sq9l

Introduction to Oracle: SQL and PL/SQL A-2

Practice 1 Solutions (continued)
8. Run your query in the p1g7.sql file.

SQL> START plg7.sgl
9. Create a query to display unique jobs from the EMP table.

SQL> SELECT DISTINCT job
2 FROM emp ;

If you have time, complete the following exercises:

10. Load p1g7 .sql into the SQL buffer. Name the column headings Emp #, Employee, Job,
and Hire Date, respectively. Rerun your query.

SQL> GET plg7.sqgl
1 SELECT empno, ename, job, hiredate
2* FROM emp
SQL> 1 SELECT empno "Emp #", ename "Employee",

SQI> i
2i job "Job", hiredate "Hire Date"
3i

SQL> SAVE plg7.sgl REPLACE
Created file plg7.sq9l

SQL> START plg7.sql

11. Display the name concatenated with the job, separated by a comma and space, and name the
column Employee and Title.

SQL> SELECT ename||', '||job "Employee and Title"
2 FROM emp ;

Introduction to Oracle: SQL and PL/SQL A-3

Practice 1 Solutions (continued)
If you want extra challenge, complete the following exercise:

12. Create a query to display all the data from the EMP table. Separate cach column by a
comma. Name the column THE OUTPUT.

SQL> SELECT empno || ',' || ename || ','|] job || ',' ||
2 mgr || ',' || hiredate || ',' || sal || ',' ||
3 comm || ',' || deptno THE OUTPUT

4 FROM emp ;

Introduction to Oracle: SQL and PL/SQL A-4

Practice 2 Solutions

1. Create a query to display the name and salary of employees carning more than $2850. Save
your SQL statement to a file named p2gl.sgl. Run your query.

SQL> SELECT ename, sal
2 FROM emp
3 WHERE sal > 2850;
SQL> SAVE p2gl.sql
Created file p2gl.sqgl

2. Create a query to display the employee name and department number for employee number

7566.
SQL> SELECT ename, deptno
2 FROM emp
3 WHERE empno = 7566;

3. Modify p2g1l.sqgl to display the name and salary for all employees whose salary is not in the
range of $1500 and $2850. Resave your SQL statement to a file named p2g3.sgl. Rerun

your query.

SQL> EDIT p2gql.sql

SELECT ename, sal

FROM emp

WHERE sal NOT BETWEEN 1500 AND 2850
/

SQL> START p2g3.sql

4. Display the employee name, job, and start date of employees hired between February 20,
1981, and May 1, 1981. Order the query in ascending order by start date.

SQL> SELECT ename, Jjob, hiredate

2 FROM emp

3 WHERE hiredate BETWEEN

4 TO DATE('20-Feb-1981', 'DD-MON-YYYY') AND
5 TO _DATE('0Ol1-May-1981', 'DD-MON-YYYY')

6 ORDER BY hiredate;

Introduction to Oracle: SQL and PL/SQL A-5

Practice 2 Solutions (continued)

5. Display the employee name and department number of all employees in departments 10 and
30 in alphabetical order by name.

SQL> SELECT ename, deptno
2 FROM emp
3 WHERE deptno IN (10, 30)

4 ORDER BY ename;

6. Modify p2g3.sql to list the name and salary of employees who eam more than $1500 and
are in department 10 or 30. Label the column Employee and Monthly Salary, respectively.
Resave your SQL statement to a file named p2g6 . sgl. Rerun your query.

SQL> EDIT p2g3.sql

SELECT ename "Employee", sal "Monthly Salary"
FROM emp

WHERE sal > 1500

AND deptno IN (10, 30)

/

SQL> START p2g6.sql

7. Display the name and hire date of every employee who was hired in 1982.

SQL> SELECT ename, hiredate
2 FROM emp
3 WHERE hiredate LIKE '%82';

8. Display the name and title of all employees who do not have a manager.

SQL> SELECT ename, Jjob
2 FROM emp
3 WHERE mgr IS NULL;

9. Display the name, salary, and commission for all employees who eam commissions. Sort
data in descending order of salary and commissions.

SQL> SELECT ename, sal, comm
2 FROM emp
3 WHERE comm IS NOT NULL
4 ORDER BY sal DESC, comm DESC;

Introduction to Oracle: SQL and PL/SQL A-6

Practice 2 Solutions (continued)
If you have time, complete the following exercises.
10. Display the names of all employees where the third letter of their name is an 4.
Note: There are two underscores () before the 4 in the WHERE clause.

SQL> SELECT ename
2 FROM emp
3 WHERE ename LIKE ' A%';

11. Display the names of all employees that have two Ls in their name and are in
department 30 or their manager is 7782.

SQL> SELECT ename

2 FROM emp

3 WHERE ename LIKE 'SLL%'
4 AND deptno = 30

5 OR mgr = 7782;

If you want extra challenge, complete the following exercises.

12. Display the name, job, and salary for all employees whose job is Clerk or Analyst and
their salary is not equal to $1000, $3000, or $5000.

SQL> SELECT ename, job, sal

2 FROM emp
3 WHERE job IN ('CLERK', 'ANALYST')
4 AND sal NOT IN (1000, 3000, 5000);

13. Modify p2g6 . sql to display the name, salary, and commission for all employees whose
commission amount is greater than their salary increased by 10%. Rerun your query.
Resave your query as p2gl13.sgl.

SQIL> EDIT p2g6.sqgql
SELECT ename "Employee", sal "Monthly Salary", comm

FROM emp
WHERE comm > sal * 1.1
/

SQIL> START p2ql3.sql

Introduction to Oracle: SQL and PL/SQL A-7

Practice 3 Solutions

1. Write a query to display the current date. Label the column Date.

SQL> SELECT sysdate "Date"
2 FROM dual;

2. Display the employee number, name, salary, and salary increase by 15% expressed as a

whole number. Label the column New Salary. Save your SQL statement to a file named
pr3g2.sql.

SQL> SELECT empno, ename, sal,

2 ROUND(sal * 1.15, 0)
3 FROM emp ;

"New Salary"
SQL> SAVE p3g2.sql
Created file p3g2.sqgl

3. Run your query in the file p3g2.sgl.

SQL> START p3g2.sql

4. Modify your query p3g2 . sql to add a column that will subtract the old salary from the new
salary. Label the column Increase. Rerun your query.

SQL> EDIT p3g2.sql
SELECT empno, ename, sal,
ROUND (sal * 1.15, 0)

ROUND (sal * 1.15, 0)
FROM emp

/
SQL> START p3g2.sql

"New Salary",

- sal "Increase"

5. Display the employee’s name, hire date, and salary review date, which is the first Monday after

six months of service. Label the column REVIEW. Format the dates to appear in the format
similar to “Sunday, the Seventh of September, 19817,

SQL> SELECT ename, hiredate,

2 TO_CHAR (NEXT DAY (ADD MONTHS (hiredate, 6),

3 '"MONDAY') ,

4 'fmDay, "the" Ddspth "of" Month, YYYY') REVIEW
5 FROM emp ;

Introduction to Oracle: SQL and PL/SQL A-8

Practice 3 Solutions (continued)

6. For each employee display the employee name and calculate the number of months between
today and the date the employee was hired. Label the column MONTHS WORKED. Order
your results by the number of months employed. Round the number of months up to the closest
whole number.

SQL> SELECT ename, ROUND (MONTHS BETWEEN
2 (SYSDATE, hiredate)) MONTHS WORKED
3 FROM emp
4 ORDER BY MONTHS BETWEEN (SYSDATE, hiredate) ;

7. Write a query that produces the following for each employee:
<employee name> earns <salary> monthly but wants <3 times salary>. Label the
column Dream Salaries.

SQL> SELECT ename || ' earns '
2 || TO_CHAR(sal, 'fm$99,999.00")
3 || ' monthly but wants '
4 || TO _CHAR(sal * 3, 'fm$99,999.00")
5 |] '.'" "Dream Salaries"
6 FROM emp ;

If you have time, complete the following exercises:

8. Create a query to display name and salary for all employees. Format the salary to be 15
characters long, left-padded with $. Label the column SALARY.

SQL> SELECT ename,
2 LPAD(sal, 15, '$') SALARY
3 FROM emp ;

9. Write a query that will display the employee’s name with the first letter capitalized and all
other letters lowercase and the length of their name, for all employees whose name starts with
J, A, or M. Give each column an appropriate label.

SQL> SELECT INITCAP (ename) "Name",
2 LENGTH (ename) "Length"

3 FROM emp

4 WHERE ename LIKE 'J%'
5 OR ename LIKE 'M%'
6 OR ename LIKE 'A%';

Introduction to Oracle: SQL and PL/SQL A-9

Practice 3 Solutions (continued)

10. Display the name, hire date, and day of the week on which the employee started. Label
the column DAY . Order the results by the day of the week starting with Monday.

SQL> SELECT ename, hiredate,
2 TO_CHAR(hiredate, 'DAY') DAY
3 FROM emp
4 ORDER BY TO CHAR(hiredate - 1, 'd');

If you want extra challenge, complete the following exercises:

11. Create a query that will display the employee name and commission amount. If the employee
does not earn commission, put “No Commission”. Label the column COMM.

SQL> SELECT ename,
2 NVL (TO_CHAR (comm) , 'No Commission') COMM
3 FROM emp ;

12. Create a query that displays the employees” names and indicates the amount of their salaries
through asterisks. Each asterisk signifies a hundred dollars. Sort the data in descending order of
salary. Label the column EMPLOYEE AND THEIR SALARIES.

SQL> SELECT rpad(ename, 8) ||' '|| rpad(' ', sal/100+1, '*')
2 EMPLOYEE_AND_THEIR_SALARIES
3 FROM emp

4 ORDER BY sal DESC;

13. Write a query that displays the grade of all employees based on the value of the column JOB, as
per the table shown below

JOB GRADE

PRESIDENT A

MANAGER B

ANALYST C

SALESMAN D

CLERK E

None of the above O

SQL> SELECT job, decode (job,'CLERK', 'E',
2 'SALESMAN', 'D',
3 ' ANALYST', e,
4 'MANAGER' , 'B',
5 'PRESIDENT', 'A',
6 '0') GRADE
7 FROM emp;

Introduction to Oracle: SQL and PL/SQL A-10

Practice 4 Solutions

L.

Write a query to display the name, department number, and department name for all
employees.

SQL> SELECT e.ename, e.deptno, d.dname
2 FROM emp e, dept d
3 WHERE e.deptno = d.deptno;

Create a unique listing of all jobs that are in department 30. Include the location of
department 30 in the output.

SQL> SELECT DISTINCT e.job, d.loc

2 FROM emp e, dept d
3 WHERE e.deptno = d.deptno
4 AND e.deptno = 30;

Write a query to display the employee name, department name, and location of all employees
who earn a commission.

SQL> SELECT e.ename, d.dname, d.loc

2 FROM emp e, dept d
3 WHERE e.deptno = d.deptno
4 AND e.comm IS NOT NULL;

Display the employee name and department name for all employees who have an A4 in their
name. Save your SQL statement in a file called p4g4 .sql.

SQL> SELECT e.ename, d.dname

2 FROM emp e, dept d
3 WHERE e.deptno = d.deptno
4 AND e.ename LIKE 'S%A%';

Write a query to display the name, job, department number, and department name for all
employees who work in DALLAS.

SQL> SELECT e.ename, e.job, e.deptno, d.dname

2 FROM emp e, dept d
3 WHERE e.deptno = d.deptno
4 AND d.loc = 'DALLAS';

Introduction to Oracle: SQL and PL/SQL A-11

Practice 4 Solutions (continued)

6. Display the employee name and employee number along with their manager’s name and
manager number. Label the columns Employee, Emp#, Manager, and Mgr#, respectively.
Save your SQL statement in a file called p4g6.sqgl.

SQL> SELECT e.ename "Employee", e.empno "Emp#",

2 m.ename "Manager", m.empno "Mgr#"
3 FROM emp e, emp m
4 WHERE e.mgr = m.empno;

SQL> SAVE p4g6.sql
Created file pdg6.sqgl

7. Modify p4g6.sgl to display all employees including King, who has no manager.
Resave as p4g7.sgl. Runpdg7.sqgl.

SQL> EDIT p4g6.sql
SELECT e.ename "Employee", e.empno "Emp#",
m.ename "Manager", m.empno "Mgr#"
FROM emp e, emp m
WHERE e.mgr = m.empno (+)
/
SQL> START p4qg7.sql

If you have time, complete the following exercises.

8. Create a query that will display the employee name, department number, and all the
employees that work in the same department as a given employee. Give each column an
appropriate label.

SQL> SELECT e.deptno department, e.ename employee,

2 c.ename colleague

3 FROM emp e, emp c

4 WHERE e.deptno = c.deptno

5 AND e.empno <> c.empno

6 ORDER BY e.deptno, e.ename, c.ename;

Introduction to Oracle: SQL and PL/SQL A-12

Practice 4 Solutions (continued)

9. Show the structure of the SALGRADE table. Create a query that will display the name, job,
department name, salary, and grade for all employees.

SQIL> DESCRIBE salgrade

SQL> SELECT e.ename, e.job, d.dname, e.sal, s.grade
2 FROM emp e, dept d, salgrade s
3 WHERE e.deptno = d.deptno
4 AND e.sal BETWEEN s.losal AND s.hisal;

If you want extra challenge, complete the following exercises:

10. Create a query to display the name and hire date of any employee hired after employee
Blake.

SQL> SELECT emp.ename, emp.hiredate
2 FROM emp, emp blake
3 WHERE blake.ename = 'BLAKE'
4 AND blake.hiredate < emp.hiredate;

11. Display all employees” names and hire dates along with their manager’s name and hire date for
all employees who were hired before their managers. Label the columns Employee, Emp
Hiredate, Manager, and Mgr Hiredate, respectively.

SQL> SELECT e.ename "Employee", e.hiredate "Emp Hiredate",
2 m.ename "Manager", m.hiredate "Mgr Hiredate"
3 FROM emp e, emp m
4 WHERE e.mgr = m.empno
5 AND e.hiredate < m.hiredate;

Introduction to Oracle: SQL and PL/SQL A-13

Practice 5 Solutions
Determine the validity of the following statements. Circle either True or False.
1. Group functions work across many rows to produce one result.
True
2. Group functions include nulls in calculations.

False. Group functions ignore null values. If you want to include null values, use the NVL
function.

3. The WHERE clause restricts rows prior to inclusion in a group calculation.
True

4. Display the highest, lowest, sum, and average salary of all employees. Label the columns
Maximum, Minimum, Sum, and Average, respectively. Round your results to the nearest whole
number. Save your SQL statement in a file called p5g4 . sql.

SQL> SELECT ROUND (MAX (sal) ,0) "Maximum",

2 ROUND (MIN (sal) ,0) "Minimum",
3 ROUND (SUM(sal) ,0) "Sum",

4 ROUND (AVG (sal) ,0) "Average"
5 FROM emp ;

SQL> SAVE pb5gd.sql
Created file pbg4d.sqgl

5. Modify p5g4.sql to display the minimum, maximum, sum, and average salary for each job
type. Resave to a file called p5g5 . sgl. Rerun your query.

SQL> EDIT p5g6.sql
SELECT job, ROUND (MAX (sal) ,O0) "Maximum",
ROUND (MIN(sal) ,0) "Minimum",
ROUND (SUM(sal) ,0) "Sum",
ROUND (AVG(sal) ,0) "Average"

FROM emp
GROUP BY job
/

SQIL> START pb5gb5.sql

Introduction to Oracle: SQL and PL/SQL A-14

Practice 5 Solutions (continued)
6. Write a query to display the number of people with the same job.

SQL> SELECT job, COUNT (*)
2 FROM emp
3 GROUP BY job;

7. Determine the number of managers without listing them. Label the column Number of
Managers.

SQL> SELECT COUNT (DISTINCT mgr) "Number of Managers"
2 FROM emp ;

8. Write a query that will display the difference between the highest and lowest salaries. Label
the column DIFFERENCE.

SQL> SELECT MAX (sal) - MIN(sal) DIFFERENCE
2 FROM emp ;
If you have time, complete the following exercises.

9. Display the manager number and the salary of the lowest paid employee for that manager.
Exclude anyone whose manager is not known. Exclude any groups where the minimum
salary is less than $1000. Sort the output in descending order of salary.

SQL> SELECT mgr, MIN(sal)

2 FROM emp
3 WHERE mgr IS NOT NULL
4 GROUP BY mgr
5 HAVING MIN(sal) > 1000
6 ORDER BY MIN(sal) DESC;

10. Write a query to display the department name, location name, number of employees, and the
average salary for all employees in that department. Label the columns dname, loc,
Number of People, and Salary, respectively. Round the average salary to two decimal places.

SQL> SELECT d.dname, d.loc, COUNT(*) "Number of People",

2 ROUND (AVG (sal) ,2) "Salary"
3 FROM emp e, dept d

4 WHERE e.deptno = d.deptno

5 GROUP BY d.dname, d.loc;

Introduction to Oracle: SQL and PL/SQL A-15

Practice 5 Solutions (continued)
If you want extra challenge, complete the following exercises:

11. Create a query that will display the total number of employees and of that total the number
who were hired in 1980, 1981, 1982, and 1983. Give appropriate column headings.

SQL> SELECT COUNT (*) total,
2 SUM (DECODE (TO_CHAR (hiredate, 'YYYY'),
1980,1,0)) "1980",
SUM (DECODE (TO_CHAR (hiredate, 'YYYY'),
1981,1,0))"1981",
SUM (DECODE (TO_CHAR (hiredate, 'YYYY'),
1982,1,0))"1982",
SUM (DECODE (TO_CHAR (hiredate, 'YYYY'),
1983,1,0)) "1983"

O W0 ~J0 U1 W

10 FROM emp ;

12. Create a matrix query to display the job, the salary for that job based on department number,
and the total salary for that job for all departments, giving each column an appropriate heading.

SQL> SELECT job "Job",
2 SUM (DECODE (deptno, 10, sal)) "Dept 10",
SUM (DECODE (deptno, 20, sal)) "Dept 20",
SUM (DECODE (deptno, 30, sal)) "Dept 30",
SUM(sal) "Total"
FROM emp
GROUP BY job;

N oY O W

Introduction to Oracle: SQL and PL/SQL A-16

Practice 6 Solutions

1. Write a query to display the employee name and hire date for all employees in the same
department as Blake. Exclude Blake.

SQL> SELECT ename, hiredate

2 FROM emp

3 WHERE deptno = (SELECT deptno

4 FROM emp

5 WHERE ename = 'BLAKE')
6 AND ename != 'BLAKE';

2. Create a query to display the employee number and name for all employees who earn more than
the average salary. Sort the results in descending order of salary.

SQL> SELECT empno, ename

2 FROM emp

3 WHERE sal > (SELECT AVG(sal)
4 FROM emp)

5 ORDER BY sal DESC;

3. Write a query that will display the employee number and name for all employees who work in a
department with any employee whose name contains a 7. Save your SQL statement in a file
called p6g3.sqgl.

SQL> SELECT empno, ename

2 FROM emp

3 WHERE deptno IN (SELECT deptno

4 FROM emp

5 WHERE ename LIKE '%T%') ;

SQL> SAVE p6g3.sql
Created file p6g3.sqgl

4. Display the employee name, department number, and job title for all employees whose
department location is Dallas.

SQL> SELECT ename, deptno, job

2 FROM emp

3 WHERE deptno IN (SELECT deptno

4 FROM dept

5 WHERE loc = 'DALLAS');

Introduction to Oracle: SQL and PL/SQL A-17

Practice 6 Solutions (continued)
5. Display the employee name and salary of all employees who report to King.

SQL> SELECT ename, sal
2 FROM emp
3 WHERE mgr = (SELECT empno
4 FROM emp
5 WHERE ename = 'KING') ;

6. Display the department number, name, and job for all employees in the Sales department.

SQL> SELECTdeptno, ename, job
2 FROM emp

3 WHERE deptno IN (SELECT deptno
4 FROM dept
5 WHERE dname = 'SALES') ;

If you have time, complete the following exercise:

7. Modify p6g3.sgl to display the employee number, name, and salary for all employees who
cam more than the average salary and who work in a department with any employee with a 7’
in their name. Resave as p6g7 . sgl. Rerun your query.

SQL> EDIT p6g3.sqgql
SELECT empno, ename, sal
FROM emp
WHERE sal > (SELECT AVG(sal)
FROM emp)
AND deptno IN (SELECT deptno
FROM emp

WHERE ename LIKE '$T%')
/
SQL> START p6qg7.sql

Introduction to Oracle: SQL and PL/SQL A-18

Practice 7 Solutions

1. Write a query to display the name, department number, and salary of any employee whose
department number and salary match the department number and salary of any
employee who earns a commission.

SQL> SELECT ename, deptno, sal

2 FROM emp

3 WHERE (sal, deptno) IN

4 (SELECT sal, deptno

5 FROM emp

6 WHERE comm IS NOT NULL) ;

2. Display the name, department name, and salary of any employee whose salary and
commission match the salary and commission of any employee located in Dallas.

SQL> SELECT ename, dname, sal

2 FROM emp e, dept d

3 WHERE e.deptno = d.deptno

4 AND (sal, NVL(comm,0)) IN

5 (SELECT sal, NVL (comm,0)

6 FROM emp e, dept d

7 WHERE e.deptno = d.deptno
8 AND d.loc = 'DALLAS') ;

3. Create a query to display the name, hire date, and salary for all employees who have the
same salary and commission as Scott.

SQL> SELECT ename, hiredate, sal

2 FROM emp

3 WHERE (sal, NVL(comm,0)) IN

4 (SELECT sal, NVL (comm,0)
5 FROM emp

6 WHERE ename = 'SCOTT')
7 AND ename != 'SCOTT';

4. Create a query to display the employees that carn a salary that is higher than the salary of
all of the clerks. Sort the results on salary from highest to lowest.

SQL> SELECT ename, job, sal

2 FROM emp

3 WHERE sal > ALL (SELECT sal

4 FROM emp

5 WHERE Jjob = 'CLERK')
6 ORDER BY sal DESC;

Introduction to Oracle: SQL and PL/SQL A-19

Practice 8 Solutions
Determine whether the following statements are true or false:
1. A single ampersand substitution variable prompts at most once.

False
However, if the variable is defined, then the single ampersand substitution variable will
not prompt at all. If fact, it will pick up the value in the predefined variable.

2. The ACCEPT command is a SQL command.

False
The ACCEPT command is a SQL*Plus command. It is issued at the SQL prompt.

3. Write a script file to display the employee name, job, and hire date for all employees who
started between a given range. Concatenate the name and job together, separated by a space
and comma, and label the column Employees. Prompt the user for the two ranges using the
ACCEPT command. Use the format MM/DD/YYYY. Save the script file as p8g3.sgl.

SET ECHO OFF

SET VERIFY OFF

ACCEPT low_date DATE FORMAT 'MM/DD/YYYY' -

PROMPT 'Please enter the low date range (''MM/DD/YYYY''): '
ACCEPT high_date DATE FORMAT 'MM/DD/YYYY' -

PROMPT 'Please enter the high date range (''MM/DD/YYYY''): '
COLUMN EMPLOYEES FORMAT A25

SELECT ename ||', '||] job EMPLOYEES, hiredate
FROM emp
WHERE hiredate BETWEEN

TO_DATE('&low_date', '"MM/DD/YYYY')
AND TO_DATE('&high_date', '"MM/DD/YYYY')
/
UNDEFINE low_date
UNDEFINE high date
COLUMN EMPLOYEES CLEAR
SET VERIFY ON
SET ECHO ON
SQL> START p8g3.sql;,

Introduction to Oracle: SQL and PL/SQL A-20

Practice 8 Solutions (continued)

4. Write a script to display the employee name, job, and department name for a given location.
The search condition should allow for case-insensitive searches of the department location.
Save the script file as p8g4 .sql.

SET ECHO OFF

SET VERIFY OFF

ACCEPT p_location PROMPT 'Please enter the location name: '
COLUMN ename HEADING "EMPLOYEE NAME" FORMAT Al5
COLUMN dname HEADING "DEPARTMENT NAME" FORMAT Al5
SELECT e.ename, e.job, d.dname

FROM emp e, dept d

WHERE e.deptno = d.deptno

AND LOWER(d.loc) LIKE LOWER('%&p location%')

/

UNDEFINE p location

COLUMN ename CLEAR

COLUMN dname CLEAR

SET VERIFY ON

SET ECHO ON

SQIL> START p8qg4d.sql

Introduction to Oracle: SQL and PL/SQL A-21

Practice 8 Solutions (continued)

5. Modify p8g4 . sqgl to create a report containing the department name, employee name, hire
date, salary, and each employees’ annual salary for all employees in a given location. Prompt
the user for the location. Label the columns DEPARTMENT NAME, EMPLOYEE NAME,
START DATE, SALARY and ANNUAL SALARY, placing the labels on multiple lines.
Resave the scriptas p8g5.sqgl.

SET ECHO OFF

SET FEEDBACK OFF

SET VERIFY OFF

BREAK ON dname

ACCEPT p_location PROMPT 'Please enter the location name: '
COLUMN dname HEADING "DEPARTMENT |NAME" FORMAT Al5

COLUMN ename HEADING "EMPLOYEE |NAME" FORMAT Al5

COLUMN hiredate HEADING "START|DATE" FORMAT Al5

COLUMN sal HEADING "SALARY" FORMAT $99,990.00

COLUMN asal HEADING "ANNUAL |SALARY" FORMAT $99,990.00

SELECT d.dname, e.ename, e.hiredate,
e.sal, e.sal * 12 asal
FROM emp e, dept d
WHERE e.deptno = d.deptno
AND LOWER(d.loc) LIKE LOWER('%&p location%')
ORDER BY dname
/

UNDEFINE p location
COLUMN dname CLEAR
COLUMN ename CLEAR
COLUMN hiredate CLEAR
COLUMN sal CLEAR
COLUMN asal CLEAR
CLEAR BREAK
SET VERIFY ON
SET FEEDBACK ON
SET ECHO ON

SQIL> START p8gb5.sql

Introduction to Oracle: SQL and PL/SQL A-22

Practice 9 Solutions

Insert data into the MY EMPLOYEE table.
1. Runthe 1ab9 1.sqgl scriptto build the MY EMPLOYEE table that will be used for the lab.

SQL> START lab9 1.sql
2. Describe the structure of the MY EMPLOYEE table to identify the column names.
SQL> DESCRIBE my employee

3. Add the first row of data to the MY EMPLOYEE table from the following sample data. Do not
list the columns in the INSERT clause.

1D LAST_NAME | FIRST NAME | USERID SALARY
1 Patel Ralph rpatel 795

2 Dancs Betty bdancs 860

3 Biri Ben bbiri 1100

4 Newman Chad cnewman 750

5 Ropeburn Audry aropebur 1550

SQL> INSERT INTO my employee
2 VALUES (1, 'Patel', 'Ralph', 'rpatel', 795);

4. Populate the MY _EMPLOYEE table with the second row of sample data from the preceding
list. This time, list the columns explicitly in the INSERT clause.
SQL> INSERT INTO my employee (id, last name, first name,

2 userid, salary)
3 VALUES (2, 'Dancs', 'Betty', 'bdancs', 860);
5. Confirm your addition to the table.

SQL> SELECT *
2 FROM my employee;

Introduction to Oracle: SQL and PL/SQL A-23

Practice 9 Solutions (continued)

6. Create a script named loademp . sgl to load rows into the MY EMPLOYEE table
interactively. Prompt the user for the employee’s id, first name, last name, and salary.
Concatenate the first letter of the first name and the first seven characters of the last name to
produce the userid.

SET ECHO OFF

SET VERIFY OFF

ACCEPT p_id -

PROMPT 'Please enter the employee number: '

ACCEPT p_first name -

PROMPT 'Please enter the employee''s first name: '

ACCEPT p_last name -

PROMPT 'Please enter the employee''s last name: '

ACCEPT p salary PROMPT 'Please enter the employee''s salary:'

INSERT INTO my employee

VALUES (&p_id, '&p last name', '&p_ first name',
lower (substr('&p first name', 1, 1) ||
substr('&p_last name', 1, 7)), &p_salary)

/

SET VERIFY ON

SET ECHO ON

7. Populate the table with the next two rows of sample data by running the script that you
created.

SQL> START loademp.sql
SQL> START loademp.sql

8. Confirm your additions to the table.

SQL> SELECT *
2 FROM my employee;

9. Make the data additions permanent.

SQL> COMMIT;

Introduction to Oracle: SQL and PL/SQL A-24

Practice 9 Solutions (continued)
Update and delete data in the MY EMPLOYEE table.
10. Change the last name of employee 3 to Drexler.

SQL> UPDATE my employee
2 SET last name = 'Drexler’
3 WHERE id = 3;

11. Change the salary to 1000 for all employees with a salary less than 900.

SQL> UPDATE my employee
2 SET salary = 1000
3 WHERE salary < 900;

12. Verify your changes to the table.

SQL> SELECT last name, salary
2 FROM my employee;

13. Delete Betty Dancs from the MY EMPLOYEE table.

SQL> DELETE
2 FROM my employee
3 WHERE last name = 'Dancs'
4 AND first name = 'Betty';

14. Confirm vour changes to the table.

SQL> SELECT *
2 FROM my employee;

15. Commit all pending changes.
SQL> COMMIT;

Control data transaction to the MY EMPLOYEE table.

16. Populate the table with the last row of sample data by running the script that you created in
step 6.

SQL> START loademp.sql

Introduction to Oracle: SQL and PL/SQL A-25

Practice 9 Solutions (continued)
17. Confirm vour addition to the table.

SQL> SELECT *
2 FROM my employee;

18. Mark an intermediate point in the processing of the transaction.
SQL> SAVEPOINT a;
19. Empty the entire table.

SQL> DELETE
2 FROM my employee;

20. Confirm that the table is empty.

SQL> SELECT *
2 FROM my employee;

21. Discard the most recent DELETE operation without discarding the earlier INSERT operation.
SQL> ROLLBACK TO SAVEPOINT a;
22. Confirm that the new row is still intact.

SQL> SELECT *
2 FROM my employee;

23. Make the data addition permanent.

SQL> COMMIT;

Introduction to Oracle: SQL and PL/SQL A-26

Practice 10 Solutions

1. Create the DEPARTMENT table based on the following table instance chart. Enter the
syntax in a script called p10g1 . sgl, then execute the script to create the table. Confirm that
the table is created.

Column Name Id Name

Key Type
Nulls/Unique
FK Table
FK Column
Datatype Number VARCHAR?2
Length 7 25

SQL> EDIT plOgl.sql
CREATE TABLE department
(id NUMBER(7) ,
name VARCHAR2 (25))
/
SQL> START plOgl.sql
SQL> DESCRIBE department

2. Populate the DEPARTMENT table with data from the DEPT table. Include only columns that

you need.
SQIL> INSERT INTO department
2 SELECT deptno, dname
3 FROM dept;

3. Create the EMPLOYEE table based on the following table instance chart. Enter the syntax in
a script called p10g3. sql, and then execute the script to create the table. Confirm that the table
is created.

Column Name ID LAST NAME FIRST NAME DEPT ID

Key Type
Nulls/Unique
FK Table
FK Column
Datatype Number VARCHAR? VARCHAR?2 Number
Length 7 25 25 7

Introduction to Oracle: SQL and PL/SQL A-27

Practice 10 Solutions (continued)

CREATE TABLE employee

(id NUMBER(7) ,
last name VARCHAR2 (25) ,
first name VARCHAR2 (25) ,
dept_id NUMBER (7))

/

SQL> START pl0g3.sql
SQIL> DESCRIBE employee

4. Modify the EMPLOYEE table to allow for longer employee last names. Confirm your
modification.

SQIL> ALTER TABLE employee
2 MODIFY (last name VARCHARZ2 (50)) ;
SQIL> DESCRIBE employee

5. Confirm that both the DEPARTMENT and EMPLOYEE tables are stored in the data
dictionary. (Hint: USER_TABLES)

SQL> SELECT table name
2 FROM user_tables
3 WHERE table_name IN ('DEPARTMENT', 'EMPLOYEE') ;

6. Create the EMPLOYEE?2 table based on the structure of the EMP table. Include only the
EMPNO, ENAME and DEPTNO columns. Name the columns in your new table 1D,
LAST NAME, and DEPT ID, respectively.

SQL> CREATE TABLE employee2 AS
2 SELECT empno id, ename last name, deptno dept id
3 FROM emp ;

7. Drop the EMPLOYEE table.
SQIL> DROP TABLE employee;
8. Rename the EMPLOYEE? table to EMPLOYEE.

SQL> RENAME employee2 TO employee;

Introduction to Oracle: SQL and PL/SQL A-28

Practice 10 Solutions (continued)

9.

10.

1.

12.

Add a comment to the DEPARTMENT and EMPLOYEE table definitions describing the
tables. Confirm your additions in the data dictionary.

SQL> COMMENT ON TABLE employee IS 'Employee Information';
SQL> COMMENT ON TABLE department IS 'Department Information';
SQL> COLUMN table name FORMAT Al5
SQL> COLUMN table_type FORMAT AlO0
SQL> COLUMN comments FORMAT A40
SQL> SELECT *

2 FROM user_tab comments

3 WHERE table_name = 'DEPARTMENT'

4 OR table name = 'EMPLOYEE';

Drop the column LAST NAME from the EMPLOYEE table. Confirm your modification
by checking the description of the table.

SQL> ALTER TABLE employee
2 DROP COLUMN LAST NAME;

SQIL> DESCRIBE employee

Create the EMPLOYEE2 table based on the structure of the EMP table. Include only the
EMPNO, ENAME, and DEPTNO columns. Name the columns in your new table ID,

LAST NAME, and DEPT _ID, respectively. Mark the DEPT ID column in the EMPLOYEE2
table as UNSUED. Confirm your modification by checking the description of the table.

SQL> CREATE TABLE employee?2 AS
2 SELECT empno id, ename last name, deptno dept_ id
3 FROM emp
4 /
SQL> ALTER TABLE employee2
2 SET UNUSED (dept_id);
SQL> DESCRIBE employee?2;

Drop all the UNUSED columns from the EMPLOY EE2 table. Confirm your modification
by checking the description of the table.

SQL> ALTER TABLE employee2
2 DROP UNUSED COLUMNS ;
SQL> DESCRIBE employee2

Introduction to Oracle: SQL and PL/SQL A-29

Practice 11 Solutions

L.

Add atable-level PRIMARY KEY constraint to the EMPLOYEE table using the ID column.
The constraint should be enabled at creation.

SQL> ALTER TABLE employee
2 ADD CONSTRAINT employee id pk PRIMARY KEY (id);
Create a PRIMARY KEY constraint on the DEPARTMENT table using the ID column. The
constraint should be enabled at creation.
SQL> ALTER TABLE department
2 ADD CONSTRAINT department id pk PRIMARY KEY (id) ;

Add a foreign key reference on the EMPLOYEE table that will ensure that the employee is
not assigned to a nonexistent department.

SQL> ALTER TABLE employee
2 ADD CONSTRAINT employee dept id fk FOREIGN KEY (dept id)
3 REFERENCES department (id) ;

Confirm that the constraints were added by querying USER_CONSTRAINTS. Note the types
and names of the constraints. Save your statement text in a file called p11g4.sqgl.

SQL> SELECT constraint name, constraint type

2 FROM user constraints

3 WHERE table name IN ('EMPLOYEE', 'DEPARTMENT') ;
SQL> SAVE pllg4d.sql

Display the object names and types from the USER_OBIJECTS data dictionary view for
EMPLOYEE and DEPARTMENT tables. You may want to format the columns for
readability. Notice that the new tables and a new index were created.

SQL> COLUMN object name FORMAT A30
SQL> COLUMN object type FORMAT A30
SQL> SELECT object name, object type

2 FROM user_objects
3 WHERE object name LIKE 'EMPLOYEE%'
4 OR object name LIKE 'DEPARTMENT%';

If you have time, complete the following exercise:

6.

Modify the EMPLOYEE table. Add a SALARY column of NUMBER datatype, precision 7.

SQIL> ALTER TABLE employee
2 ADD (salary NUMBER(7));

Introduction to Oracle: SQL and PL/SQL A-30

Practice 12 Solutions

L.

Create a view called EMP_VU based on the employee number, employee name, and
department number from the EMP table. Change the heading for the employee name to
EMPLOYEE.

SQL> CREATE VIEW emp vu AS
2 SELECT empno, ename employee, deptno
3 FROM emp ;

Display the contents of the EMP_VU view.

SQL> SELECT *
2 FROM emp_vu;

Select the view name and text from the data dictionary USER_VIEWS.

SQL> COLUMN view name FORMAT A30

SQL> COLUMN text FORMAT AS50

SQL> SELECT view name, text
2 FROM user views;

Using your view EMP_ VU, enter a query to display all employee names and department
numbers.

SQL> SELECT employee, deptno
2 FROM emp vu;

Create a view named DEPT20 that contains the employee number, employee name, and
department number for all employees in department 20. Label the view column
EMPLOYEE ID, EMPLOYEE, and DEPARTMENT ID. Do not allow an employee to be
reassigned to another department through the view.

SQL> CREATE VIEW dept20 AS

2 SELECT empno employee id, ename employee,
3 deptno department id

4 FROM emp

5 WHERE deptno = 20

6 WITH CHECK OPTION CONSTRAINT emp dept 20;

Introduction to Oracle: SQL and PL/SQL A-31

Practice 12 Solutions (continued)
6. Display the structure and contents of the DEPT20 view.

SQL> DESCRIBE dept20
SQL> SELECT *

2

FROM dept20;

7. Attempt to reassign Smith to department 30.

SQL> UPDATE dept20

2

SET department id = 30

3 WHERE employee = 'SMITH';

If you have time, complete the following exercise:

8. Create a view called SALARY VU based on the employee name, department name, salary and
salary grade for all employees. Label the columns Employee, Department, Salary, and Grade,
respectively.

SQL> CREATE VIEW salary vu AS

2

3
4
5
6

SELECT ename employee, dname department,
sal salary, grade

FROM emp e, dept d, salgrade s

WHERE e.deptno = d.deptno

AND e.sal between s.losal and s.hisal;

Introduction to Oracle: SQL and PL/SQL A-32

Practice 13 Solutions

1. Create a sequence to be used with the primary key column of the DEPARTMENT table. The
sequence should start at 60 and have a maximum value of 200. Have your sequence increment
by ten numbers. Name the sequence DEPT ID SEQ.

SQL> CREATE SEQUENCE dept id seq
2 START WITH 60
3 INCREMENT BY 10
4 MAXVALUE 200;

2. Write a script to display the following information about your sequences: sequence name,
maximum value, increment size, and last number. Name the script p13g2 . sql. Execute your
script.

SQIL> EDIT pl3g2.sql

SELECT sequence name, max value,
increment by, last number

FROM user sequences

/

SQL> START pl3g2.sql

3. Write an interactive script to insert a row into the DEPARTMENT table. Name your script
p13g3.sqgl. Be sure to use the sequence that you created for the ID column. Create a
customized prompt to enter the department name. Execute your script. Add two departments
named Education and Administration. Confirm your additions.

SQIL> EDIT pl3g3.sql
SET ECHO OFF
SET VERIFY OFF
ACCEPT name PROMPT 'Please enter the department name: '

INSERT INTO department (id, name)
VALUES (dept id seq.NEXTVAL, '&name')
/

SET VERIFY ON
SET ECHO ON
SQL> START pl3g3.sql
SQL> SELECT *
2 FROM department;

4. Create a non-unique index on the foreign key column (dept id) in the EMPLOYEE table.

SQL> CREATE INDEX employee dept id idx ON employee (dept id);

Introduction to Oracle: SQL and PL/SQL A-33

Practice 13 Solutions (continued)

5. Display the indexes and uniqueness that exist in the data dictionary for the EMPLOYEE table.
Save the statement into a script named p13g5.sgl.

SQL> SELECT index name, table name, uniqueness
2 FROM user indexes
3 WHERE table name = 'EMPLOYEE';

SQL> SAVE pl3gb5.sql

Introduction to Oracle: SQL and PL/SQL A-34

Practice 14 Solutions

1. What privilege should a user be given to log in to the Oracle Server? Is this a system or an
object privilege?

The CREATE SESSION system privilege
2. What privilege should a user be given to create tables?
The CREATE TABLE privilege
3. Ifyou create a table, who can pass along privileges to other users on your table?

You can, or anyone you have given those privileges to by using the WITH GRANT
OPTION.

4. You are the DBA. You are creating many users who require the same system privileges.
What would you use to make your job easier?

Create a role containing the system privileges and grant the role to the users

5. What command do you use to change your password?
The ALTER USER statement

6. Grant another user access to your DEPT table. Have the user grant you query access to his or
her DEPT table.

Team 2 executes the GRANT statement.

SQL> GRANT select
2 ON dept
3 TO <userl>;

Team 1 executes the GRANT statement.

SQL> GRANT select
2 ON dept
3 TO <user2>;

WHERE userl 1s the name of team 1 and user?2 is the name of
team 2.

7. Query all the rows in your DEPT table.

SQL> SELECT *
2 FROM dept;

Introduction to Oracle: SQL and PL/SQL A-35

Practice 14 Solutions (continued)

8. Add anew row to your DEPT table. Team 1 should add Education as department
number 50. Team 2 should add Administration as department number 50. Make the changes

permanent.
Team 1 executes this INSERT statement.
SQIL> INSERT INTO dept (deptno, dname)
2 VALUES (50, 'Education')
SQL> COMMIT;
Team 2 executes this INSERT statement.
SQIL> INSERT INTO dept (deptno, dname)
2 VALUES (50, 'Administration') ;
SQL> COMMIT;

9. Create a synonym for the other team’s DEPT table.

Team 1 creates a synonym named teamZ.

SQL> CREATE SYNONYM team2
2 FOR <user2>.DEPT;

Team 2 creates a synonym named teaml.
SQL> CREATE SYNONYM teaml
2 FOR <userl>.DEPT;
10. Query all the rows in the other team’s DEPT table by using your synonym.

Team 1 executes this SELECT statement.
SQL> SELECT *

2 FROM team?2;
Team 2 executes this SELECT statement.
SQL> SELECT *

2 FROM teaml;

Introduction to Oracle: SQL and PL/SQL A-36

Practice 14 Solutions (continued)
11. Query the USER TABLES data dictionary to see information about the tables that you own.

SQL> SELECT table name
2 FROM user_tables;

12. Query the ALL TABLES data dictionary view to see¢ information about all the tables that you
can access. Exclude tables that you own.

SQL> SELECT table name, owner
2 FROM all tables
3 WHERE owner !'=<your account>;
13. Revoke the SELECT privilege from the other team.
Team 1 revokes the privilege.

SQL> REVOKE select
2 ON dept
3 FROM user2;

Team 2 revokes the privilege.

SQL> REVOKE select
2 ON dept
3 FROM userl;

Introduction to Oracle: SQL and PL/SQL A-37

Practice 15 Solutions

1. Create the tables based on the following table instance charts. Choose the appropriate datatypes
and be sure to add integrity constraints.

a. Table name: MEMBER

Column_ MEMBER LAST FIRST JOIN
Name ID NAME NAME ADDRESS CITY PHONE DATE
Key PK

Type

Null/ NN, U NN NN
Unique

Default System
Value Date
Datatype Number VARCHAR2 | VARCHAR2 | VARCHAR2 | VARCHAR2 | VARCHAR2 | Date
Length 10 25 25 100 30 15

CREATE TABLE member

(member id NUMBER (10)
CONSTRAINT member member id pk PRIMARY KEY,
last name VARCHAR2 (25)
CONSTRAINT member last name nn NOT NULL,
first name VARCHAR2 (25) ,
address VARCHAR2 (100) ,
city VARCHAR2 (30) ,
phone VARCHAR2 (15),
join_date DATE DEFAULT SYSDATE

CONSTRAINT member join date nn NOT NULL) ;

Introduction to Oracle: SQL and PL/SQL A-38

Practice 15 Solutions (continued)

b. Table name: TITLE

Column_ | TITLE_ RELEASE |
Name ID TITLE DESCRIPTION | RATING CATEGORY | DATE
Key PK
Type
Null/ NN, U NN NN
Unique
Check G, PG, R, DRAMA,
NCI17,NR COMEDY,
ACTION,
CHILD,
SCIFI,
DOCUMEN
TARY
Datatype | Number | VARCHAR2 | VARCHAR2 VARCHAR2 | VARCHAR? | Date
Length 10 60 400 4 20
CREATE TABLE title
(title id NUMBER (10)
CONSTRAINT title title id pk PRIMARY KEY,
title VARCHAR2 (60)
CONSTRAINT title_title_nn NOT NULL,
description VARCHAR2 (400)
CONSTRAINT title description nn NOT NULL,
rating VARCHAR2 (4)
CONSTRAINT title rating ck CHECK
(rating IN ('G', 'PG', 'R', 'NC17', 'NR')),
category VARCHAR?2 (20) ,
CONSTRAINT title category ck CHECK
(category IN ('DRAMA', 'COMEDY', 'ACTION',

'CHILD',

release_dateDATE) ;

'SCIFI',

'DOCUMENTARY ')),

Introduction to Oracle: SQL and PL/SQL A-39

Practice 15 Solutions (continued)

c. Table name: TITLE COPY

Column Name COPY_ID TITLE ID STATUS

Key PK PK,FK

Type

Null/ NN,U NN, U NN

Unique

Check AVAILABLE,
DESTROYED,
RENTED,
RESERVED

FK Ref Table TITLE

FK Ref Col TITLE ID

Datatype Number Number VARCHAR2

Length 10 10 15

CREATE TABLE title copy

(copy_id NUMBER (10) ,

title id NUMBER (10)

CONSTRAINT title copy title if fk REFERENCES title(title_id),
status VARCHAR2 (15)

CONSTRAINT title copy status nn NOT NULL
CONSTRAINT title copy status ck CHECK (status IN

('AVAILABLE', 'DESTROYED','RENTED', 'RESERVED')),
CONSTRAINT title copy copy id title id pk
PRIMARY KEY (copy id, title_id));

Introduction to Oracle: SQL and PL/SQL A-40

Practice 15 Solutions (continued)

d. Table name: RENTAL

Column | BOOK | MEMBER_ | COPY_ ACT _RET | EXP_RET TITLE_ID
Name DATE ID ID DATE DATE

Key PK PK,FK1 PK,FK2 PK FK2
Type

Default System 2 days after

Value Date book date

FK Ref MEMBER | TITLE TITLE
Table COPY COPY
FK Ref MEMBER | COPY_ID TITLE_ID
Col ID

Datatype | Date Number Number Date Date Number
Length 10 10 10

CREATE TABLE rental
(book_date DATE DEFAULT SYSDATE,
member id NUMBER (10)
CONSTRAINT rental member id fk
REFERENCES member (member id),
copy_id NUMBER (10) ,
act ret date DATE,
exp ret date DATE DEFAULT SYSDATE + 2,
title id NUMBER(10) ,
CONSTRAINT rental book date copy title pk

PRIMARY KEY (book date, member id,

copy_id,title id),
CONSTRAINT rental copy id title id fk

FOREIGN KEY (copy_id, title_ id)
REFERENCES title copy(copy_ id, title id));

Introduction to Oracle: SQL and PL/SQL A-41

Practice 15 Solutions (continued)

e. Table name: RESERVATION

Column_Name RES DATE MEMBER _ID TITLE_ID
Key PK PK,FK1 PK,FK2
Type

Null/ NN,U NN,U NN
Unique

FK Ref MEMBER TITLE
Table

FK Ref MEMBER _ID TITLE_ID
Column

Datatype Date Number Number
Length 10 10

CREATE TABLE reservation

(res_date

DATE,

member id NUMBER(10)

CONSTRAINT reservation member_id

REFERENCES member (member id),

title id

CONSTRAINT reservati on_ti tle_id

NUMBER (10)

REFERENCES title(title id),
CONSTRAINT reservation resdate mem tit pk PRIMARY KEY

(res_date, member id, title id));

Introduction to Oracle: SQL and PL/SQL A-42

Practice 15 Solutions (continued)
2. Verify that the tables and constraints were created properly by checking the data dictionary.

SQL> SELECT table name

2 FROM user;Eables
3 WHERE table_name IN ('MEMBER', 'TITLE', 'TITLE_COPY',
4 'RENTAL', 'RESERVATION') ;

SQL> COLUMN constraint name FORMAT A30
SQL> COLUMN table_name FORMAT AlS5
SQL> SELECT constraint name, constraint type,
2 table name
3 FROM user_ constraints
4 WHERE table_name IN ('MEMBER', 'TITLE', '"TITLE COPY',
5 'RENTAL', 'RESERVATION') ;

3. Create sequences to uniquely identify each row in the MEMBER table and the TITLE table.
a. Member number for the MEMBER table: start with 101; do not allow caching of the
values. Name the sequence member id_seq.

SQL> CREATE SEQUENCE member id seq
2 START WITH 101
3 NOCACHE;

b. Title number for the TITLE table: start with 92; no caching. Name the sequence
title id seq.

SQL> CREATE SEQUENCE title id seq
2 START WITH 92
3 NOCACHE;

¢. Verify the existence of the sequences in the data dictionary.

SQL> SELECT sequence name, increment by, last number

2 FROM user_sequences
3 WHERE sequence name IN ('MEMBER ID SEQ',
4 'TITLE ID SEQ') ;

Introduction to Oracle: SQL and PL/SQL A-43

Practice 15 Solutions (continued)

4. Add data to the tables. Create a script for each set of data to add.

a. Add movie titles to the TITLE table. Write a script to enter the movie information. Save the
script as p15g4a . sgl. Use the sequences to uniquely identify each title. Enter the release
dates in the DD-MON-YYYY format. Remember that single quotation marks in a character
field must be specially handled. Verify your additions.

SQL> EDIT plbgda.sql

SET ECHO OFF

INSERT INTO title(title id, title, description, rating,

category, release_date)

VALUES (title id seq.NEXTVAL, 'Willie and Christmas Too',
'All of Willie''s friends make a Christmas list for
Santa, but Willie has yet to add his own wish list.',

'G', 'CHILD', TO_DATE('OS—OCT—1995','DD—MON—YYYY')

/

INSERT INTO title(title id , title, description, rating,

category, release date)

VALUES (title id seq.NEXTVAL, 'Alien Again', 'Yet another
installment of science fiction history. Can the
heroine save the planet from the alien life form?',
'R', 'SCIFI', TO_DATE('19-MAY-1995"', 'DD-MON-YYYY'))

/

INSERT INTO title(title id, title, description, rating,

category, release date)

VALUES (title id seq.NEXTVAL, 'The Glob', 'A meteor crashes
near a small American town and unleashes carnivorous
goo in this classic.', 'NR', 'SCIFI',

TO_DATE('12-AUG-1995"', 'DD-MON-YYYY'))

/

INSERT INTO title(title id, title, description, rating,

category, release_date)

VALUES (title id seq.NEXTVAL, 'My Day Off', 'With a little
luck and a lot ingenuity, a teenager skips school for
a day in New York.', 'PG', 'COMEDY',

TO_DATE('12-JUL-1995"', 'DD-MON-YYYY'))

/

COMMIT
/
SET ECHO ON

SQL> SELECT title
2 FROM title;

Introduction to Oracle: SQL and PL/SQL A-44

Practice 15 Solutions (continued)

Title Description Rating | Category | Release date
Willie and All of Willie’s friends G CHILD 05-0CT-1995
Christmas make a Christmas list for
Too Santa, but Willie has yet to
add his own wish list.
Alien Again | Yet another installation of | R SCIFI 19-MAY-1995
science fiction history. Can
the heroine save the planet
from the alien life form?
The Glob A meteor crashes near a NR SCIFI 12-AUG-1995
small American town and
unleashes carnivorous goo
in this classic.
My Day Off | With alittle luck and alot | PG COMEDY | 12-JUL-1995
of ingenuity, a teenager
skips school for a day in
New York
Miracles on | A six-year-old has doubts PG DRAMA 12-SEP-1995
Ice about Santa Claus, but she
discovers that miracles
really do exist.
Soda Gang After discovering a cache NR ACTION 01-JUN-1995

of drugs, a young couple
find themselves pitted
against a vicious gang.

Introduction to Oracle: SQL and PL/SQL A-45

Practice 15 Solutions (continued)

b. Add datato the MEMBER table. Write a script named p15g4b . sgl to prompt users
for the information. Execute the script. Be sure to use the sequence to add the member

numbers.
First_ Last Name | Address City Phone Join_Date
Name
Carmen Velasquez 283 King Street | Scattle 206-899-6666 | 08-MAR-1990
LaDoris Ngao 5 Modrany Bratislava | 586-355-8882 | 08-MAR-1990
Midori Nagayama 68 Via Centrale | Sao Paolo | 254-852-5764 | 17-JUN-1991
Mark Quick-to- 6921 King Lagos 63-559-7777 | 07-APR-1990

See Way

Audry Ropeburn 86 Chu Street | Hong Kong | 41-559-87 18-JAN-1991
Molly Urguhart 3035 Laurier Quebec 418-542-9988 | 18-JAN-1991

SQL> EDIT pl5g4db.sql

SET ECHO OFF

SET VERIFY OFF

INSERT INTO member (member id, first name, last name, address,

city, phone, join_date)

VALUES (member id seq.NEXTVAL, '&first name', 'é&last name’',
'&address', '&city', '&phone', TO_DATE ('&join_date',
'DD-MM-YYYY')

/

COMMIT

/

SET VERIFY ON

SET ECHO ON

SQIL> START pl5g4db.sql

Introduction to Oracle: SQL and PL/SQL A-46

Practice 15 Solutions (continued)

c. Add the following movie copiesin the TITLE _COPY table:
Note: Have thetitle id numbers available for this exercise.

Title Copy Id Status
Willie and Christmas Too | 1 AVAILABLE
Alien Again | AVAILABLE
2 RENTED
The Glob 1 AVAILABLE
My Day Off 1 AVAILABLE
2 AVAILABLE
3 RENTED
Miracles on Ice 1 AVAILABLE
Soda Gang 1 AVAILABLE

SQL> INSERT INTO title copy(copy id, title id, status)
2 VALUES (1, 92, 'AVAILABILE')

SQL> INSERT INTO title copy(copy id, title id, status)
2 VALUES (1, 93, 'AVAILABILE')

SQL> INSERT INTO title copy(copy id, title id, status)
2 VALUES (2, 93, 'RENTED') ;

SQL> INSERT INTO title copy(copy id, title id, status)
2 VALUES (1, 94, 'AVAILABILE')

SQL> INSERT INTO title copy(copy id, title id, status)
2 VALUES (1, 95, 'AVAILABILIE')

SQL> INSERT INTO title copy(copy id, title id,status)
2 VALUES (2, 95, 'AVAILABILIE')

SQL> INSERT INTO title copy(copy id, title id,status)
2 VALUES (3, 95, 'RENTED') ;

SQL> INSERT INTO title copy(copy id, title id,status)
2 VALUES (1, 96, 'AVAILABILE')

SQL> INSERT INTO title copy(copy id, title id,status)
2 VALUES (1, 97, 'AVAILABILE')

Introduction to Oracle: SQL and PL/SQL A-47

Practice 15 Solutions (continued)
d. Add thefollowing rentalsto the RENTAL table:

Note: Title number may be different depending on sequence number.

Title_ | Copy_ | Member_

Id Id Id Book date | Exp Ret Date Act_Ret_Date
92 1 101 3 days ago 1 day ago 2 days ago

93 2 101 1 day ago 1 day from now

95 3 102 2 days ago Today

97 1 106 4 days ago 2 days ago 2 days ago

SQL> INSERT

2

3 VALUES
SQL> INSERT

2

3 VALUES
SQL> INSERT

2

3 VALUES
SQL> INSERT

2

3 VALUES

SQL> COMMIT;

INTO rental(title_ id, copy id, member id,
book date, exp ret date, act ret date)
(92, 1, 101, sysdate-3, sysdate-1l, sysdate-2);

INTO rental(title_ id, copy id, member id,
book date, exp ret date, act_ret date)

(93, 2,

101,

sysdate-1,

sysdate-1, NULL) ;

INTO rental(title_ id, copy id, member id,
book date, exp ret date, act ret date)
(95, 3, 102, sysdate-2, sysdate, NULL)

INTO rental(title_ id, copy id, member id,
book date, exp ret date,act_ret date)

(97, 1,

106,

sysdate-4,

Introduction to Oracle: SQL and PL/SQL A-48

sysdate-2,

sysdate-2) ;

Practice 15 Solutions (continued)

5. Create a view named TITLE AVAIL to show the movie titles and the availability of
each copy and its expected return date if rented. Query all rows from the view. Order the results
by title.

SQL> CREATE VIEW title avail AS

2 SELECT t.title, c.copy id, c.status, r.exp ret date
3 FROM title t, title copy ¢, rental r

4 WHERE t.title id = c.title id

5 AND c.copy_id = r.copy id(+)

6 AND c.title id = r.title id(+);

SQL> COLUMN title FORMAT A30

SQL> SELECT *
2 FROM title avail
3 ORDER BY title, copy_ id;

6. Make changes to data in the tables.

a. Add anew title. The movie is “Interstellar Wars,” which is rated PG and classified as a
sci-fi movie. The release date is 07-JUL-77. The description is “Futuristic interstellar
action movie. Can the rebels save the humans from the evil empire?” Be sure to add a title
copy record for two copies.

INSERT INTO title(title id, title, description, rating,
category, release date)

VALUES (title id seq.NEXTVAL, 'Interstellar Wars',
'"Futuristic interstellar action movie. Can the
rebels save the humans from the evil Empire?',
'PG', 'SCIFI', '07-JUL-77")

/

INSERT INTO title copy (copy_id, title_ id, status)

VALUES (1, 98, 'AVAILABLE')

/

INSERT INTO title copy (copy_id, title_ id, status)
VALUES (2, 98, 'AVAILABLE')

/

b. Enter two reservations. One reservation is for Carmen Velasquez, who wants to rent
“Interstellar Wars.” The other is for Mark Quick-to-See, who wants to rent “Soda Gang.”

SQL> INSERT INTO reservation (res date, member id, title_ id)
2 VALUES (SYSDATE, 101, 98);

SQL> INSERT INTO reservation (res date, member id, title_ id)
2 VALUES (SYSDATE, 104, 97);

Introduction to Oracle: SQL and PL/SQL A-49

Practice 15 Solutions (continued)

c. Customer Carmen Velasquez rents the movie “Interstellar Wars,” copy 1. Remove her
reservation for the movie. Record the information about the rental. Allow the default
value for the expected return date to be used. Verify that the rental was recorded by using

the view you created.

SQL> INSERT INTO rental(title id, copy id, member id)

2 VALUES (98, 1,101);
SQIL> UPDATE title copy

2 SET status= 'RENTED'

3 WHERE title id = 98

4 AND copy id = 1;
SQL> DELETE

2 FROM reservation

3 WHERE member id = 101;
SQL> SELECT *

2 FROM title avail

3 ORDER BY title, copy id;

7. Make a modification to one of the tables.

a. Add a PRICE column to the TITLE table to record the purchase price of the video. The
column should have a total length of eight digits and two decimal places. Verify your

modifications.
SQL> ALTER TABLE title

2 ADD (price
SQL> DESCRIBE title

NUMBER(8,2)) ;

Introduction to Oracle: SQL and PL/SQL A-50

Practice 15 Solutions (continued)
b. Create ascript named p15q7b . sgl to update each video with a price according to the

following list.

Note: Have thetitle id numbers available for this exercise.
Title Price
Willie and Christmas Too 25
Alien Again 35
The Glob 35
My Day Off 35
Miracles on Ice 30
Soda Gang 35
Interstellar Wars 29

SET ECHO OFF
SET VERIFY OFF

UPDATE title

SET price = &price
WHERE title id = &title id
/

SET VERIFY OFF
SET ECHO OFF
SQIL> START pl5g7b.sql

¢. Ensure that in the future all titles will contain a price value. Verify the constraint.

SQIL> ALTER TABLE title
2 MODIFY (price CONSTRAINT title price nn NOT NULL) ;
SQL> SELECT constraint name, constraint type,

2 search condition
3 FROM user_constraints
4 WHERE table name = 'TITLE';

Introduction to Oracle: SQL and PL/SQL A-51

Practice 15 Solutions (continued)

8. Create a report titled Customer History Report. This report will contain each customer's
history of renting videos. Be sure to include the customer name, movie rented, dates of the
rental, and duration of rentals. Total the number of rentals for all customers for the reporting
period. Save the script in a file named p15g8.sqgl.

SQIL> EDIT pl5g8.sql

SET ECHO OFF

SET VERIFY OFF

SET PAGESIZE 30

COLUMN member FORMAT Al7
COLUMN title FORMAT A25

COLUMN book _date FORMAT A9
COLUMN duration FORMAT 9999999

TTITLE 'Customer History Report'
BREAK ON member SKIP 1 ON REPORT

SELECT m.first name||' '||m.last name MEMBER, t.title,
r.book date, r.act ret date - r.book date DURATION

FROM member m, title t, rental r

WHERE r.member id = m.member id

AND r.title id = t.title id

ORDER BY member

/

CLEAR BREAK

COLUMN member CLEAR
COLUMN title CLEAR
COLUMN book date CLEAR
COLUMN duration CLEAR

TTITLE OFF

SET VERIFY ON
SET PAGESIZE 24
SET ECHO ON

Introduction to Oracle: SQL and PL/SQL A-52

Practice 16 Solutions

1. Evaluate each of the following declarations. Determine which of them are nof legal and explain
why.
a. DECLARE
v_id NUMBER (4) ;
Legal
b. DECLARE
v_x, V_y, v_z VARCHAR2(10);
Illegal because only one identifier per declaration is allowed
c. DECLARE
v_birthdate DATE NOT NULL;
Illegal because the NOT NULL variable must be initialized
d. DECLARE
v_in_ stock BOOLEAN := 1;

Illegal because 1 is not a Boolean expression

Introduction to Oracle: SQL and PL/SQL A-53

Practice 16 Solutions (continued)

2. Ineach of the following assignments, determine the datatype of the resulting expression.

a.

v_days_to_go := v_due date - SYSDATE;
Number
v_sender := USER || ': ' || TO_CHAR(v_dept no);

Character string

v_sum := $100,000 + $250,000;

Illegal; PL/SQL cannot convert special symbols from VARCHAR2 to NUMBER
v _flag := TRUE;

Boolean

v _nl = v n2 > (2 * v_n3);
Boolean

v_value := NULL;

Any scalar datatype

3. Create an anonymous block to output the phrase “My PL/SQL Block Works™ to the screen.

VARTABLE g message VARCHAR?2 (30)
BEGIN

:g_message := 'My PL/SQL Block Works':;
END;

/
PRINT g message

SQL> START plé6g3.sql

G MESSAGE

My PL/SQL Block Works

Introduction to Oracle: SQL and PL/SQL A-54

Practice 16 Solutions (continued)
If you have time, complete the following exercise:

4. Create a block that declares two variables. Assign the value of these PL/SQL variables to
SQL*Plus host variables and print the results of the PL/SQL variables to the screen. Execute
your PL/SQL block. Save your PL/SQL block to a file named p16g4 . sqgl.

V_CHAR Character (variable length)
V_NUM Number

Assign values to these variables as follows:

Variable Value
V_CHAR The literal '42 is the answer'
V_NUM The first two characters from V_CHAR

VARIABLE g_char VARCHAR2 (30)
VARIABLE g_num NUMBER
DECLARE
v_char VARCHAR2 (30) ;
v_num NUMBER(11,2);

BEGIN
v_char := '42 is the answer';
v_num := TO_NUMBER (SUBSTR(v_char,1,2));
:g_char := v_char;
g num := v_num;
END;
/

PRINT g char
PRINT g num
SQL> START plég4d.sql

Introduction to Oracle: SQL and PL/SQL A-55

Practice 17 Solutions
PL/SQL Block

DECLARE
v_weight NUMBER(3) := 600;
v_message VARCHAR2 (255) := 'Product 10012°';
BEGIN
/ *SUBBLOCK* /
DECLARE
v_weight NUMBER(3) := 1;
v_message VARCHAR2 (255) := 'Product 11001';
v_new_locn VARCHAR2 (50) := 'Europe';
BEGIN
v_weight := v_weight + 1;
v_new_locn := 'Western ' || v_new_locn;
END;
v_weight := v_weight + 1;
v_message := v_message || ' is in stock';
v_new_locn := 'Western ' || v_new_locn;
END;

Introduction to Oracle: SQL and PL/SQL A-56

Practice 17 Solutions (continued)

1. Evaluate the PL/SQL block on the previous page and determine the datatype and value of each
of the following variables according to the rules of scoping.

a. The value of V_WEIGHT in the subblock is:
“2” and the datatype is NUMBER.
b. The value of V.NEW_ LOCN in the subblock is:
“Western Europe” and the datatype is VARCHAR2.
c. The value of V_.WEIGHT in the main block is:
“601” and the datatype is NUMBER.
d. The value of V_MESSAGE in the main block is:
“Product 10012 is in stock” and the datatype is VARCHAR2.
¢. The value of V.NEW_LOCN in the main block is:

Illegal because v_new_locn is not visible outside the subblock.

Introduction to Oracle: SQL and PL/SQL A-57

Practice 17 Solutions (continued)

Scope Example
DECLARE

v customer

v_credit_ rating

BEGIN
DECLARE

v_customer NUMBER(7) :=
v_name VARCHAR2 (25) :=

——————

- -~
{v customer?

-—

END;

—— - -

- - -

. Vv customer N

- I

VARCHARZ2 (50)
VARCHARZ2 (50)

'Womansport';

'EXCELLENT' ;

201;

'Unisports';

R - - -

-—— - - - -

- ~ -
Vv name) (v
J— -’ ~—

Introduction to Oracle: SQL and PL/SQL A-58

Practice 17 Solutions (continued)

2. Suppose you embed a subblock within a block, as shown on the previous page. You declare two
variables, V._.CUSTOMER and V_CREDIT RATING, in the main block. You also declare two
variables, V._.CUSTOMER and V_NAME, in the subblock. Determine the values and datatypes
for each of the following cases.

a.

The value of V_CUSTOMER in the subblock is:
“201” and the datatype is NUMBER.

. The value of V_.NAME in the subblock is:

“Unisports” and the datatype is VARCHAR?2,

The value of V_CREDIT_RATING in the subblock is:

“EXCELLENT?” and the datatype is VARCHAR2,

The value of V_CUSTOMER in the main block is:

“Womansport” and the datatype is VARCHAR2.

The value of V_NAME in the main block is:

V_NAME is not visible in the main block and you would see an error.
The value of V_CREDIT_ RATING in the main block is:
“EXCELLENT?” and the datatype is VARCHAR2,

Introduction to Oracle: SQL and PL/SQL A-59

Practice 17 Solutions (continued)

3. Create and execute a PL/SQL block that accepts two numbers through SQL*Plus substitution
variables. The first number should be divided by the second number and have the second
number added to the result. The result should be stored in a PL/SQL variable and printed on the
screen, or the result should be written to a SQL*Plus variable and printed to the screen.

a. When a PL/SQL variable is used:
SET ECHO OFF
SET VERIFY OFF
SET SERVEROUTPUT ON
ACCEPT p numl PROMPT 'Please enter the first number: '
ACCEPT p num2 PROMPT 'Please enter the second number: '

DECLARE
v_numl NUMBER (9, 2) = &p_numl;
v_num2 NUMBER (9, 2) = &p_num?2;
v_result NUMBER(9,2) ;

BEGIN
v_result := (v_numl / v_num2) + v_num2;

/* Printing the PL/SQL variable */
DBMS OUTPUT.PUT LINE (v_result);
END;
/
SET SERVEROUTPUT OFF
SET VERIFY ON
SET ECHO ON

Note: Solution continued on next page.

Introduction to Oracle: SQL and PL/SQL A-60

Practice 17 Solutions (continued)
b. When a SQL*Plus variable is used:
SET ECHO OFF
SET VERIFY OFF
VARTABLE g_result NUMBER
ACCEPT p numl PROMPT 'Please enter the first number: '
ACCEPT p num2 PROMPT 'Please enter the second number: '

DECLARE
v_numl NUMBER (9, 2) = &p_numl;
v_num2 NUMBER (9, 2) = &p_num?2;
BEGIN
:g_result := (v_numl /v_num2) + v_num2;
END;
/

PRINT g result /* Printing the SQL*Plus variable */
SET VERIFY ON
SET ECHO ON

Introduction to Oracle: SQL and PL/SQL A-61

Practice 17 Solutions (continued)

4. Build a PL/SQL block that computes the total compensation for one year. The annual salary
and the annual bonus percentage are passed to the PL/SQL block through SQL*Plus
substitution variables, and the bonus needs to be converted from a whole number to a decimal
(for example, 15 to .15). If the salary is null, set it to zero before computing the total
compensation. Execute the PL/SQL block. Reminder: Use the NVL function to handle null
values.

Note: To test the NVL function, type NULL at the prompt; pressing [Return] results in a
missing expression error.

a. When a PL/SQL variable is used:

SET VERIFY OFF

VARTABLE g_total NUMBER

ACCEPT p_salary PROMPT 'Please enter the salary amount: '
ACCEPT p_bonus PROMPT 'Please enter the bonus percentage: '

DECLARE
v_salary NUMBER := &p salary;
v_bonus NUMBER := &p bonus;
BEGIN
:g_total := NVL(v_salary, 0) * (1 + NVL(v_bonus, 0) / 100) ;
END;
/

PRINT g total
SET VERIFY ON
SQL> START pl7gq4.sql

b. When a SQL*Plus variable is used:

SET VERIFY OFF
SET SERVEROUTPUT ON

ACCEPT p_salary PROMPT 'Please enter the salary amount: '
ACCEPT p_bonus PROMPT 'Please enter the bonus percentage: '

DECLARE
v_salary NUMBER := &p salary;
v_bonus NUMBER := &p bonus;
BEGIN

dbms output.put_ line(TO_CHAR(NVL(v_salary, 0) *
(1 + NVL(v_bonus, 0) / 100)));
END;
/
SET VERIFY ON
SET SERVEROUTPUT OFF

Introduction to Oracle: SQL and PL/SQL A-62

Practice 18 Solutions

1. Create a PL/SQL block that selects the maximum department number in the DEPT table and stores
it in a SQL*Plus variable. Print the results to the screen. Save your PL/SQL block to a file named

pl8gl.sqgl.
VARTABLE g max deptno NUMBER
DECLARE
v_max deptno NUMBER;
BEGIN
SELECT MAX (deptno)
INTO v_max deptno
FROM dept:;
:g_max deptno := v_max deptno;
END;
/

PRINT g max deptno
SQL> START pl8gql.sql

DECLARE
v_max deptno NUMBER;
BEGIN
SELECT MAX (deptno)
INTO v_max deptno
FROM dept:;
dbms output.put_ line(TO_CHAR(v_max deptno)) ;
END;
/

2. Modify the PL/SQL block you created in exercise 1 to insert a new row into the DEPT table. Save
your PL/SQL block to a file named p18g2 . sql.

a. Rather than printing the department number retrieved from exercise 1, and add 10 to that number
and use it as the department number for the new department.

b. Use a SQL*Plus substitution parameter for the department name.

¢. Leave the location null for now.

Introduction to Oracle: SQL and PL/SQL A-63

Practice 18 Solutions (continued)

SET ECHO OFF

SET VERIFY OFF
ACCEPT p_dept name PROMPT 'Please enter the department name:

DECLARE

v max deptno dept.deptno%TYPE;
BEGIN

SELECT MAX (deptno) +10

INTO v max deptno

FROM dept;

INSERT INTO dept (deptno, dname, loc)
VALUES (v max deptno, '&p dept name', NULL) ;
COMMIT; - - -

END;

/
SET ECHO ON
SET VERIFY ON

d. Execute the PL/SQL block.
SQL> START pl8g2.sql
¢. Display the new department that you created.

SELECT *
FROM dept
WHERE deptno = :g max deptno + 10;

3. Create a PL/SQL block that updates the location for an existing department. Save your PL/SQL block
to a file named p18g3.sgl.

a. Use a SQL*Plus substitution parameter for the department number.
b. Use a SQL*Plus substitution parameter for the department location.

¢. Test the PL/SQL block.
d. Display the department number, department name, and location for the updated department.

SET VERIFY OFF
ACCEPT p_deptno PROMPT 'Please enter the department number:
ACCEPT p_loc PROMPT 'Please enter the department location:
BEGIN
UPDATE dept
SET loc = '&p_loc!
WHERE deptno = &p_deptno;
COMMIT;
END;
/
SET VERIFY ON
SQL> START pl8g3.sql

Introduction to Oracle: SQL and PL/SQL A-64

Practice 18 Solutions (continued)
¢. Display the department that you updated.

SQL> SELECT*
2 FROM dept
3 WHERE deptno = &p_deptno;

4. Create a PL/SQL block that deletes the department created in exercise 2. Save your PL/SQL block to a
file named p18g4.sqgl.

a. Use a SQL*Plus substitution parameter for the department number.
b. Print to the screen the number of rows affected.
¢. Test the PL/SQL block.

SET VERIFY OFF
VARTABLE g_result VARCHAR2 (40)
ACCEPT p_deptno PROMPT 'Please enter the department number:
DECLARE
v_result NUMBER(2) ;
BEGIN
DELETE
FROM dept
WHERE deptno = &p_deptno;
v_result := SQL%¥ROWCOUNT;
:g_result := (TO_CHAR(v_result) || ' row(s) deleted.');
COMMIT ;
END;
/
PRINT g result

SET VERIFY ON
SQL> START pl8g4.sql

ACCEPT p_deptno PROMPT 'Please enter the department number:

DECLARE
v_result NUMBER(2) ;
BEGIN
DELETE
FROM dept
WHERE deptno = &p_deptno;
v_result := SQL%¥ROWCOUNT;

dbms output.put line(TO_CHAR(v_result) ||

' row(s) deleted.'):;
COMMIT ;

END;

/

Introduction to Oracle: SQL and PL/SQL A-65

Practice 18 Solutions (continued)
d. What happens if you enter a department number that does not exist?

If the operator enters a department number that does not exist, the PL/SQL block
finishes successfully because this does not constitute an exception.

¢. Confirm that the department has been deleted.

SQL> SELECT *
2 FROM dept
3 WHERE deptno = 50;

Introduction to Oracle: SQL and PL/SQL A-66

Practice 19 Solutions

1. Runthe script 1ab19 1.sqgl to create the MESSAGES table. Write a PL/SQL block to insert
numbers into the MESSAGES table.

CREATE TABLE messages (results VARCHAR2 (60))
/

a. Insert the numbers 1 to 10, excluding 6 and 8.

b. Commit before the end of the block.
BEGIN
FOR i IN 1..10 LOOP
IF i = 6 or i = 8 THEN
null;
ELSE
INSERT INTO messages (results)
VALUES (i) ;
END IF;
COMMIT;
END LOOP;
END;
/

¢. Select from the MESSAGES table to verify that your PL/SQL block worked.
SQL> SELECT *
2 FROM messages;

2. Create a PL/SQL block that computes the commission amount for a given employee based
on the employee’s salary.

a. Run the script 1ab19 2.sql to insert a new employee into the EMP table.
Note: The employee will have a NULL salary.
SQL> START 1ab19 2.sql

b. Accept the employee number as user input with a SQL*Plus substitution variable.

c. Ifthe employee’s salary is less than $1,000, set the commission amount for the employee
to 10% of the salary.

d. If the employee’s salary is between $1,000 and $1,500, set the commission amount for the
employee to 15% of the salary.

¢. Ifthe employee’s salary exceeds $1,500, set the commission amount for the employee to
20% of the salary.

f. If the employee’s salary is NULL, set the commission amount for the employee to 0.

g. Commit.

Introduction to Oracle: SQL and PL/SQL A-67

Practice 19 Solutions (continued)

ACCEPT p_empno PROMPT 'Please enter employee number: '

DECLARE
V_empno emp . empno3TYPE := &p empno;
v_sal emp.sal3TYPE;
v__comm emp . comm$TYPE ;

BEGIN

SELECT sal

INTO v_sal

FROM emp

WHERE empno = v_empno;
IF v_sal < 1000 THEN

v_comm := .10;

ELSIF v_sal BETWEEN 1000 and 1500 THEN
v_comm := .15;

ELSIF v_sal > 1500 THEN
v_comm := .20;

ELSE
v_comm := O;

END IF;

UPDATE emp
SET comm = NVL(sal,0) * v_comm
WHERE empno = v_empno;

COMMIT ;

END;

/

h. Test the PL/SQL block for each case using the following test cases, and check each
updated commission.

Employee Number Salary Resulting Commission
7369 800 80

7934 1300 195

7499 1600 320

8000 NULL 0

Introduction to Oracle: SQL and PL/SQL A-68

Practice 19 Solutions (continued)

SQL> SELECT empno, sal, comm
2 FROM emp
3 WHERE empno IN (7369, 7934,7499, 8000)
4 ORDER BY comm;

If you have time, complete the following exercises:

3. Modify the p16g4. sqgl file to insert the text “Number is odd™ or “Number is even,”
depending on whether the value is odd or even, into the MESSAGES table. Query the
MESSAGES table to determine if your PL/SQL block worked.

DECLARE
v_char VARCHAR2 (30) ;
v_num NUMBER(11,2);
BEGIN
v_char '42 is the answer';
v_num := TO_NUMBER (SUBSTR(v_char,1,2));
IF mod(v_num, 2) = 0 THEN
INSERT INTO messages (results)
VALUES ('Number is even') ;
ELSE
INSERT INTO messages (results)
VALUES ('Number is odd') ;
END IF;
END;
/
SQL> SELECT *
2 FROM messages;

4. Add anew column, STARS of datatype VARCHAR2 and length 50 to the EMP table for storing
asterisk (*).
SQL> ALTER TABLE emp
2 ADD stars VARCHARZ2 (50) ;

5. Create a PL/SQL block that rewards an employee by appending an asterisk in the STARS
column for every $100 of the employee’s salary. Save your PL/SQL block to a file called
plSg5.sqgl.

a. Accept the employee ID as user input with a SQL*Plus substitution variable.
b. Initialize a variable that will contain a string of asterisks.

¢. Append an asterisk to the string for every $100 of the salary amount. For example, if the
employee has a salary amount of $800, the string of asterisks should contain eight asterisks. If
the employee has a salary amount of $1250, the string of asterisks should contain 13 asterisks.

d. Update the STARS column for the employee with the string of asterisks.

Introduction to Oracle: SQL and PL/SQL A-69

Practice 19 Solutions (continued)
¢. Commit.
f. Test the block for employees who have no salary and for an employee who has a salary.

SET VERIFY OFF
ACCEPT p_empno PROMPT 'Please enter the employee number: '
DECLARE

vV_empno emp .empno% TYPE

&p_empno;

v_asteriskemp.stars3%TYPE := NULL;
v_sal emp.sal%TYPE;
BEGIN

SELECT NVL (ROUND (sal/100), 0)
INTO v_sal

FROM emp

WHERE empno = v_empno;

FOR i IN 1..v_sal LOOP

v_asterisk := v_asterisk |[|'*';
END LOOP;
UPDATE emp
SET stars = v_asterisk
WHERE empno = v_empno;
COMMIT ;
END;
/

SET VERIFY ON
SQL> START pl9g5.sql
SQL> SELECT empno, sal, stars
2 FROM emp
3 WHERE empno IN (7934, 8000) ;

Introduction to Oracle: SQL and PL/SQL A-70

Practice 20 Solutions

1. Create a PL/SQL block to retrieve the name of each department from the DEPT table and print each
department name to the screen, incorporating a PL/SQL table.

a. Declare a PL/SQL table, MY DEPT TABLE, to temporarily store the name of the departments.

b. Using a loop, retrieve the name of all departments currently in the DEPT table and store them in
the PL/SQL table. Each department number is a multiple of 10.

¢. Using another loop, retrieve the department names from the PL/SQL table and print them to the
screen, using DBMS OUTPUT.PUT LINE.

SET SERVEROUTPUT ON
DECLARE
TYPE dept_ table type is table of dept.dname%TYPE
INDEX BY BINARY INTEGER;
my dept table dept table type;
v_count NUMBER (2) ;
BEGIN
SELECT COUNT (*)
INTO v_count
FROM dept;
FOR i IN 1..v_count LOOP
SELECT dname
INTO my dept table(i)
FROM dept
WHERE deptno = i*10;
END LOOP;
FOR i IN 1..v_count LOOP
DBMS OUTPUT.PUT LINE (my dept table(i));
END LOOP;
END;
/

2. Write a PL/SQL block to print information about a given order.
a. Declare a PL/SQL record based on the structure of the ORD table.

b. Use a SQL*Plus substitution variable to retrieve all information about a specific order and
store that information into the PL/SQL record.

¢. Use DBMS OUTPUT. PUT LINE and print selected information about the order.

Introduction to Oracle: SQL and PL/SQL A-71

Practice 20 Solutions (continued)

SET SERVEROUTPUT ON

SET VERIFY OFF

ACCEPT p_ordid PROMPT 'Please enter an order number: '

DECLARE

ord record ord$ROWTYPE ;

BEGIN

SELECT *

INTO ord record

FROM ord

WHERE ordid = &p_ ordid;

DBMS OUTPUT.PUT LINE ('Order ' || TO_CHAR(ord record.ordid)
|| ' was placed on ' || TO_CHAR(ord record.orderdate)
Il ' and shipped on ' || TO_CHAR(ord record.shipdate) ||
' for a total of ' ||
TO_CHAR(ord_record.total,'$99,999.99'));

END;

/

If you have time, complete the following exercise.

3. Modify the block you created in practice 1 to retrieve all information about each department
from the DEPT table and print the information to the screen, incorporating a PL/SQL table of
records.

a.

Declare a PL/SQL table, MY DEPT TABLE, to temporarily store the number, name, and
location of all the departments.

Using a loop, retrieve all department information currently in the DEPT table and store it in
the PL/SQL table. Each department number is a multiple of 10.

Using another loop, retricve the department information from the PL/SQL table and print it
to the screen, using DBMS OUTPUT.PUT_LINE.

Introduction to Oracle: SQL and PL/SQL A-72

Practice 20 Solutions (continued)

SET SERVEROUTPUT ON
DECLARE
TYPE dept table type is table of dept%ROWTYPE
INDEX BY BINARY INTEGER;
my dept table dept table type;
v_count NUMBER (2) ;
BEGIN
SELECT COUNT (*)
INTO v_count
FROM dept:;
FOR i IN 1..v_count

LOOP
SELECT *
INTO my dept table(i)
FROM dept
WHERE deptno = i*10;

END LOOP;

FOR i IN 1..v_count

LOOP
DBMS OUTPUT.PUT LINE ('Dept. ' || my dept table(i).deptno || ', '
| | my dept table(i).dname || ' is located in ' ||

my dept table(i) .loc);
END LOOP;
END;

/

Introduction to Oracle: SQL and PL/SQL A-73

Practice 21 Solutions

1. Runthe script 1ab21 1.sql to create a new table for storing employees and salaries.
SQL> CREATE TABLE top dogs
2 (name VARCHAR? (25) ,
3 salary NUMBER (11,2)) ;

2. Create a PL/SQL block that determines the top employees with respect to salaries.
a. Accept anumber # as user input with a SQL*Plus substitution parameter.

b. In aloop, get the last names and salaries of the top # people with respect to salary in the
EMP table.

c. Store the names and salaries in the TOP_DOGS table.
d. Assume that no two employees have the same salary.

¢. Test a variety of special cases, such as » = 0 or where » is greater than the number
of employees in the EMP table. Empty the TOP_DOGS table after each test.

DELETE FROM top_ dogs;
SET ECHO OFF

ACCEPT p_num -
PROMPT 'Please enter the number of top money makers: '

DECLARE
v_num NUMBER(3) := &p_num;
V_ename emp .ename$TYPE ;
v_sal emp.sal¥TYPE;
CURSOR emp cursor IS
SELECT ename, sal
FROM emp
WHERE sal IS NOT NULL
ORDER BY sal DESC;
BEGIN

OPEN emp cursor;
FETCH emp cursor INTO v_ename, v_sal;
WHILE emp cursor%ROWCOUNT <= v_num AND
emp cursor3¥FOUND LOOP
INSERT INTO top dogs (name, salary)
VALUES (v_ename, v_sal);
FETCH emp cursor INTO v_ename, v_sal;
END LOOP;
CLOSE emp_cursor;
COMMIT ;
END;
/
SELECT * FROM top dogs;

SET ECHO ON

Introduction to Oracle: SQL and PL/SQL A-74

Practice 21 Solutions (continued)

3. Consider the case where several employees have the same salary. If one person is listed, then
all people who have the same salary should also be listed.

a. For example, if the user enters a value of 2 for », then King, Ford, and Scott should be
displayed. (These employees are tied for second highest salary.)

b. If the user enters a value of 3, then King, Ford, Scott, and Jones should be displayed.
¢. Delete all rows from TOP_DOGS and test the practice.
DELETE FROM top_ dogs;

ACCEPT p num PROMPT 'Please enter the number of top money makers:

DECLARE
v_num NUMBER (3) := &p num;
V_ename emp .ename¥TYPE ;
v_current sal emp.sal$TYPE;
v_last sal emp.sal$TYPE;
CURSOR emp cursor IS
SELECT ename, sal
FROM emp
WHERE sal IS NOT NULL
ORDER BY sal DESC;

BEGIN

OPEN emp cursor;

FETCH emp cursor INTO v_ename, v_current sal;

WHILE emp cursor3ROWCOUNT <= v_num AND emp cursor%FOUND LOOP
INSERT INTO top dogs (name, salary)

VALUES (v_ename, v_current sal);

v_last sal := v_current sal;
FETCH emp cursor INTO v_ename, v_current sal;
IF v_last sal = v_current sal THEN
v_num := v_num + 1;
END IF;
END LOOP;
CLOSE emp_cursor;
COMMIT;
END;

/
SELECT * FROM top_dogs;

Introduction to Oracle: SQL and PL/SQL A-75

Practice 22 Solutions

1. Use a cursor to retrieve the department number and the department name from the dept table.
Pass the department number to another cursor to retrieve from the emp table the details of
employee name, job, hiredate, and salary of all the employees who work in that department.

SET SERVEROUTPUT ON
DECLARE
CURSOR dept cursor IS
SELECT deptno,dname
FROM dept
ORDER BY deptno;
CURSOR emp_ cursor (v_deptno NUMBER) IS
SELECT ename, job,hiredate,sal
FROM emp
WHERE deptno = v_deptno;
v_current deptno dept.deptno%TYPE;
v_current dname dept.dname%TYPE;
Vv_ename emp.ename3TYPE;
v_Jjob emp.job%TYPE;
v_mgr emp.mgr¥TYPE;
v_hiredate emp.hiredate%TYPE;
v_sal emp.sal%TYPE;
v_line wvarchar2(100);
BEGIN
v_line :=" '
OPEN dept cursor;
LOOP
FETCH dept_ cursor INTO
v_current deptno,v_current_ dname;
EXIT WHEN dept cursor3NOTFOUND ;
DBMS OUTPUT.PUT LINE ('Department Number : ' ||
v_current deptno || ' Department Name : ' ||
v_current dname) ;
DBMS_ OUTPUT.PUT LINE(v line);
IF emp cursor3ISOPEN THEN
CLOSE emp cursor;
END IF;

Note: Solution continued on next page.

Introduction to Oracle: SQL and PL/SQL A-76

Practice 22 Solutions (continued)

OPEN emp cursor (v_current deptno);

LOOP
FETCH emp cursor INTO v_ename,v_job,v _hiredate,v_sal;

EXIT WHEN emp cursor3¥NOTFOUND;

DBMS OUTPUT.PUT LINE (v_ename || ' "Il v_job ||
Il v_hiredate || ' "l v_sal);
END LOOP;

IF emp cursor3%ISOPEN THEN
CLOSE emp cursor;

END IF;

DBMS OUTPUT.PUT LINE(v line);

END LOOP;

IF emp cursor3ISOPEN THEN
CLOSE emp cursor;

END IF;

CLOSE dept cursor;

END;

/
SET SERVEROUTPUT OFF

Introduction to Oracle: SQL and PL/SQL A-77

Practice 22 Solutions (continued)
2. Modify p19g5. sqgl to incorporate the FOR UPDATE and WHERE CURRENT OF

functionality in cursor processing.

SET VERIFY OFF
ACCEPT p_empno PROMPT 'Please enter the employee number:
DECLARE

vV_empno emp .empno% TYPE
v_asteriskemp.stars3%TYPE

CURSOR emp cursor IS
SELECT empno, NVL(ROUND (sal/100), 0) sal

&p_empno;
NULL;

FROM emp
WHERE empno = V_empno
FOR UPDATE;

BEGIN

FOR emp record IN emp cursor LOOP
FOR i IN 1..emp_record.sal LOOP
v_asterisk := v_asterisk |[|'*';
END LOOP;
UPDATE emp
SET stars = v_asterisk
WHERE CURRENT OF emp cursor;
v_asterisk := NULL;
END LOOP;
COMMIT;
END;
/
SET VERIFY ON
SQL> START p22g2.sql
SQL> SELECT empno, sal, stars
2 FROM emp
3 WHERE empno IN (7844, 7900, 8000);

Introduction to Oracle: SQL and PL/SQL A-78

Practice 23 Solutions
1. Write a PL/SQL block to select the name of the employee with a given salary value.

a. Ifthe salary entered returns more than one row, handle the exception with an appropriate
exception handler and insert into the MESSAGES table the message “More than one
employee with a salary of <salary>.”

b. Ifthe salary entered does not return any rows, handle the exception with an appropriate
exception handler and insert into the MESSAGES table the message “No employee with a
salary of <salary>."

¢. Ifthe salary entered returns only one row, insert into the MESSAGES table the employee’s
name and the salary amount.

d. Handle any other exception with an appropriate exception handler and insert into the
MESSAGES table the message “Some other error occurred.”

¢. Test the block for a variety of test cases.

SET VERIFY OFF
ACCEPT p_sal PROMPT 'Please enter the salary value: '

DECLARE

Vv_ename emp.ename3¥TYPE;

v_sal emp.sal%TYPE := &p sal;
BEGIN

SELECT ename

INTO V_ename

FROM emp

WHERE sal = v_sal;

INSERT INTO messages (results)

VALUES (v _ename || ' - ' || v_sal);
EXCEPTION

WHEN no data found THEN
INSERT INTO messages (results)
VALUES ('No employee with a salary of '|| TO_CHAR(v_sal));
WHEN too many rows THEN
INSERT INTO messages (results)
VALUES ('More than one employee with a salary of '||
TO_CHAR(v_sal));
WHEN others THEN
INSERT INTO messages (results)
VALUES ('Some other error occurred.');
END;
/
SET VERIFY ON
SQL> START p23gql.sql
SQL> START p23gql.sql
SQL> START p23gql.sql

Introduction to Oracle: SQL and PL/SQL A-79

Practice 23 Solutions (continued)
2. Modify p18g3.sgl to add an exception handler.

a. Write an exception handler for the error to pass a message to the user that the specified
department does not exist.

b. Execute the PL/SQL block by entering a department that does not exist.

SET VERIFY OFF
VARTABLE g message VARCHAR2 (40)
ACCEPT p_deptno PROMPT 'Please enter the department number: '
ACCEPT p_loc PROMPT 'Please enter the department location: '
DECLARE

e invalid dept EXCEPTION;

v_deptno dept.deptno¥TYPE := &p deptno;
BEGIN

UPDATE dept

SET loc = '&p_loc!

WHERE deptno = v_deptno;

IF SQLYNOTFOUND THEN

raise e_invalid dept;

END IF;
COMMIT ;
EXCEPTION
WHEN e invalid dept THEN
:g_message := 'Department '|| TO CHAR(v_deptno) ||
' is an invalid department’';
END;

/

SET VERIFY ON

PRINT g message

SQL> START p23g2.sql

Introduction to Oracle: SQL and PL/SQL A-80

Practice 23 Solutions (continued)

SET VERIFY OFF

ACCEPT p_deptno PROMPT 'Please enter the department number: '
ACCEPT p_loc PROMPT 'Please enter the department location: '

DECLARE

e invalid dept EXCEPTION;

v_deptno dept.deptno¥TYPE := &p deptno;
BEGIN

UPDATE dept

SET loc = '&p_loc!

WHERE deptno = v_deptno;
IF SQLYNOTFOUND THEN
raise e_invalid dept;

END IF;
COMMIT ;
EXCEPTION
WHEN e invalid dept THEN
dbms output.put_ line('Department '|| TO_CHAR(v_deptno) ||
' is an invalid department') ;
END;

/
SET VERIFY ON

Introduction to Oracle: SQL and PL/SQL A-81

Practice 23 Solutions (continued)

3. Write a PL/SQL block that prints the number of employees who make plus or minus $100

of the salary value entered.

a. Ifthere is no employee within that salary range, print a message to the user indicating

that is the case. Use an exception for this case.

b. If there are one or more employees within that range, the message should indicate

how many employees are in that salary range.

¢. Handle any other exception with an appropriate exception handler. The message should

mdicate that some other error occurred.

VARTABLE g message VARCHAR2(100)
SET VERIFY OFF
ACCEPT p_sal PROMPT 'Please enter the salary: '

DECLARE
v_sal emp.sal%TYPE := &p sal;
v_low_sal emp.sal%TYPE := v_sal - 100;
v_high sal emp.sal%TYPE := v_sal + 100;
vV_no_emp NUMBER (7) ;
e no_emp returned EXCEPTION;
e more_ than one_ emp EXCEPTION;

BEGIN
SELECT count (ename)
INTO Vv_no_emp
FROM emp
WHERE sal between v_low_sal and v_high sal;
IF v no emp = 0 THEN

RAISE e no emp_ returned;
ELSIF v_no_emp > O THEN
RAISE e more than one_emp;

END IF;
EXCEPTION
WHEN e no emp returned THEN
:g_message := 'There is no employee salary between
TO _CHAR(v_low_sal) || ' and '||

TO_CHAR(v_high sal);
WHEN e more than one emp THEN

:g_message := 'There is/are '|| TO_CHAR(v_no_emp)
' employee(s) with a salary between
TO_CHAR(v_low_sal) || ' and '||
TO_CHAR(v_high sal);
END;
/

SET VERIFY ON
PRINT g message
SQL> START p23g3.sql

Introduction to Oracle: SQL and PL/SQL A-82

Practice 23 Solutions (continued)

SET VERIFY OFF
ACCEPT p_sal PROMPT 'Please enter the salary:

DECLARE
v_sal emp.sal%TYPE := &p sal;
v_low_sal emp.sal%TYPE := v_sal - 100;
v_high sal emp.sal%TYPE := v_sal + 100;
vV_no_emp NUMBER (7) ;

e no_emp returned EXCEPTION;
e more_than one_ emp EXCEPTION;

BEGIN
SELECT count (ename)
INTO Vv_no_emp
FROM emp
WHERE sal between v_low_sal and v_high sal;
IF v no emp = 0 THEN

RAISE e no emp_ returned;
ELSIF v_no_emp > O THEN
RAISE e more than one_emp;
END IF;
EXCEPTION
WHEN e no emp returned THEN
dbms output.put_ line('There is no employee salary
between '|| TO_CHAR(v_low _sal) || ' and '||
TO_CHAR(v_high sal));
WHEN e more than one emp THEN

dbms output.put_ line ('There is/are '|| TO_CHAR(v_no_emp) ||
' employee(s) with a salary between '||
TO_CHAR(v_low_sal) || ' and '||

TO_CHAR(v_high sal));
WHEN others THEN
dbms output.put line('Some other error occurred.');

END;

/
SET VERIFY ON

Introduction to Oracle: SQL and PL/SQL A-83

Introduction to Oracle: SQL and PL/SQL A-84

Table Descriptions
and Data

EMP Table

SQL> DESCRIBE emp

Name Null? Type

EMPNO NOT NULL NUMBER (4)
ENAME VARCHAR?2 (10)
JOB VARCHAR?2 (9)
MGR NUMBER (4)
HIREDATE DATE

SAL NUMBER (7, 2)
COMM NUMBER (7, 2)
DEPTNO NOT NULL NUMBER (2)

SQL> SELECT * FROM emp;

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7839 KING PRESIDENT 17-NOV-81 5000 10
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 10
7566 JONES MANAGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-3SEP-81 1250 1400 30
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
7900 JAMES CLERK 7698 03-DEC-81 950 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
7902 FORD ANALYST 7566 03-DEC-81 3000 20
7369 SMITH CLERK 7902 17-DEC-80 800 20
7788 SCOTT ANALYST 7566 09-DEC-82 3000 20
7876 ADAMS CLERK 7788 12-JAN-83 1100 20
7934 MILLER CLERK 7782 23-JAN-82 1300 10

Introduction to Oracle: SQL and PL/SQL B-2

DEPT Table

SQL> DESCRIBE dept

Name Null? Type

DEPTNO NOT NULL NUMBER (2)
DNAME VARCHAR?2 (14)
LOC VARCHAR?2 (13)

SQL> SELECT * FROM dept;

DEPTNO DNAME LOC
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

Introduction to Oracle: SQL and PL/SQL B-3

SALGRADE Table

SQIL> DESCRIBE salgrade

Name Null®? Type

GRADE NUMBER
LOSAL NUMBER
HISAL NUMBER

GRADE LOSAL HISAL
1 700 1200
2 1201 1400
3 1401 2000
4 2001 3000
5 3001 9999

Introduction to Oracle: SQL and PL/SQL B-4

ORD Table

SQL> DESCRIBE

ord

ORDID
ORDERDATE
COMMPLAN
CUSTID
SHIPDATE
TOTAL

SQL> SELECT * FROM ord;

ORDERDATE
07-JAN-87
11-JAN-87
15-JAN-87
01-MAY-86
05-JUN-86
15-JUN-86
14-JUL-86
14-JUL-86
01-AUG-86
18-JUL-86
25-JUL-86
05-JUN-86
12-MAR-87
01-FEB-87
01-FEB-87
03-FEB-87
22-FEB-87
05-FEB-87
01-FEB-87
15-FEB-87
15-MAR-87

Q

QO wWeErE@FwE 0w

CUSTID

Null? Type
NOT NULL NUMBER (4)
DATE
VARCHAR?2 (1)
NOT NULL NUMBER (6)
DATE
NUMBER (8, 2)
SHIPDATE TOTAL
08-JAN-87 101.4
11-JAN-87 45
20-JAN-87 5860
30-MAY-86 2.4
20-JUN-86 56
30-JUN-86 698
30-JUL-86 8324
30-JUL-86 3.4
15-AUG-86 97.5
18-JUL-86 5.6
25-JUL-86 35.2
05-JUN-86 224
12-MAR-87 4450
01-FEB-87 6400
05-FEB-87 23940
10-FEB-87 764
04-FEB-87 1260
03-MAR-87 46370
06-FEB-87 710
06-MAR-87 3510.5
01-JAN-87 730

Introduction to Oracle: SQL and PL/SQL B-5

PRODUCT Table

SQL> DESCRIBE product

PRODID
DESCRIP

NOT NULL NUMBER(6)

SQL> SELECT * FROM product;

PRODID

100860
100861
100870
100871
100890
101860
101863
102130
200376
200380

DESCRIP

ACE TENNIS
ACE TENNIS
ACE TENNIS
ACE TENNIS
ACE TENNIS

RACKET I
RACKET II
BALLS-3 PACK
BALLS-6 PACK
NET

SP TENNIS RACKET
SP JUNIOR RACKET

RH: "GUIDE

TO TENNIS™

SB ENERGY BAR-6 PACK
SB VITA SNACK-6 PACK

VARCHAR2 (30)

Introduction to Oracle: SQL and PL/SQL B-6

ITEM Table

SQL> DESCRIBE item

ORDID
ITEMID
PRODID
ACTUALPRICE
QTY

ITEMTOT

SQL> SELECT * FROM item;

ORDID

Null?
NOT NULL
NOT NULL

ITEMID PRODID ACTUALPRICE
3 100890 58
1 100861 45
1 100860 30
1 200376 2.4
1 100870 2.8
1 100890 58
2 100861 42
3 100860 44
2 100860 56
1 100860 35
2 100870 2.8
4 200376 2.2
1 100860 35
2 100870 2.8
2 100861 40.5
3 101863 10
1 100860 35
2 200376 2.4
3 102130 3.4
1 100871 5.6
2 101860 24
3 200380 4
3 102130 3.4
1 100860 35
2 100861 45
3 100871 5.6

Continued on next page

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

QTY ITEMTOT

200
444
1000
20
150
10
1000
500
100
200
150
100
50
100
1000

Introduction to Oracle: SQL and PL/SQL B-7

440
224
35
8.4
440
15540
2800
810
1500
350
2400
1700
560
4800
600
340
1750
4500
5600

ITEM Table (continued)

ORDID ITEMID PRODID ACTUALPRICE QTY ITEMTOT
616 1 100861 45 10 450
616 2 100870 2.8 50 140
616 3 100890 58 2 116
616 4 102130 3.4 10 34
616 5 200376 2.4 10 24
619 1 200380 4 100 400
619 2 200376 2.4 100 240
615 1 100861 45 4 180
607 1 100871 5.6 1 5.6
615 2 100870 2.8 100 280
617 3 100870 2.8 500 1400
617 4 100871 5.6 500 2800
617 5 100890 58 500 29000
617 6 101860 24 100 2400
617 7 101863 12.5 200 2500
617 8 102130 3.4 100 340
617 9 200376 2.4 200 480
617 10 200380 4 300 1200
609 2 100870 2.5 5 12.5
609 3 100890 50 1 50
618 1 100860 35 23 805
618 2 100861 45.11 50 2255.5
618 3 100870 45 10 450
621 1 100861 45 10 450
621 2 100870 2.8 100 280
615 3 100871 5 50 250
608 1 101860 24 1 24
608 2 100871 5.6 2 11.2
609 1 100861 35 1 35
606 1 102130 3.4 1 3.4
605 1 100861 45 100 4500
605 2 100870 2.8 500 1400
605 3 100890 58 5 290
605 4 101860 24 50 1200
605 5 101863 9 100 900
605 6 102130 3.4 10 34
612 4 100871 5.5 100 550
619 4 100871 5.6 50 280

Introduction to Oracle: SQL and PL/SQL B-8

CUSTOMER Table

SQL> DESCRIBE customer

CUSTID
NAME
ADDRESS
CITY
STATE
ZIP
AREA
PHONE
REPID
CREDITLIMIT
COMMENT S

NOT NULL

NOT NULL

Type
NUMBER (6)
VARCHAR?2 (4
VARCHAR?2 (4
VARCHAR?2 (3
VARCHAR2 (2
VARCHAR?2 (9
NUMBER (3)
VARCHAR2 (9)
NUMBER (4)
NUMBER (9, 2)
LONG

Introduction to Oracle: SQL and PL/SQL B-9

CUSTOMER Table (continued)

SQL> SELECT * FROM customer;

CUSTID NAME ADDRESS
100 JOCKSPORTS 345 VIEWRIDGE
101 TKB SPORT SHOP 490 BOLI RD.

102 VOLLYRITE

JUST TENNIS
EVERY MOUNTAIN
105 K + T SPORTS

9722 HAMILTON
HILLVIEW MALL
574 SURRY RD.
3476 EL PASEOQ

106 SHAPE UP 908 SEQUOIA
107 WOMENS SPORTS VALCO VILLAGE
108 NORTH WOODS HEALTH AND FITNESS SUPPLY CENTER 98 LONE PINE WAY

CITY ST ZIF AREA PHONE REPID CREDITLIMIT
BELMCNT CA 96711 415 598-6609 7844 5000
REDWOOD CITY CA 94051 415 368-1223 7521 10000
BURLINGAME CA 95133 415 644-3341 7654 7000
BURLINGAME CA 97544 415 677-9312 7521 3000
CUPERTINO CA 93301 408 996-2323 7499 10000
SANTA CLARA CA 91003 408 376-9966 7844 5000
PALO ALTO CA 94301 415 364-9777 7521 6000
SUNNYVALE CA 93301 408 967-4398 7499 10000
HIBBING MN 55649 612 566-9123 7844 8000
COMMENTS

Very friendly people to work with -- sales rep likes to be called Mike.

Rep called 5/8 about change in order - contact shipping.

Company doing heavy promotion beginning 10/89. Prepare for large orders during orders during winter
Contact rep about new line of tennis rackets.

Customer with high market share (23%) due to aggressive advertising.

Tends to order large emounts of merchandise at once. Accounting is considering raising their credit limit
Support intensive. Orders small amounts (< 800) of merchandise at a time.

First sporting goods store geared exclusively towards women. Unusual promotional style

Introduction to Oracle: SQL and PL/SQL B-10

PRICE Table

SQL> DESCRIBE price

Name Null®? Type
PRODID NOT NULL NUMBER (6)
STDPRICE NUMBER (8, 2)
MINPRICE NUMBER (8, 2)
STARTDATE DATE
ENDDATE DATE
SQL> SELECT * FROM price;

PRODID STDPRICE MINPRICE STARTDATE ENDDATE

100871 4.8 3.2 01-JAN-85 01-DEC-85

100890 58 46.4 01-JAN-85

100890 54 40.5 01-JUN-84 31-MAY-84

100860 35 28 01-JUN-86

100860 32 25.6 01-JAN-86 31-MAY-86

100860 30 24 01-JAN-85 31-DEC-85

1008061 45 36 01-JUN-86

1008061 42 33.6 01-JAN-86 31-MAY-86

1008061 39 31.2 01-JAN-85 31-DEC-85

100870 2.8 2.4 01-JAN-86

100870 2.4 1.9 01-JAN-85 01-DEC-85

100871 5.6 4.8 01-JAN-86

101860 24 18 15-FEB-85

101863 12.5 9.4 15-FEB-85

102130 3.4 2.8 18-AUG-85

200376 2.4 1.75 15-NOV-86

200380 4 3.2 15-NOV-86

Introduction to Oracle: SQL and PL/SQL B-11

Introduction to Oracle: SQL and PL/SQL B-12

Index

Symbol

3-34

% 2-13

&& 8-10

& 84

(+) 417

* 16

15

%NOTFOUND 21-14

%ROWCOUNT 21-15

%ROWTYPE 20-8

%TYPE attribute 16-21
16-29

= 16-16

ACCEPT 8-11
Active Set 21-4
ADD clause. 11-17
ADD_MONTHS 3-20

alias 1-16

ALL 6-16

ALTER SEQUENCE 13-12
TABLE 10-15
USER 14-11

AND 2-16

Anonymous blocks 16-5

ANY 6-15

arithmetic operators 1-9

AS 1-17

ASC 2-22

Introduction to Oracle: SQL and PL/SQL Index -1

Assignment operator 16-16
Attribute -9
AVG 5-6

base table 12-5

basic loop 19-14

BETWEEN 2-10

BFILE 16-25

BINARY_INTEGER 20-11

Bind variable 16-10

BLOB 16-25

Boolean condition 19-10
expressions 16-23

BREAK 8-23

BTITLE 8-24

CACHE 13-5

Cartesian product 4-5
CASCADE CONSTRAINTS 11-25
CHECK constraint 11-16
CLOB 16-25

CLOSE 21-12

collection 16-24

COLUMN 8-21

COLUMN format models 8-22
column heading 1-8
COMMENT 10-24
comments 17-6

COMMIT 9-27, 18-14

Introduction to Oracle: SQL and PL/SQL Index - 2

Comparison operators 2-7

complex view 12-7

Composite datatypes 16-24
variables 20-3

concatenation operator 1-18

constraints 11-3

conversion 17-9

COUNT 5-8

CREATE INDEX 13-17
SEQUENCE 13-6
SYNONYM 13-23
TABLE 10-5
USER 14-6
VIEW 12-8

CURRVAL 13-8

cursor 18-15

cursor attributes 21-13
FOR loop 21-18

CYCLE 13-5

data definition language 10-5
data dictionary 10-9

Data manipulation language 9-3
database |[-5

Database security 14-3
datatype 1-29

datatype conversion 3-23
dates 3-17

DBMS_OUTPUT 16-30

Introduction to Oracle: SQL and PL/SQL Index -3

DD-MON-YY 3-17

DDL 10-5

declaration section 16-12

declare an explicit cursor 21-7

DECODE 3-39

DEFAULT 10-7, 16-16

DEFINE 8-11

Delete 18-11

DELETE 9-20

Delimiters 17-3

DESC 2-22

DESCRIBE 1-28

DISABLE clause 11-20

DISTINCT 1-23

DML 9-3

double-ampersand 8-10

DROP clause 11-19
COLUMN 10-19
INDEX 13-22
SEQUENCE 13-14
TABLE 10-21
VIEW 12-19

ELSIF 19-5

ENABLE clause 11-21
ENDIF 19-5

Entity 1-9

entity relationship (ER) [-9
Equijoins 4-8

ESCAPE 2-13

Introduction to Oracle: SQL and PL/SQL Index - 4

exception 23-3
EXIT statement 19-14

explicit cursors 21-4

FETCH 21-10

field 1-12, 20-4

FOREIGN KEY 11-13
FOR loops 29-16

format model 3-29

FOR UPDATE clause 22-5

functions 3-3

GRANT 14-8
GROUP BY 5-12

group functions 5-3

HAVING 5-21
IN 2-11

Identifiers 17-4

IF statement 19-3
INCREMENT BY 13-5
index 13-15
INITCAP 3-9

Inline View 12-20
INSERT 9-5, 18-9
INTO clause 18-5
implicit cursor 18-15
IS NULL 2-14

Introduction to Oracle: SQL and PL/SQL Index -5

join 4-4

LAST_DAY 3-20
LENGTH 3-11

LIKE 2-12

literal 1-20

LOB 16-25

locators 16-9

Locks 9-37

logical operators 2-15
login.sql 8-18

LOOP control structures 19-3
LOWER 3-9

LPAD 3-11

MAX 5-7

MAXVALUE 13-5

MIN 5-7

MINVALUE 13-5

MOD 3-16

MODIFY 10-18
MONTHS_BETWEEN 3-20
Multiple-column subqueries 6-7

Multiple-row subqueries 6-7

naming convention 18-13
NCLOB 16-25

nest loops 19-21

nested blocks 17-11

Introduction to Oracle: SQL and PL/SQL Index -6

Nested functions 3-42
NEXT_DAY 3-20

NEXTVAL 13-8
non-equijoin 4-14
nonpairwise comparisons 7-6
non-predefined Oracle Server error 23-11
NOT 2-18

NOT NULL 16-16

NOT NULL constraint 11-7
null value 1-12

Number functions 3-13

NVL 3-37

object privilege 14-4

ON DELETE CASCADE 11-15
OPEN 21-9

OR 2-17

ORDER BY 2-22

order of precedence 1-12
OTHERS exception handler 23-6

outer join 4-17

pairwise comparisons 7-6

parameter in the cursor declaration 22-3
PL/SQL -3

PL/SQL Table method 20-15

PL/SQL tables 20-11

pointers 16-9

PRAGMA 23-11

Introduction to Oracle: SQL and PL/SQL Index -7

predefined Oracle Server error 23-8
PRIMARY KEY 11-11

PRINT 17-16

Privileges 14-4

procedural capabilities [-7
programming guidelines 17-17
propagate the exception 23-17
PUBLIC 14-16

RAISE_APPLICATION_ERROR 23-19
read consistency 9-35

record 20-3

reference host variables 16-29
REFERENCES 11-15

referential integrity 11-13

relational database -7

Relational database management systems [-6
Relationship 1-9

RENAME 10-22

reports 8-3

REVOKE 14-18

role 14-9

ROLLBACK 9-27, 18-14

ROUND 3-14

ROWNUM 12-22

RPAD 3-11

RR date format 3-36

SAVEPOINT 9-27, 18-14
scalar datatype 16-17
Schema 10-6

Introduction to Oracle: SQL and PL/SQL Index -8

scope 17-11

SELECT 1-3

SELECT statement 18-4
self join 4-19

sequence 13-4

SET UNUSED 10-20

SET VERIFY 8-6

simple view 12-7
Multiple-row functions 3-4
Single-row functions 3-5
single-row subquery 6-8
Single-row subqueries 6-7
SQL I-15

SQL buffer 1-5

SQLCODE 23-13
SQLERRM 23-13
SQL*Plus 1-24

START WITH 13-5
statement-level rollback 9-34
Subprograms 16-5
subquery 6-4, 22-9
subquery in the FROM clause 7-10
SUBSTR 3-11

SUM 5-6

synonym 13-23

SYSDATE 3-17

system development life cycle [-3

system privilege 14-4

Introduction to Oracle: SQL and PL/SQL Index -9

table alias 4-12

table of records 20-16
tables 20-3
TO_CHAR 3-33
TO_DATE 3-35
TO_DATE function 9-9
TO_NUMBER 3-35
transaction 9-3

TRIM 3-11

TRUNC 3-15
TRUNCATE TABLE 10-23
TTITLE 8-24

“Top-N” analysis 12-21
tuple 1-12

UNDEFINE 8-14

UNIQUE key constraint 11-9
UPDATE 9-14, 18-10

UPPER 3-9
USER_CONS_COLUMNS 1-28
USER_CONSTRAINTS 11-4
user-defined exception 23-16
USER_IND_COLUMNS 13-20
USER_INDEXES 13-20
USER_SEQUENCES 13-7

variables 16-7
view 12-5

Introduction to Oracle: SQL and PL/SQL Index -10

WHERE 2-4

WHEN OTHERS 23-14

WHERE CURRENT OF clause 22-7

WHILE loop 19-19

WITH CHECK OPTION 12-17
GRANT OPTION 14-13
READ ONLY 12-18

Introduction to Oracle: SQL and PL/SQL Index - 11

Introduction to Oracle: SQL and PL/SQL Index -12

