Introduction to Oracle: SQL
and PL/SQL

Student Guide * Volume 1

41010GC13
Production 1.3
July 1999
M08944

ORACLE"

Authors

Neena Kochhar
Ellen Gravina
Priya Nathan

Technical Contributors

and Reviewers

Claire Bennet
Christa Miethaner
Tony Hickman
Sherin Nassa
Nancy Greenberg
Hazel Russl|
Kenneth Goetz
Piet van Zon
Ulrike Dietrich
Helen Robertson
Thomas Nguyen
Lisa Jansson
Kuljit Jassar

Publisher
Jerry Brosnan

Copyright © Oracle Corporation, 1998, 1999. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited. If
this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in FAR
52.227-14, Rights in Data-General, including Alternate Ill (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

Oracle and all references to Oracle products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Contents

Preface
Curriculum Map

Introduction
Objectives 1-2
System Development Life Cycle |-3
Data Storage on Different Media [-5
Relational Database Concept -6
Definition of Relational Database |-7
Data Models -8
Entity Relationship Model [-9
Entity Relationship Modeling Conventions 1-10
Relational Database Terminology 1-12
Relating Multiple Tables 1-13
Relational Database Properties [-14
Communicating with a RDBMS Using SQL 1-15
Relational Database Management System [-16
Oracle8: Object Relational Database Management System 1-17
Oracle8i: Internet Platform Database for Internet Computing Features 1-18
Oracle Internet Platform [-19
SQL Statements 1-20
About PL/SQL 1-21
PL/SQL Environment [-22
Tables Used in the Course 1-23
Summary [-24

1 Writing Basic SQL Statements
Objectives 1-2
Capabilities of SQL SELECT Statements 1-3
Basic SELECT Statement 1-4
Writing SQL Statements 1-5
Selecting All Columns 1-6
Selecting Specific Columns 1-7
Column Heading Defaults 1-8
Arithmetic Expressions 1-9

Using Arithmetic Operators 1-10
Operator Precedence 1-11

Using Parentheses 1-13

Defining a Null Value 1-14

Null Values in Arithmetic Expressions 1-15
Defining a Column Alias 1-16

Using Column Aliases 1-17
Concatenation Operator 1-18

Using the Concatenation Operator 1-19
Literal Character Strings 1-20

Using Literal Character Strings 1-21
Duplicate Rows 1-22

Eliminating Duplicate Rows 1-23

SQL and SQL*Plus Interaction 1-24
SQL Statements Versus SQL*Plus Commands
Overview of SQL*Plus 1-26

Logging In to SQL*Plus 1-27
Displaying Table Structure 1-28
SQL*Plus Editing Commands 1-30
SQL*Plus File Commands 1-32
Summary 1-33

Practice Overview 1-34

Restricting and Sorting Data
Objectives 2-2

Limiting Rows Using a Selection 2-3
Limiting Rows Selected 2-4

Using the WHERE Clause 2-5
Character Strings and Dates 2-6
Comparison Operators 2-7

Using the Comparison Operators 2-8
Other Comparison Operators 2-9
Using the BETWEEN Operator 2-10
Using the IN Operator 2-11

Using the LIKE Operator 2-12

Using the IS NULL Operator 2-14
Logical Operators 2-15

Using the AND Operator 2-16

Using the OR Operator 2-17

1-25

Using the NOT Operator 2-18
Rules of Precedence 2-19
ORDER BY Clause 2-22

Sorting in Descending Order 2-23
Sorting by Column Alias 2-24
Sorting by Multiple Columns 2-25
Summary 2-26

Practice Overview 2-27

Single-Row Functions

Objectives 3-2

SQL Functions 3-3

Two Types of SQL Functions 3-4

Single-Row Functions 3-5

Character Functions 3-7

Case Conversion Functions 3-9

Using Case Conversion Functions 3-10
Character Manipulation Functions 3-11

Using the Character Manipulation Functions 3-12
Number Functions 3-13

Using the ROUND Function 3-14

Using the TRUNC Function 3-15

Using the MOD Function 3-16

Working with Dates 3-17

Arithmetic with Dates 3-18

Using Arithmetic Operators with Dates 3-19
Date Functions 3-20

Using Date Functions 3-21

Conversion Functions 3-23

Implicit Datatype Conversion 3-24

Explicit Datatype Conversion 3-26

TO_CHAR Function with Dates 3-29
Elements of Date Format Model 3-30

Using TO_CHAR Function with Dates 3-32
TO_CHAR Function with Numbers 3-33
Using TO_CHAR Function with Numbers 3-34
TO_NUMBER and TO_DATE Functions 3-35
RR Date Format 3-36

NVL Function 3-37

Using the NVL Function 3-38
DECODE Function 3-39

Using the DECODE Function 3-40
Nesting Functions 3-42

Summary 3-44

Practice Overview 3-45

Displaying Data from Multiple Tables
Objectives 4-2

Obtaining Data from Multiple Tables 4-3
What Is a Join? 4-4

Cartesian Product 4-5

Generating a Cartesian Product 4-6

Types of Joins 4-7

What Is an Equijoin? 4-8

Retrieving Records with Equijoins 4-9
Qualifying Ambiguous Column Names 4-10
Additional Search Conditions Using the AND Operator 4-11
Using Table Aliases 4-12

Joining More Than Two Tables 4-13
Non-Equijoins 4-14

Retrieving Records with Non-Equijoins 4-15
Quter Joins 4-16

Using Outer Joins 4-18

Self Joins 4-19

Joining a Table to Itself 4-20

Summary 4-21

Practice Overview 4-22

Aggregating Data Using Group Functions
Objectives 5-2

What Are Group Functions? 5-3

Types of Group Functions 5-4

Using Group Functions 5-5

Using AVG and SUM Functions 5-6

Using MIN and MAX Functions 5-7

Using the COUNT Function 5-8

Vi

Group Functions and Null Values 5-10

Using the NVL Function with Group Functions 5-11
Creating Groups of Data 5-12

Creating Groups of Data: GROUP BY Clause 5-13
Using the GROUP BY Clause 5-14

Grouping by More Than One Column 5-16

Using the GROUP BY Clause on Multiple Columns 5-17
lllegal Queries Using Group Functions 5-18
Excluding Group Results 5-20

Excluding Group Results: HAVING Clause 5-21
Using the HAVING Clause 5-22

Nesting Group Functions 5-24

Summary 5-25

Practice Overview 5-26

Subqueries

Objectives 6-2

Using a Subquery to Solve a Problem 6-3
Subqueries 6-4

Using a Subquery 6-5

Guidelines for Using Subqueries 6-6

Types of Subqueries 6-7

Single-Row Subqueries 6-8

Executing Single-Row Subqueries 6-9

Using Group Functions in a Subquery 6-10

HAVING Clause with Subqueries 6-11

What Is Wrong with This Statement? 6-12

Will This Statement Work? 6-13

Multiple-Row Subqueries 6-14

Using ANY Operator in Multiple-Row Subqueries 6-15
Using ALL Operator in Multiple-Row Subqueries 6-16
Summary 6-17

Practice Overview 6-18

Multiple-Column Subqueries
Objectives 7-2

Multiple-Column Subqueries 7-3
Using Multiple-Column Subqueries 7-4

vii

Column Comparisons 7-6

Nonpairwise Comparison Subquery 7-7
Nonpairwise Subquery 7-8

Null Values in a Subquery 7-9

Using a Subquery in the FROM Clause 7-10
Summary 7-11

Practice Overview 7-12

Producing Readable Output with SQL*Plus
Objectives 8-2

Interactive Reports 8-3

Substitution Variables 8-4

Using the & Substitution Variable 8-5

Using the SET VERIFY Command 8-6

Character and Date Values with Substitution Variables 8-7
Specifying Column Names, Expressions, and Text at Runtime 8-8
Using the && Substitution Variable 8-10

Defining User Variables 8-11

The ACCEPT Command 8-12

Using the ACCEPT Command 8-13

DEFINE and UNDEFINE Commands 8-14

Using the DEFINE Command 8-15

Customizing the SQL*Plus Environment 8-16

SET Command Variables 8-17

Saving Customizations in the 1ogin.sqgl File 8-18
SQL*Plus Format Commands 8-19

The COLUMN Command 8-20

Using the COLUMN Command 8-21

COLUMN Format Models 8-22

Using the BREAK Command 8-23

Using the TTITLE and BTITLE Commands 8-24
Creating a Script File to Run a Report 8-25

Sample Report 8-27

Summary 8-28

Practice Overview 8-29

Manipulating Data
Objectives 9-2
Data Manipulation Language 9-3

viii

10

Adding a New Row to a Table 9-4

The INSERT Statement 9-5

Inserting New Rows 9-6

Inserting Rows with Null Values 9-7

Inserting Special Values 9-8

Inserting Specific Date Values 9-9

Inserting Values by Using Substitution Variables 9-10
Creating a Script with Customized Prompts 9-11
Copying Rows from Another Table 9-12
Changing Data in a Table 9-13

The UPDATE Statement 9-14

Updating Rows in a Table 9-15

Updating with Multiple-Column Subquery 9-16
Updating Rows Based on Another Table 9-17
Updating Rows: Integrity Constraint Error 9-18
Removing a Row from a Table 9-19

The DELETE Statement 9-20

Deleting Rows from a Table 9-21

Deleting Rows Based on Another Table 9-22
Deleting Rows: Integrity Constraint Error 9-23
Database Transactions 9-24

Advantages of COMMIT and ROLLBACK Statements 9-26

Controlling Transactions 9-27

Implicit Transaction Processing 9-28
State of the Data Before COMMIT or ROLLBACK 9-29
State of the Data After COMMIT 9-30
Committing Data 9-31

State of the Data After ROLLBACK 9-32
Rolling Back Changes to a Marker 9-33
Statement-Level Rollback 9-34

Read Consistency 9-35

Implementation of Read Consistency 9-36
Locking 9-37

Summary 9-38

Practice Overview 9-39

Creating and Managing Tables
Objectives 10-2
Database Objects 10-3

11

Naming Conventions 10-4

The CREATE TABLE Statement 10-5
Referencing Another User’'s Tables 10-6
The DEFAULT Option 10-7

Creating Tables 10-8

Tables in the Oracle Database 10-9
Querying the Data Dictionary 10-10
Datatypes 10-11

Creating a Table by Using a Subquery 10-13
The ALTER TABLE Statement 10-15
Adding a Column 10-16

Modifying a Column 10-18

Dropping a Column 10-19

SET UNUSED Option 10-20

Dropping a Table 10-21

Changing the Name of an Object 10-22
Truncating a Table 10-23

Adding Comments to a Table 10-24
Summary 10-25

Practice Overview 10-26

Including Constraints

Objectives 11-2

What Are Constraints? 11-3

Constraint Guidelines 11-4

Defining Constraints 11-5

The NOT NULL Constraint 11-7

The UNIQUE KEY Constraint 11-9

The PRIMARY KEY Constraint 11-11

The FOREIGN KEY Constraint 11-13
FOREIGN KEY Constraint Keywords 11-15
The CHECK Constraint 11-16

Adding a Constraint 11-17

Dropping a Constraint 11-19

Disabling Constraints 11-20

Enabling Constraints 11-21

Cascading Constraints 11-22

Viewing Constraints 11-24

Viewing the Columns Associated with Constraints 11-25
Summary 11-26

Practice Overview 11-27

12 Creating Views
Objectives 12-2
Database Objects 12-4
What Is a View? 12-5
Why Use Views? 12-6
Simple Views and Complex Views 12-7
Creating a View 12-8
Retrieving Data from a View 12-11
Querying a View 12-12
Modifying a View 12-13
Creating a Complex View 12-14
Rules for Performing DML Operations on a View 12-15
Using the WITH CHECK OPTION Clause 12-17
Denying DML Operations 12-18
Removing a View 12-19
Inline Views 12-20
“Top-N” Analysis 12-21
Performing “Top-N” Analysis 12-22
Example of “Top-N” Analysis 12-23
Summary 12-24
Practice Overview 12-26

13 Other Database Objects
Objectives 13-2
Database Objects 13-3
What Is a Sequence? 13-4
The CREATE SEQUENCE Statement 13-5
Creating a Sequence 13-6
Confirming Sequences 13-7
NEXTVAL and CURRVAL Pseudocolumns 13-8
Using a Sequence 13-10
Modifying a Sequence 13-12
Guidelines for Modifying a Sequence 13-13
Removing a Sequence 13-14
What Is an Index? 13-15
How Are Indexes Created? 13-16
Creating an Index 13-17
When to Create an Index 13-18
When Not to Create an Index 13-19
Confirming Indexes 13-20
Function-Based Indexes 13-21

Xi

14

15

16

Removing an Index 13-22

Synonyms 13-23

Creating and Removing Synonyms 13-24
Summary 13-25

Practice Overview 13-26

Controlling User Access

Objectives 14-2

Controlling User Access 14-3

Privileges 14-4

System Privileges 14-5

Creating Users 14-6

User System Privileges 14-7

Granting System Privileges 14-8

What Is a Role? 14-9

Creating and Granting Privileges to a Role 14-10
Changing Your Password 14-11

Object Privileges 14-12

Granting Object Privileges 14-14

Using WITH GRANT OPTION and PUBLIC Keywords 14-15
Confirming Privileges Granted 14-16

How to Revoke Object Privileges 14-17
Revoking Object Privileges 14-18

Summary 14-19

Practice Overview 14-20

SQL Workshop
Workshop Overview 15-2

Declaring Variables

Objectives 16-2

About PL/SQL 16-3

Benefits of PL/SQL 16-4

PL/SQL Block Structure 16-6

Block Types 16-8

Program Constructs 16-9

Use of Variables 16-11

Handling Variables in PL/SQL 16-12
Types of Variables 16-13

Declaring PL/SQL Variables 16-16
Naming Rules 16-18

Assigning Values to Variables 16-19

Xii

Variable Initialization and Keywords 16-20
Scalar Datatypes 16-21

Base Scalar Datatypes 16-22

Scalar Variable Declarations 16-24

The %TYPE Attribute 16-25

Declaring Variables with the % TYPE Attribute 16-26
Declaring Boolean Variables 16-27
PL/SQL Record Structure 16-28

LOB Datatype Variables 16-29

Bind Variables 16-31

Referencing Non-PL/SQL Variables 16-32
DBMS_OUTPUT.PUT_LINE 16-33
Summary 16-34

Practice Overview 16-36

17 Writing Executable Statements
Objectives 17-2
PL/SQL Block Syntax and Guidelines 17-3
Commenting Code 17-6
SQL Functions in PL/SQL 17-7
PL/SQL Functions 17-8
Datatype Conversion 17-9
Nested Blocks and Variable Scope 17-11
Operators in PL/SQL 17-14
Using Bind Variables 17-16
Programming Guidelines 17-17
Code Naming Conventions 17-18
Indenting Code 17-19
Determining Variable Scope 17-20
Summary 17-21
Practice Overview 17-22

18 Interacting with the Oracle Server
Objectives 18-2
SQL Statements in PL/SQL 18-3
SELECT Statements in PL/SQL 18-4
Retrieving Data in PL/SQL 18-6
Manipulating Data Using PL/SQL 18-8
Inserting Data 18-9
Updating Data 18-10
Deleting Data 18-11
Naming Conventions 18-12

xiii

19

20

COMMIT and ROLLBACK Statements 18-14
SQL Cursor 18-15

SQL Cursor Attributes 18-16

Summary 18-18

Practice Overview 18-20

Writing Control Structures

Objectives 19-2

Controlling PL/SQL Flow of Execution 19-3

IF Statements 19-4

Simple IF Statements 19-5

IF-THEN-ELSE Statement Execution Flow 19-6
IF-THEN-ELSE Statements 19-7
IF-THEN-ELSIF Statement Execution Flow 19-8
IF-THEN-ELSIF Statements 19-9

Building Logical Conditions 19-10

Logic Tables 19-11

Boolean Conditions 19-12

Iterative Control: LOOP Statements 19-13
Basic Loop 19-14

FOR Loop 19-16

WHILE Loop 19-19

Nested Loops and Labels 19-21

Summary 19-23

Practice Overview 19-24

Working with Composite Datatypes
Objectives 20-2

Composite Datatypes 20-3

PL/SQL Records 20-4

Creating a PL/SQL Record 20-5
PL/SQL Record Structure 20-7

The %ROWTYPE Attribute 20-8
Advantages of Using %ROWTYPE 20-9
The %ROWTYPE Attribute 20-10
PL/SQL Tables 20-11

Creating a PL/SQL Table 20-12
PL/SQL Table Structure 20-13
Creating a PL/SQL Table 20-14

Xiv

21

22

23

Using PL/SQL Table Methods 20-15
PL/SQL Table of Records 20-16

Example of PL/SQL Table of Records 20-17
Summary 20-18

Practice Overview 20-19

Writing Explicit Cursors

Objectives 21-2

About Cursors 21-3

Explicit Cursor Functions 21-4

Controlling Explicit Cursors 21-5

Declaring the Cursor 21-7

Opening the Cursor 21-9

Fetching Data from the Cursor 21-10
Closing the Cursor 21-12

Explicit Cursor Attributes 21-13

Controlling Multiple Fetches 21-14

The %ISOPEN Attribute 21-15

The %NOTFOUND and %ROWCOUNT Attributes 21-16
Cursors and Records 21-17

Cursor FOR Loops 21-18

Cursor FOR Loops Using Subqueries 21-20
Summary 21-21

Practice Overview 21-23

Advanced Explicit Cursor Concepts
Objectives 22-2

Cursors with Parameters 22-3

The FOR UPDATE Clause 22-5

The WHERE CURRENT OF Clause 22-7
Cursors with Subqueries 22-9

Summary 22-10

Practice Overview 22-11

Handling Exceptions

Objectives 23-2

Handling Exceptions with PL/SQL 23-3
Handling Exceptions 23-4

Exception Types 23-5

Trapping Exceptions 23-6

XV

Trapping Exceptions Guidelines 23-7

Trapping Predefined Oracle Server Errors 23-8
Predefined Exception 23-10

Trapping Non-Predefined Oracle Server Errors 23-11
Non-Predefined Error 23-12

Functions for Trapping Exceptions 23-13
Trapping User-Defined Exceptions 23-15
User-Defined Exception 23-16

Calling Environments 23-17

Propagating Exceptions 23-18
RAISE_APPLICATION_ERROR Procedure 23-19
Summary 23-21

Practice Overview 23-22

Practice Solutions
Table Descriptions and Data

Index

XVi

Preface

Preface -2

Profile
Before You Begin This Course

Before you begin this course, you should be able to use a graphical user interface (GUI).
Required prerequisites are familiarity with data processing concepts and techniques.

How This Course Is Organized

Introduction to Oracle: SQL and PL/SQL is an instructor-led course featuring lectures and
hands-on exercises. Online demonstrations and written practice sessions reinforce the
concepts and skills introduced.

Preface -3

Related Publications

Oracle Publications
Title
Oracle8i Server, Release 8.1.5
Oracle8i Concepts, Release 8.1.5
Oracle8i SQL Reference Manual, Release 8.1.5
Oracle8i Server Application Developer’s Guide
SQL*Plus User’s Guide and Reference, Release 8.1.5
SQL*Plus Quick Reference, Release 8.1.5
PL/SQL User’s Guide and Reference, Release 8.1.5

Additional Publications

System release bulletins

Installation and user’s guides

read.me files

International Oracle User’s Group (IOUG) articles

Oracle Magazine

Preface -4

Part Number
A68826-01
A67781-01
A67779-01
A68003-01
A66736-01
A66735-01
A67842-01

Typographic Conventions

What follows are two lists of typographical conventions used specifically within text or within

code.

Typographic Conventions Within Text

Convention

Uppercase

Lowercase
italic

2

Initial cap

Italic

Quotation marks

Object or Term

Commands,
functions,
column names,
table names,
PL/SQL objects,
schemas

Filenames,
syntax variables,
usernames,
passwords

Trigger and
button names

Books, names of
courses and
manuals, and
emphasized
words or phrases

Lesson module
titles referenced
within a course

Example

Use the SELECT command to view
information stored in the LAST NAME
column of the EMP table.

1s the name of the role
to be created.

where: role

Assign a When-Validate-Item trigger to
the ORD block.

Choose Cancel.

For more information on the subject see
Oracle Server SQL Language Reference
Manual

Do not save changes to the database.

This subject 1s covered in Lesson 3,
“Working with Objects.”

Preface -5

Typographic Conventions (continued)

Typographic Conventions Within Code

Convention Object or Term Example
Uppercase Commands, SQL> SELECT userid
functions 2 FROM emp;

Lowercase, Syntax variables SQL> CREATE ROLE role;

italic

Initial cap Forms triggers Form module: ORD
Trigger level: S ITEM.QUANTITY
item

Trigger name: When-Validate-Item

Lowercase Column names, ..
table names, OG_ACTIVATE LAYER
filenames, (OG_GET LAYER ('prod pie layer'))
PL/SQL objects
SQL> SELECT last_name
2 FROM emp;
Bold Text that must SQLDBA> DROP USER scott
be entered by a 2> IDENTIFIED BY tiger;
user

Preface -6

Curriculum
Map

Integrated Languages
Curriculum: Certification Tracks

Introduction to Oracle: Introduction to Oracle
SQL and PL/SQL for Experienced SQL Users
SsaL1 PL/SQL OF ™ Oracle saL PL/SQL
Fundamentals Specifics Fundamentals

> DBA
track

Develop PL/SQL > Application
Program Units Developer

track

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE

Integrated Languages Curriculum: Certification Tracks

Introduction to Oracle: SQL and PL/SQL consists of two modules, SQL! and PL/SQL Fundamentals.
This is the first course that you take for the DBA or Application Developer track. SOL/ covers creating
database structures and storing, retrieving, and manipulating data in a relational database. PL/SQL
Fundamentals covers creating PL/SQL blocks of application code.

For people who have worked with other relational databases and have knowledge of SQL, another
module called Oracle SQL Specifics is offered. This module covers the SQL statements that are not part
of ANSI SQL but are specific to Oracle. This module combined with PL/SQL Fundamentals forms
Introduction to Oracle for Experienced SQL Users.

Introduction to Oracle: SQL and PL/SQL and Introduction to Oracle for Experienced SQL Users are
considered equivalent and after taking one of them, you can move on to the DBA track. For the
Application Developer track, you must take the Develop PL/SQOL Program Units course. This course
teaches you how to write PL/SQL procedures, functions, packages, and triggers.

Curriculum Map - 2

Integrated Languages
Curriculum

SQL1 I Oracle SQL Specifics I | SQL for End Users

S [o
Database Objects P
Extended Data Retrieval PL/SQL Fundamentals Oracle8 Call Interface
with SQL Workshop

Advanced SELECT Statements

SQL*Plus and Reporting

SQL Statement Tuning |
Rules and Guidelines

Develop PL/SQL Advanced Techniques
Program Units for PL/SQL Developers

Procedures, Functions, PL/SQL
and Packages

Best Practices

Database Programming Oraclet?: New Features
in PL/SQL

Oracle Built-in
Advanced PL/SQL Packages
N et
] Seminaf Copyright © Oracle Corporation, 1999. All rights reserved. ORAC'_E

Integrated Languages Curriculum

The slide lists various modules and courses that are available in the languages curriculum. For most
of these modules and courses, there are equivalent CBTs.

Course or Module Equivalent CBT
SQOLI Oracle SQL: Basic SELECT Statements

Oracle SQL: Data Retrieval Techniques
Oracle SOL: DML and DDL

Oracle SQL Specifics Oracle SQL Specifics: Retrieving and Formatting Data
Oracle SQOL Specifics: Creating and Managing Database
Objects

PL/SQL Fundamentals PL/SQL: Basics

Extended Data Retrieval with Oracle SOL and SOQL*Plus: Advanced SELECT Statements

SOL Oracle SQL and SQL*Plus: SOL*Plus and Reporting

Develop PL/SQL Program Units | PL/SQL: Procedures, Functions, and Packages
PL/SQL: Database Programming

SQL Statement Tuning SQOL and PL/SQL Tuning: Diagnostics

SQL and PL/SQL Tuning: Rules and Guidelines

Four seminars on PL/SQL are also offered: Advanced Techniques for PL/SQL Developers, PL/SQOL
Best Practices, Oracle8: New Features in PL/SQOL, and Oracle Built-in Packages.

Curriculum Map - 3

Curriculum Map -4

Introduction

Copyright © Oracle Corporation, 1999. All rights reserved.

ORACLE"

Objectives
After completing this lesson, you should be
able to do the following:

* Discuss the theoretical and physical aspects
of a relational database

* Describe the Oracle implementation of the
RDBMS and ORDBMS

* Describe new features of Oracle8i

* Describe how SQL and PL/SQL are used in
the Oracle product set

* Describe the use and benefits of PL/SQL

-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Lesson Aim

In this lesson, you will gain an understanding of the relational database management system
(RDBMS) and the object relational database management system (ORDBMS). You will also be
introduced to the following:

SQL statements that are specific to Oracle
SQL*Plus, which is used for executing SQL and for formatting and reporting purposes
PL/SQL, which is Oracle’s procedural language

Introduction to Oracle: SQL and PL/SQL 1-2

System Development Life Cycle

Strategy
and
Analysis

Production

I-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

System Development Life Cycle

From concept to production, you can develop a database by using the system development life cycle,
which contains multiple stages of development. This top-down, systematic approach to database
development transforms business information requirements into an operational database.

Strategy and Analysis

» Study and analyze the business requirements. Interview users and managers to identify the
information requirements. Incorporate the enterprise and application mission statements as well
as any future system specifications.

» Build models of the system. Transfer the business narrative into a graphical representation of
business information needs and rules. Confirm and refine the model with the analysts and
experts.

Design
Design the database based on the model developed in the strategy and analysis phase.
Build and Document

» Build the prototype system. Write and execute the commands to create the tables and
supporting objects for the database.

» Develop user documentation, help text, and operations manuals to support the use and operation
of the system.

Introduction to Oracle: SQL and PL/SQL 1-3

System Development Life Cycle

Strategy
and
Analysis

Production

I-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

System Development Life Cycle (continued)
Transition

Refine the prototype. Move an application into production with user acceptance testing, conversion of
existing data, and parallel operations. Make any modifications required.

Production

Roll out the system to the users. Operate the production system. Monitor its performance, and
enhance and refine the system.

Note: The various phases of system development life cycle can be carried out iteratively. This course
focuses on the build phase of the system development life cycle.

Introduction to Oracle: SQL and PL/SQL 1-4

Data Storage on Different Media

SAT.GRADE
GRADE LOSAL HISAL
DEPT @ KT TTTTTTTTT
700 1200
DEPTNO DNAME LOC
_________________________________ 1201 1400
1401 2000
10 ACCOUNTING NEW YORK
2001 3000
20 RESEARCH DALLAS
3001 9999
30 SALES CHICAGO
40 OPERATIONS BOSTON
/ \ |
[
— —_
‘ -
>
-
J Database
Electronic Filing cabinet
spreadsheet
-5 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Storing Information

Every organization has some information needs. A library keeps a list of members, books, due dates,
and fines. A company needs to save information about employees, departments, and salaries. These
pieces of information are called data.

Organizations can store data on various media and in different formats—for example, a hard-copy
document in a filing cabinet or data stored in electronic spreadsheets or in databases.

A database is an organized collection of information.

To manage databases, you need database management systems (DBMS). A DBMS is a program that
stores, retrieves, and modifies data in the database on request. There are four main types of databases:
hierarchical, network, relational, and more recently object relational.

Note: Oracle7 is a relational database management system and Oracle8 is an object relational
database management system.

Introduction to Oracle: SQL and PL/SQL 1-5

Relational Database Concept

* Dr. E.F. Codd proposed the relational model for
database systems in 1970.

* It is the basis for the relational database management
system (RDBMS).

* The relational model consists of the following:
— Collection of objects or relations
— Set of operators to act on the relations
- Data integrity for accuracy and consistency

I-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Relational Model

The principles of the relational model were first outlined by Dr. EF. Codd in a June 1970 paper
called “A Relational Model of Data for Large Shared Data Banks.” In this paper, Dr. Codd proposed
the relational model for database systems.

The more popular models used at that time were hierarchical and network, or even simple flat file
data structures. Relational database management systems (RDBMS) soon became very popular,
especially for their ease of use and flexibility in structure. In addition, a number of innovative
vendors, such as Oracle, supplemented the RDBMS with a suite of powerful application development
and user products, providing a total solution.

Components of the Relational Model
» Collections of objects or relations that store the data
» A set of operators that can act on the relations to produce other relations
+ Data integrity for accuracy and consistency

For more information, see E.F. Codd, The Relational Model for Database Management Version 2
(Reading, Mass.: Addison-Wesley, 1990).

Introduction to Oracle: SQL and PL/SQL 1-6

Definition of a Relational
Database

A relational database is a collection of relations or
two-dimensional tables.
Database

[1L L]
[1L _J[_]

Table Name: EMP Table Name: DEPT

EMPNO ENAME JOB DEPTNO DEPTNO | DNAME LOC
7839 KING PRESIDENT 10 10 | ACCOUNTING NEW YORK
7698 BLAKE MANAGER 30 20 | RESEARCH DALLAS
7782 CLARK MANAGER 10 30 | SALES CHICAGO
7566 JONES MANAGER 20 40 | OPERATIONS BOSTON
-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Definition of a Relational Database
A relational database uses relations or two-dimensional tables to store information.

For example, you might want to store information about all the employees in your company. In a
relational database, you create several tables to store different pieces of information about your
employees, such as an employee table, a department table, and a salary table.

Introduction to Oracle: SQL and PL/SQL 1-7

Data Models
\1/,

N
— —

M

\

\
\

\

\

Model of
system .
in client's En_tlty,model of
mind client’s model
Table mN
of entity model Server
[I 1]
N | | .
[| | -
Tables on disk
-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °
Data Models

Models are a cornerstone of design. Engineers build a model of a car to work out any details before
putting it into production. In the same manner, system designers develop models to explore ideas and

improve the understanding of the database design.
Purpose of Models

Models help communicate the concepts in people’s minds. They can be used to do the following;:

+ Communicate

» Categorize

» Describe

* Specify

» Investigate
* Evolve

* Analyze

+ Imitate

The objective is to produce a model that fits a multitude of these uses, can be understood by an end

user, and contains sufficient detail for a developer to build a database system.

Introduction to Oracle: SQL and PL/SQL 1-8

Entity Relationship Model

* Create an entity relationship diagram from
business specifications or narratives

EMPLOYEE ass'gned to DEPARTMENT
#* number number
* name name

d of

o job title compose location

e Scenario

— “. .. Assign one or more employees to a
department...”

- “. .. Some departments do not yet have
assigned employees . ..”

-9 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG °

ER Modeling

In an effective system, data is divided into discrete categories or entities. An entity relationship (ER)
model is an illustration of various entities in a business and the relationships between them. An ER
model is derived from business specifications or narratives and built during the analysis phase of the
system development life cycle. ER models separate the information required by a business from the
activities performed within a business. Although businesses can change their activities, the type of
mformation tends to remain constant. Therefore, the data structures also tend to be constant.

Benefits of ER Modeling
* Documents information for the organization in a clear, precise format
» Provides a clear picture of the scope of the information requirement
» Provides an casily understood pictorial map for the database design
* Offers an effective framework for integrating multiple applications
Key Components

+ Entity: A thing of significance about which information needs to be known. Examples are
departments, employees, and orders.

» Attribute: Something that describes or qualifies an entity. For example, for the employee entity,
the attributes would be the employee number, name, job title, hire date, department number,
and so on. Each of the attributes is either required or optional. This state is called optionality.

» Relationship: A named association between entities showing optionality and degree. Examples
are employees and departments, and orders and items.
Introduction to Oracle: SQL and PL/SQL 1-9

Entity Relationship
Modeling Conventions

Entity Attribute

Soft box Singular name

Singular, unique name Lowercase

Uppercase Mandatory marked with “*”
Synonym in parentheses Optional marked with “o0”

EMPLOYEE ass'gned to DEPARTMENT
number number
hame composed of name
job title location

Unique Identifier (UID)
Primary marked with “#”
Secondary marked with “(#)”

I-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Entities
To represent an entity in a model, use the following conventions:
+ Soft box with any dimensions
+ Singular, unique entity name
» Entity name in uppercase
+ Optional synonym names in uppercase within parentheses: ()
Attributes
To represent an attribute in a model, use the following conventions:
» Use singular names in lowercase
» Tag mandatory attributes, or values that must be known, with an asterisk: *
+ Tag optional attributes, or values that may be known, with the letter o
Relationships

Symbol Description

Dashed line Optional element indicating “may be”

Solid line Mandatory element indicating “must be”
Crow’s foot Degree element indicating “one or more”
Single line Degree element indicating “one and only one”

Introduction to Oracle: SQL and PL/SQL 1-10

Entity Relationship
Modeling Conventions

Entity Attribute

Soft box Singular name

Singular, unique name Lowercase

Uppercase Mandatory marked with “*”
Synonym in parentheses Optional marked with “o0”

EMPLOYEE ass'gned to DEPARTMENT
number number
hame composed of name
job title location

Unique Identifier (UID)
Primary marked with “#”
Secondary marked with “(#)”

I-11 Copyright © Oracle Corporation, 1999. All rights reserved. (ORACLE”

Relationships
Each direction of the relationship contains:
* A name, for example, faught by or assigned to
* An optionality, either must be or may be
* A degree, cither one and only one or one or more
Note: The term cardinality is a synonym for the term degree.

Each source entity {may be | must be} relationship name {one and only one | one or more} destination
entity.

Note: The convention is to read clockwise.

Unique Identifiers

A unique identifier (UID) is any combination of attributes or relationships, or both, that serves to
distinguish occurrences of an entity. Each entity occurrence must be uniquely identifiable.

» Tag each attribute that is part of the UID with a number symbol: #

» Tag secondary UIDs with a number sign in parentheses: (#)

Introduction to Oracle: SQL and PL/SQL 1-11

Relational Database Terminolo
ay
2 3
EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
9

7839 KING PRESIDENT 17-NOV-81 5000 10

7698 BLAKE —MANAGER 7839 01-MAY-81 2850 30

7782 CLARK —MANAGER 7839 09-JUN-81 2450 10

7566 JONES MANAGER 7839 02-APR-81 2975 20

7654 MARTIN —SALESMAN 7698 28-SEP-81 1250 1400 30

7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30

7844 TURNER SALESMAN 7698 08-SEP-81 1500 5 0 30

7900 JAMES CLERK 7698 03-DEC-81 950 30

7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30

7902 FORD ANALYST 7566 03-DEC-81 3000 20

7369 SMITH CLERK 7902 17-DEC-80 800 20

7788 SCOTT _ANALYST 7566 09-DEC-82 3000 20

7876 ADAMS CLERK 7788 12-JAN-83 1100 20

\1) 7934 MILLER CLERK 7782 23-JAN-82 1300 10
1-12 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Terminology Used in a Relational Database

A relational database can contain one or many tables. A fable is the basic storage structure of an RDBMS. A
table holds all the data necessary about something in the real world—for example, employees, invoices, or
customers.

The slide shows the contents of the EMP fable or relation. The numbers indicate the following:

1. A single row or tuple representing all data required for a particular employee. Each row in a table
should be identified by a primary key, which allows no duplicate rows. The order of rows is
insignificant; specify the row order when the data is retrieved.

2. A column or attribute containing the employee number, which is also the primary key. The
employee number identifies a unique employee in the EMP table. A primary key must contain a value.

3. A column that is not a key value. A column represents one kind of data in a table; in the example,
the job title of all the employees. Column order is insignificant when storing data; specify the
column order when the data is retrieved.

4. A column containing the department number, which is also a foreign key. A foreign key is a column
that defines how tables relate to each other. A foreign key refers to a primary key or a unique key in
another table. In the example, DEPTNO uniguely identifies a department in the DEPT table.

A field can be found at the intersection of a row and a column. There can be only one value in it.

6. A ficld may have no value in it. This is called a null value. In the EMP table, only employees who
have a role of salesman have a value in the COMM (commission) field.

Note: Null values are covered further in subsequent lessons.

Introduction to Oracle: SQL and PL/SQL 1-12

Relating Multiple Tables

* Each row of data in a table is uniquely
identified by a primary key (PK).

* You can logically relate data from
multiple tables using foreign keys (FK).

Table Name: EMP Table Name: DEPT
EMPNO ENAME JOB DEPTNO DEPTNO | DNAME LOC
7839 KING PRESIDENT 10 $1 P 10 | ACCOUNTING NEW YORK
7698 BLAKE MANAGER 30 4 20 | RESEARCH DALLAS
7782 CLARK MANAGER 10 4 30| SALES CHICAGO
7566 JONES MANAGER 20 4 40 | OPERATIONS BOSTON
Primary key Foreign key Primary key
1-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Relating Multiple Tables

Each table contains data that describes exactly one entity. For example, the EMP table contains
information about employees. Categories of data are listed across the top of each table, and individual
cases are listed below. Using a table format, you can readily visualize, understand, and use information.

Because data about different entities is stored in different tables, you may need to combine two or more
tables to answer a particular question. For example, you may want to know the location of the department
where an employee works. In this scenario, you need information from the EMP table (which contains
data about employees) and the DEPT table (which contains information about departments). An RDBMS
enables you to relate the data in one table to the data in another by using the foreign keys. A foreign key
is a column or a set of columns that refer to a primary key in the same table or another table.

The ability to relate data in one table to data in another enables you to organize information in separate,
manageable units. Employee data can be kept logically distinct from department data by storing it in a
separate table.

Guidelines for Primary Keys and Foreign Keys
» No duplicate values are allowed in a primary key.
* Primary keys generally cannot be changed.
» Foreign keys are based on data values and are purely logical, not physical, pointers.
» A foreign key value must match an existing primary key value or unique key value, or else be null.
* You cannot define foreign keys without existing primary (unique) keys.

Introduction to Oracle: SQL and PL/SQL 1-13

Relational Database Properties

A relational database

e Can be accessed and modified by
executing structured query language
(SQL) statements

e Contains a collection of tables with no
physical pointers

» Uses a set of operators

I-14 Copyright © Oracle Corporation, 1999. All rights reserved. (ORACLE”

Properties of a Relational Database

In a relational database, you do not specify the access route to the tables, and you do not need to
know how the data is arranged physically.

To access the database, you execute a structured query language (SQL) statement, which is the
American National Standards Institute (ANSI) standard language for operating upon relational
databases. The language contains a large set of operators for partitioning and combining relations.
The database can be modified by using the SQL statements.

Introduction to Oracle: SQL and PL/SQL 1-14

Communicating with a RDBMS
Using SQL

SQL statement
is entered Statement is sent to
SQL> SELECT loc database
2 FROM dept; \
Database
Data is displayed
Loc /
NEW YORK <
DALLAS
CHICAGO
BOSTON
1-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Structured Query Language
SQL allows you to communicate with the server and has the following advantages:
» Efficient
» Easy to learn and use

» Functionally complete (SQL allows you to define, retrieve, and manipulate data in the tables.)

Introduction to Oracle: SQL and PL/SQL 1-156

Relational Database
Management System

Server

1
|
= = = =
|
= I
|
7 |~ User tables Data
o o dictionary
I-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Relational Database Management System

Oracle provides a flexible RDBMS called Oracle7. Using its features, you can store and manage data
with all the advantages of a relational structure plus PL/SQL, an engine that provides you with the
ability to store and execute program units. The server offers the options of retrieving data based on
optimization techniques. It includes security features that control how a database is accessed and
used. Other features include consistency and protection of data through locking mechanisms.

Oracle applications may run on the same computer as the Oracle Server. Alternatively, you can run
applications on a system local to the user and run the Oracle Server on another system (client-server
architecture). In this client-server environment, a wide range of computing resources can be used. For
example, a form-based airline reservation application can run on a client personal computer while
accessing flight data that is conveniently managed by an Oracle Server on a central computer.

For more information, see Oracle Server Concepts Manual, Release 8.

Introduction to Oracle: SQL and PL/SQL 1-16

Oracle8: Object Relational
Database Management System

» User-defined datatypes and objects

* Fully compatible with relational
database

* Support of multimedia and large objects
* High-quality database server features

1-17 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

About Oracle8

Oracle8 is the first object-capable database developed by Oracle. It extends the data modeling
capabilitics of Oracle7 to support a new object relational database model. Oracle8 provides a new
engine that brings object-oriented programming, complex datatypes, complex business objects, and
full compatibility with the relational world.

Oracle8 extends Oracle7 in many ways. It includes several features for improved performance and
functionality of online transaction processing (OLTP) applications, such as better sharing of runtime
data structures, larger buffer caches, and deferrable constraints. Data warehouse applications will
benefit from enhancements such as parallel execution of insert, update, and delete operations;
partitioning; and parallel-aware query optimization. Operating within the Network Com puting
Architecture (NCA) framework, Oracle8 supports client-server and Web-based applications that are
distributed and multitiered.

Oracle8 can scale tens of thousands of concurrent users, support up to 512 petabytes, and can handle
any type of data, including text, spatial, image, sound, video, and time series as well as traditional
structured data.

For more information, see Oracle Server Concepts Manual, Release 8.

Introduction to Oracle: SQL and PL/SQL 1-17

Oracle8i: Internet Platform
Database for Internet Computing

Features

* Advanced tools to manage all types of data
on Web sites

* More than a simple relational data store: iFS
* Integrated Java VM in the server: JServer

» Better performance, stronger security,
language improvement

* Greater integration with Windows NT
environment: AppWizard

1-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

About Oracle8i

Oracle8i, the database for Internet computing, provides advanced tools to manage all types of data in
Web sites.

It is much more than a simple relational data store. The Internet File System (iFS) combines the power
of Oracle8i with the ease of use of a file system. It allows users to move all of their data into the
Oracle8i database, where it can be stored and managed more efficiently. End users can easily access
files and folders in Oracle iFS via a variety of protocols, such as HTML, FTP, and IMAP4, giving
them universal access to their data.

Oracle8i inferMedia allows users to web-enable their multi-media data—including image, text, audio,
and video data. Oracle8i includes a robust, integrated, and scalable Java Virtual Machine within the
server (Jserver), thus supporting Java in all tiers of applications. This eliminates the necessity of
recompiling or modifying Java code when it is to be deployed on a different tier.

With the newly introduced resource management, the DBA can choose the best method to fit an
application’s profile and workload. The extended features of parallel server and networking improves
case of system administration. The extended functionality of advanced replication results in better
performance and improved security. Significant new functionalities have been added to languages.

Oracle8i provides full, native integration with Microsoft Transaction Server (MTS) in the Windows
NT environment. Application development is simplified by the Oracle Application Wizard
(AppWizard) for Visual Studio, which provides developers with a GUI tool for creating a Visual C++,
Visual Interdev, or Visual Basic applications accessing data in an Oracle database.

For more information, see Oracle Server Concepts Manual, Release 8i.
Introduction to Oracle: SQL and PL/SQL 1-18

Oracle Internet Platform

Cllents Any mail
Any browser client Any FTP client

|l '
S Internet applications 1~
S <
A /\)
g)) > saL
© Business logic | | Presentation and || | S .
% and data business logic 3 _,é @ PLrSaL
£ \/ v/ @ ce
- =~
S R Ap pIic\étion e
[
o ||| |Databases servers 8
(2 N\ — Java
> - 7] —
2]) =2
Network services x
1-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Oracle Internet Platform

Oracle offers a comprehensive high-performance Internet platform for e-commerce and data
warchousing. This integrated platform includes everything needed to develop, deploy, and manage
Internet applications. The Oracle Internet Platform is built on three core pieces:

» Browser-based clients to process presentation

» Application servers to execute business logic and serve presentation logic to browser-based
clients

» Databases to execute database-intensive business logic and serve data

Oracle offers a wide variety of the most advanced graphical user interface (GUI) driven development
tools to build business applications, as well as a large suite of software applications for many areas of
business and industry. Stored procedures, functions, and packages can be written by using SQL,
PL/SQL, or Java.

Introduction to Oracle: SQL and PL/SQL 1-19

1-20

SQL Statements

SELECT Data retrieval

INSERT

UPDATE Data manipulation language (DML)
DELETE

CREA

ALTER

DROP
RENA

TRUNCATE

TE

Data definition language (DDL)
ME

COMMIT
ROLLBACK Transaction control

SAVEPOINT

GRAN
REVO

T Data control language (DCL)
KE

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG °

SQL Statements

Oracle SQL complies with industry-accepted standards. Oracle Corporation ensures future
compliance with evolving standards by actively involving key personnel in SQL standards
committees. Industry-accepted committees are the American National Standards Institute (ANSI)

and the International Standards Organization (ISO). Both ANSI and ISO have accepted SQL as the

standard language for relational databases.

Statement Description

SELECT Retrieves data from the database

INSERT Enters new rows, changes existing rows, and removes unwanted rows
UPDATE from tables in the database, respectively. Collectively known as data
DELETE manipulation language (DML).

CREATE Sets up, changes, and removes data structures from tables. Collectively
ALTER known as data definition language (DDL).

DROP

RENAME

TRUNCATE

COMMIT Manages the changes made by DML statements. Changes to the data can
ROLLBACK be grouped together into logical transactions.

SAVEPOINT

GRANT Gives or removes access rights to both the Oracle database and the
REVOKE structures within it. Collectively known as data control language (DCL).

Introduction to Oracle: SQL and PL/SQL 1-20

About PL/SQL

* PL/SQL is an extension to SQL with
design features of programming
languages.

* Data manipulation and query statements
of SQL are included within procedural
units of code.

1-21 Copyright © Oracle Corporation, 1999. All rights reseved. (ORACLE”

About PL/SQL

Procedural Language/SQL (PL/SQL) is Oracle Corporation’s procedural language extension to SQL,
the standard data access language for relational databases. PL/SQL offers modern software
engineering features such as data encapsulation, exception handling, information hiding, and object
orientation, and so brings state-of-the-art programming to the Oracle Server and Toolset.

PL/SQL incorporates many of the advanced features made in programming languages designed
during the 1970s and 1980s. It allows the data manipulation and query statements of SQL to be
included in block-structured and procedural units of code, making PL/SQL a powerful transaction
processing language. With PL/SQL, vou can use SQL statements to finesse Oracle data and PL/SQL
control statements to process the data.

Introduction to Oracle: SQL and PL/SQL 1-21

PL/SQL Environment

4 PL/SQL engine h

PL/SQL

Procedural
Statement
Executor

PL/SQL PL/SQL
block » block | .SQL

Y

SQL Statement Executor

_ QOracle Server y

1-22 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

PL/SQL Engine and the Oracle Server

PL/SQL is not an Oracle product in its own right; it is a technology employed by the Oracle Server and by
certain Oracle tools. Blocks of PL/SQL are passed to and processed by a PL/SQL engine, which may
reside within the tool or within the Oracle Server. The engine used depends on where the PL/SQL is
being invoked.

When you submit PL/SQL blocks from a Pro* program, user-exit, SQL*Plus, or Server Manager, the
PL/SQL engine in the Oracle Server processes them. It separates out the SQL statements and sends them
individually to the SQL statements executor.

A single transfer is required to send the block from the application to the Oracle Server, thus improving
performance, especially in a client-server network. PL/SQL code can also be stored in the Oracle Server
as subprograms that can be referenced by any number of applications connected to the database.

Introduction to Oracle: SQL and PL/SQL 1-22

Tables Used in the Course

EMP
EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7839 KING PRESIDENT 17-Nov-81 5000 10
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 10
7566 JONES MANAGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
7900 JAMES CLERK 7698 03-DEC-81 950 30
DEPTNO DNAME Loc 7698 22-FEB-81 1250 500 30
_________________________________ 7566 03-DEC-81 3000 20
10 ACCOUNTING NEW YORK 7902 17-DEC-80 GRADE LOSAL HISAL
20 RESEARCH DALLAS 7566 09-DEC-82 | oo o e
30 SALES CHICAGO 7788 12-JAN-83 1 700 1200
40 OPERATIONS BOSTON 7782 23-JAN-82 2 1201 1400
3 1401 2000
4 2001 3000
DEPT 5 3001 9999
SALGRADE
1-23 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Tables Used in the Course
The following three tables will be used in this course:
» EMP table, which gives details of all the employees
» DEPT table, which gives details of all the departments
* SALGRADE table, which gives details of salaries for various grades
The structure and data for all the tables is given in Appendix B.

Introduction to Oracle: SQL and PL/SQL 1-23

Summary

* Relational databases are composed of relations,
managed by relational operations, and governed by
data integrity constraints.

e The Oracle Server allows you to store and manage
information by using the SQL language and
PL/SQL engine.

* Oracle8 is based on the object relational database
management system.

e The Oracle8i Server is the database for Internet
computing.

* PL/SQL is an extension to SQL with design
features of programming languages.

1-24 Copyright © Oracle Corporation, 1999. All rights reserved. (ORACLE”

Summary

Relational database management systems are composed of objects or relations. They are managed by
operations and governed by data integrity constraints.

Oracle Corporation produces products and services to meet your relational database management
system needs. The main product is the Oracle Server, which enables you to store and manage
information by using SQL and the PL/SQL engine for procedural constructs.

SQL

The Oracle Server supports ANSI standard SQL and contains extensions. SQL is the language used to
communicate with the server to access, manipulate, and control data.

PL/SQL

The PL/SQL language extends the SQL language by offering block-structured procedural constructs
combined with SQL nonprocedural capabilities.

Introduction to Oracle: SQL and PL/SQL 1-24

]

Writing Basic
SQL Statements

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Objectives

After completing this lesson, you should
be able to do the following:

* List the capabilities of SQL SELECT
statements

 Execute a basic SELECT statement

* Differentiate between SQL statements
and SQL*Plus commands

1-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Lesson Aim

To extract data from the database, you need to use the structured query language (SQL) SELECT
statement. You may need to restrict the columns that are displayed. This lesson describes all the SQL
statements that you need to perform these actions.

You may want to create SELECT statements that can be used time and time again. This lesson also
covers the use of SQL*Plus commands to execute SQL statements.

Introduction to Oracle: SQL and PL/SQL 1-2

Capabilities of SQL SELECT
Statements

Selection Projection
Table 1] Table 1
Join
D T
Table 1 Table 2
1-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Capabilities of SQL SELECT Statements

A SELECT statement retrieves information from the database. Using a SELECT statement, you can
do the following;:

» Sclection: You can use the selection capability in SQL to choose the rows in a table that you
want returned by a query. You can use various criteria to selectively restrict the rows that you
see.

» Projection: You can use the projection capability in SQL to choose the columns in a table that
you want returned by your query. You can choose as few or as many columns of the table as
you require.

» Join: You can use the join capability in SQL to bring together data that is stored in different
tables by creating a link between them. You will learn more about joins in a later lesson.

Introduction to Oracle: SQL and PL/SQL 1-3

Basic SELECT Statement

SELECT [DISTINCT] {*, column [alias],...

FROM table;,

e SELECT identifies what columns.
* FROM identifies which table.

1-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Basic SELECT Statement
In its simplest form, a SELECT statement must include the following:
» A SELECT clause, which specifies the columns to be displayed
+ A FROM clause, which specifies the table containing the columns listed in the SELECT clause
In the syntax:

SELECT is a list of one or more columns.
DISTINCT suppresses duplicates.

* selects all columns.

column selects the named column.

alias gives selected columns different headings.
FROM rable specifies the table containing the columns.

Note: Throughout this course, the words keyword, clause, and statement are used.

* A keyword refers to an individual SQL element.
For example, SELECT and FROM are keywords.

* A clause is apart of a SQL statement.
For example, SELECT empno, ename, ... is a clause.

» A statement 1s a combination of two or more clauses.
For example, SELECT * FROM emp is a SQL statement.

Introduction to Oracle: SQL and PL/SQL 1-4

Writing SQL Statements

e SQL statements are not case sensitive.

* SQL statements can be on one or
more lines.

» Keywords cannot be abbreviated or split
across lines.

e Clauses are usually placed on separate
lines.

* Tabs and indents are used to enhance
readability.

15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Writing SQL Statements

Using the following simple rules and guidelines, you can construct valid statements that are both casy
to read and easy to edit:

» SQL statements are not case sensitive, unless indicated.

* SQL statements can be entered on one or many lines.

+ Keywords cannot be split across lines or abbreviated.

» Clauses are usually placed on separate lines for readability and ease of editing.
» Tabs and indents can be used to make code more readable.

+ Keywords typically are entered in uppercase; all other words, such as table names and columns,
are entered in lowercase.

* Within SQL*Plus, a SQL statement is entered at the SQL prompt, and the subsequent lines are
numbered. This is called the SOL buffer. Only one statement can be current at any time within
the buffer.

Executing SQL Statements
» Place a semicolon (;) at the end of the last clause.
» Place a slash on the last line in the buffer.
» Place a slash at the SQL prompt.
» Issue a SQL*Plus RUN command at the SQL prompt.

Introduction to Oracle: SQL and PL/SQL 1-5

Selecting All Columns

SQL> SELECT *
2 FROM dept;

DEPTNO DNAME LOC
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

1-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Selecting All Columns, All Rows

You can display all columns of data in a table by following the SELECT keyword with an asterisk
(*). In the example on the slide, the department table contains three columns: DEPTNO, DNAME,
and LOC. The table contains four rows, one for each department.

You can also display all columns in the table by listing all the columns after the SELECT keyword.
For example, the following SQL statement, like the example on the slide, displays all columns and all
rows of the DEPT table:

SQL> SELECT deptno, dname, loc
2 FROM dept;

Introduction to Oracle: SQL and PL/SQL 1-6

Selecting Specific Columns

SQL> SELECT deptno, loc
2 FROM dept;

DEPTNO I.0C
10 NEW YORK
20 DALLAS
30 CHICAGO
40 BOSTON

1-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Selecting Specific Columns, All Rows

You can use the SELECT statement to display specific columns of the table by specifying the column
names, separated by commas. The example on the slide displays all the department numbers and
locations from the DEPT table.

In the SELECT clause, specify the columns that you want to see, in the order in which you want them
to appear in the output. For example, to display location before department number, you use the
following statement:

SQL> SELECT loc, deptno
2 FROM dept;

LOC DEPTNO
NEW YORK 10
DALLAS 20
CHICAGO 30
BOSTON 40

Introduction to Oracle: SQL and PL/SQL 1-7

Column Heading Defaults

» Default justification
- Left: Date and character data
- Right: Numeric data

» Default display: Uppercase

1-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Column Heading Defaults

Character column heading and data as well as date column heading and data are left-justified within a
column width. Number headings and data are right-justified.

SQL> SELECT ename, hiredate, sal
2 FROM emp;

ENAME HIREDATE SAL
KING 17-NOV-81 5000
BLAKE 01-MAY-81 2850
CLARK 09-JUN-81 2450
JONES 02-APR-81 2975
MARTIN 28-SEP-81 1250
ALLEN 20-FEB-81 1600

14 rows selected.

Character and date column headings can be truncated, but number headings cannot be truncated. The
column headings appear in uppercase by default. You can override the column heading display with
an alias. Column aliases are covered later in this lesson.

Introduction to Oracle: SQL and PL/SQL 1-8

Arithmetic Expressions

Create expressions on NUMBER and DATE
data by using arithmetic operators.

Operator | Description
+ Add
- Subtract
* Multiply
/ Divide
1-9 Copyright © Oracle Corporation, 1999. All rights reserved. (OIRACLE”

Arithmetic Expressions

You may need to modify the way in which data is displayed, perform calculations, or look at what-if
scenarios. This is possible using arithmetic expressions. An arithmetic expression may contain
column names, constant numeric values, and the arithmetic operators.

Arithmetic Operators

The slide lists the arithmetic operators available in SQL. You can use arithmetic operators in any
clause of a SQL statement except the FROM clause.

Introduction to Oracle: SQL and PL/SQL 1-9

Using Arithmetic Operators

SQL> SELECT ename, sal, sal+300
2 FROM emp;

1-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Using Arithmetic Operators

The example in the slide uses the addition operator to calculate a salary increase of $300 for all
employees and displays a new SAL+300 column in the output.

Note that the resultant calculated column SAL+300 is not a new column in the EMP table; it is for
display only. By default, the name of a new column comes from the calculation that generated it—in

this case, sal+300.
Note: SQL*Plus ignores blank spaces before and after the arithmetic operator.

Introduction to Oracle: SQL and PL/SQL 1-10

Operator Precedence

* [+ =

* Multiplication and division take priority
over addition and subtraction.

* Operators of the same priority are
evaluated from left to right.

 Parentheses are used to force
prioritized evaluation and to clarify
statements.

1-11 Copyright © Oracle Corporation, 1999. All rights reseved. (ORACLE”

Operator Precedence

If an arithmetic expression contains more than one operator, multiplication and division are evaluated
first. If operators within an expression are of same priority, then evaluation is done from left to right.

You can use parentheses to force the expression within parentheses to be evaluated first.

Introduction to Oracle: SQL and PL/SQL 1-11

Operator Precedence

SQL> SELECT ename, sal, 12*sal+100
2 FROM emp;

ENAME SAL 12*SAL+100

1-12 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Operator Precedence (continued)

The example on the slide displays the name, salary, and annual compensation of employees. It
calculates the annual compensation as 12 multiplied by the monthly salary, plus a one-time bonus of
$100. Notice that multiplication is performed before addition.

Note: Use parentheses to reinforce the standard order of precedence and to improve clarity. For
example, the expression above can be written as (12*sal)+100 with no change in the result.

Introduction to Oracle: SQL and PL/SQL 1-12

Using Parentheses

SQL> SELECT ename, sal, 12* (sal+100)
2 FROM emp;

ENAME SAL 12* (SAL+100)

1-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Using Parentheses

You can override the rules of precedence by using parentheses to specify the order in which operators
are executed.

The example on the slide displays the name, salary, and annual compensation of employees. It
calculates the annual compensation as monthly salary plus a monthly bonus of $100, multiplied by
12. Because of the parentheses, addition takes priority over multiplication.

Introduction to Oracle: SQL and PL/SQL 1-13

Defining a Null Value

* A null is a value that is unavailable,
unassigned, unknown, or inapplicable.

* A null is not the same as zero or a blank
space.

SQL> SELECT ename, job, sal, comm
2 FROM emp;

KING PRESIDENT 5000
BLAKE MANAGER 2850
TURNER SAT.ESMAN 1500 6]

14 rows selected.

1-14 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Null Values
If a row lacks the data value for a particular column, that value is said to be nul//, or to contain null.

A null value is a value that is unavailable, unassigned, unknown, or inapplicable. A null value is not
the same as zero or a space. Zero is a number, and a space is a character.

Columns of any datatype can contain null values, unless the column was defined as NOT NULL or as
PRIMARY KEY when the column was created.

In the COMM column in the EMP table, you notice that only a SALESMAN can earn commission.
Other employees are not entitled to earn commission. A null value represents that fact. Tumer, who is
a salesman, does not earn any commission. Notice that his commission is zero and not null.

Introduction to Oracle: SQL and PL/SQL 1-14

Null Values
in Arithmetic Expressions

Arithmetic expressions containing a null
value evaluate to null.

SQL> select ename, 12*sal+comm
2 from emp
3 WHERE ename='KING';

1-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Null Values (continued)

If any column value in an arithmetic expression is null, the result is null. For example, if you attempt
to perform division with zero, you get an error. However, if you divide a number by null, the result is
anull or unknown.

In the example on the slide, employee KING is not in SALESMAN and does not get any
commission. Because the COMM column in the arithmetic expression is null, the result is null.

For more information, see Oracle Server SOL Reference, Release 8, “Elements of SQL.”

Introduction to Oracle: SQL and PL/SQL 1-15

Defining a Column Alias

* Renames a column heading
e |s useful with calculations

e Immediately follows column name;
optional AS keyword between column
name and alias

* Requires double quotation marks if it
contains spaces or special characters
or is case sensitive

1-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Column Aliases

When displaying the result of a query, SQL* Plus normally uses the name of the selected column as
the column heading. In many cases, this heading may not be descriptive and hence is difficult to
understand. You can change a column heading by using a column alias.

Specify the alias after the column in the SELECT list using a space as a separator. By default, alias
headings appear in uppercase. If the alias contains spaces, special characters (such as # or §), or is
case sensitive, enclose the alias in double quotation marks (" ").

Introduction to Oracle: SQL and PL/SQL 1-16

Using Column Aliases

SQL> SELECT ename AS name, sal salary
2 FROM emp;

SQL> SELECT ename "Name",
2 sal*12 "Annual Salary"
3 FROM emp;

Name Annual Salary

117 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Column Aliases (continued)

The first example displays the name and the monthly salary of all the employees. Notice that the
optional AS keyword has been used before the column alias name. The result of the query would be
the same whether the AS keyword is used or not. Also notice that the SQL statement has the column
aliases, name and salary, in lowercase, whereas the result of the query displays the column headings
in uppercase. As mentioned in the last slide, column headings appear in uppercase by default.

The second example displays the name and annual salary of all the employees. Because Annual
Salary contains spaces, it has been enclosed in double quotation marks. Notice that the column
heading in the output is exactly the same as the column alias.

Introduction to Oracle: SQL and PL/SQL 1-17

Concatenation Operator

e Concatenates columns or character
strings to other columns

* Is represented by two vertical bars (||)

e Creates a resultant column that is a
character expression

1-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Concatenation Operator

You can link columns to other columns, arithmetic expressions, or constant values to create a
character expression by using the concatenation operator (||). Columns on either side of the operator
are combined to make a single output column.

Introduction to Oracle: SQL and PL/SQL 1-18

Using the Concatenation
Operator

SQL> SELECT enamel|job AS "Employees"
2 FROM emp ;

Employees
KINGPRESIDENT
BLAKEMANAGER
CLARKMANAGER
JONE SMANAGER
MARTINSALESMAN
ALLENSALESMAN

14 rows selected.

1-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Concatenation Operator (continued)

In the example, ENAME and JOB are concatenated, and they are given the alias Employees. Notice
that the employee number and job are combined to make a single output column.

The AS keyword before the alias name makes the SELECT clause easier to read.

Introduction to Oracle: SQL and PL/SQL 1-19

Literal Character Strings

A literal is a character, a number, or a
date included in the SELECT list.

* Date and character literal values must
be enclosed within single quotation
marks.

e Each character string is output once for
each row returned.

1-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Literal Character Strings

A literal is character, a number, or a date included in the SELECT list that is not a column name or a
column alias. It is printed for each row returned. Literal strings of free-format text can be included in
the query result and are treated the same as a column in the SELECT list.

Date and character literals must be enclosed within single quotation marks (' '); number literals must
not.

Introduction to Oracle: SQL and PL/SQL 1-20

Using Literal Character Strings

SQL> SELECT ename ||' is a '||job

2 AS "Employee Details"
3 FROM emp;

Employee Details
KING is a PRESIDENT
BLAKE 1s a MANAGER
CLARK is a MANAGER
JONES is a MANAGER
MARTIN is a SALESMAN

14 rows selected.

1-21 Copyright © Oracle Corporation, 1999. All rights reseved. (ORACLE”

Literal Character Strings (continued)

The example on the slide displays names and jobs of all employees. The column has the heading
Employee Details. Notice the spaces between the single quotation marks in the SELECT statement.
The spaces improve the readability of the output.

In the following example, the name and salary for each employee is concatenated with a literal to
give the returned rows more meaning.

SQL> SELECT ename ||': '"||'1'||' Month salary = '||sal Monthly
2 FROM emp ;

MONTHLY

KING: 1 Month salary 5000
BLAKE: 1 Month salary = 2850
CLARK: 1 Month salary 2450
JONES: 1 Month salary 2975
MARTIN: 1 Month salary = 1250
ALLEN: 1 Month salary = 1600
TURNER: 1 Month salary = 1500

14 rows selected.

Introduction to Oracle: SQL and PL/SQL 1-21

Duplicate Rows

The default display of queries is all rows,
including duplicate rows.

SQL> SELECT deptno
2 FROM emp;

DEPTNO

14 rows selected.

1-22 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Duplicate Rows

Unless you indicate otherwise, SQL*Plus displays the results of a query without eliminating duplicate
rows. The example on the slide displays all the department numbers from the EMP table. Notice that
the department numbers are repeated.

Introduction to Oracle: SQL and PL/SQL 1-22

Eliminating Duplicate Rows

Eliminate duplicate rows by using the
DISTINCT keyword in the SELECT clause.

SQL> SELECT DISTINCT deptno
2 FROM emp;

DEPTNO

1-23 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Duplicate Rows (continued)

To eliminate duplicate rows in the result, include the DISTINCT keyword in the SELECT clause
immediately after the SELECT keyword. In the example on the slide, the EMP table actually contains
fourteen rows but there are only three unique department numbers in the table.

You can specify multiple columns after the DISTINCT qualifier. The DISTINCT qualifier affects all
the selected columns, and the result represents a distinct combination of the columns.

SQL> SELECT DISTINCT deptno, job
2 FROM emp ;

DEPTNO JOB

10 CLERK

10 MANAGER
10 PRESIDENT
20 ANALYST

9 rows selected.

Introduction to Oracle: SQL and PL/SQL 1-23

SQL and SQL*Plus Interaction

SQL Statements SQL Statements
»-| Buffer
Server
SQL*Plus
- -
SQL*Plus Query Results
Commands ﬂ
Formatted Report o
P ~—

1-24 Copyright © Oracle Corporation, 1999. All rights reseved. (O[RACLE”

SQL and SQL*Plus

SOL is a command language for communication with the Oracle Server from any tool or application.
Oracle SQL contains many extensions. When you enter a SQL statement, it is stored in a part of
memory called the SQL buffer and remains there until you enter a new statement.

SQOL*Plus is an Oracle tool that recognizes and submits SQL statements to the Oracle Server for
execution and contains its own command language.

Features of SQL
* Can be used by a range of users, including those with little or no programming experience
» Is anonprocedural language
* Reduces the amount of time required for creating and maintaining systems
» Is an English-like language
Features of SQL*Plus
» Accepts ad hoc entry of statements
» Accepts SQL input from files
» Provides a line editor for modifying SQL statements
» Controls environmental settings
» Formats query results into a basic report

» Accesses local and remote databases
Introduction to Oracle: SQL and PL/SQL 1-24

SQL Statements Versus
SQL*Plus Commands

SQL
* A language
* ANSI standard

* Keyword cannot be
abbreviated

« Statements manipulate
data and table
definitions in the
database

SQL*Plus
* An environment
* Oracle proprietary

* Keywords can be
abbreviated

e Commands do not
allow manipulation of
values in the database

SQL SQL B
statements buffer
Q
1-25

Copyright © Oracle Corporation, 1999. All rights reserved.

SQL*Plus
commands

ORACLE"

SQL and SQL*Plus (continued)

The following table compares SQL and SQL*Plus:

SQL

SQL*Plus

Is a language for communicating with the Oracle
Server to access data

Recognizes SQL statements and sends them to
the Server

Is based on American National Standards
Institute (ANSI) standard SQL

Is the Oracle proprietary interface for executing
SQL statements

Manipulates data and table definitions in the
database

Does not allow manipulation of values in the
database

Is entered into the SQL buffer on one or more
lines

Is entered one line at a time; not stored in the
SQL buffer

Does not have a continuation character

Has a dash (-) as a continuation character if the
command is longer than one line

Cannot be abbreviated

Can be abbreviated

Uses a termination character to execute
command immediately

Does not require termination characters;
commands are executed immediately

Uses functions to perform some formatting

Uses commands to format data

Introduction to Oracle: SQL and PL/SQL 1-25

Overview of SQL*Plus

Log in to SQL*Plus.
Describe the table structure.
Edit your SQL statement.
Execute SQL from SQL*Plus.

Save SQL statements to files and
append SQL statements to files.

* Execute saved files.

 Load commands from file to buffer
to edit.

1-26 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

SQL*Plus
SQL*Plus is an environment in which you can do the following:
» Execute SQL statements to retrieve, modify, add, and remove data from the database
» Format, perform calculations on, store, and print query results in the form of reports
» Create script files to store SQL statements for repetitive use in the future

SQL*Plus commands can be divided into the following main categories:

Category Purpose
Environment Affects the general behavior of SQL statements for the session
Format Formats query results

File manipulation Saves, loads, and runs script files

Execution Sends SQL statements from SQL buffer to Oracle8 Server
Edit Modifies SQL statements in the buffer
Interaction Allows you to create and pass variables to SQL statements, print

variable values, and print messages to the screen

Miscellaneous Has various commands to connect to the database, manipulate the
SQL*Plus environment, and display column definitions

Introduction to Oracle: SQL and PL/SQL 1-26

Logging In to SQL*Plus

* From Windows environment:

User Name: ISCU“
Password: Im
Host String: ||
| 0K | Cancel

* From command line:
sqlplus [username[/password
[@database]]]

1-27 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Logging In to SQL*Plus

How you invoke SQL*Plus depends on which type of operating system or Windows environment you
are running.

To log in through a Windows environment:
1. Click Start—>Programs—>Oracle for Windows NT—>SQL*Plus 8.0.
2. Fill in username, password, and database.
To log in through a command-line environment:
1. Log on to your machine.
2. Enter the SQL*Plus command as shown in the slide.

In the command:

username is your database username
password is your database password (if you enter your password here, it is visible)
(@database is the database connect string

Note: To ensure the integrity of your password, do not enter it at the operating system prompt.
Instead, enter only your username. Enter your password at the Password prompt.

Once you are successfully logged in to SQL*Plus, you see the following message:
SQL*Plus : Release 8.0.3.0.0 - Production on Tue Jun 22 16:03:43 1999
(c) Copyright 1999 Oracle Corporation. All rights reserved.

Introduction to Oracle: SQL and PL/SQL 1-27

Displaying Table Structure

Use the SQL*Plus DESCRIBE command to
display the structure of a table.

| DESC[RIBE] tablename I

1-28 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Displaying Table Structure

In SQL*Plus, you can display the structure of a table using the DESCRIBE command. The result of
the command is to see the column names and datatypes as well as whether a column must contain
data.

In the syntax:

tablename 1s the name of any existing table, view, or synonym accessible to the user

Introduction to Oracle: SQL and PL/SQL 1-28

Displaying Table Structure

| SQL> DESCRIBE dept I

Name Null®? Type

DEPTNO NOT NULL NUMBER (2)
DNAME VARCHARZ2 (14)
LOC VARCHARZ (13)

1-29 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Displaying Table Structure (continued)
The example on the slide displays the information about the structure of the DEPT table.
In the result:

Null? mdicates whether a column must contain data; NOT NULL indicates that a
column must contain data

Type displays the datatype for a column
The datatypes are described in the following table:

Datatype Description

NUMBER(p,s) Number value having a maximum number of digits p, the number
of digits to the right of the decimal point s

VARCHAR2(s) Variable-length character value of maximum size s

DATE Date and time value between January 1, 4712 B.C. and December
31,9999 A D.

CHAR() Fixed-length character value of size s

Introduction to Oracle: SQL and PL/SQL 1-29

SQL*Plus Editing Commands

« A[PPEND] text
« C[HANGE] / old | new
« C[HANGE] / text |

« CL[EAR] BUFF[ER]

« DEL

e DEL n

«DELmn

1-30 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

SQL*Plus Editing Commands

SQL*Plus commands are entered one line at a time and are not stored in the SQL buffer.

Command Description
A|PPEND] text Adds text to the end of the current line
C[HANGE] / old | new Changes old text to new in the current line
C[HANGE] / text / Deletes fext from the current line
CL[EAR] BUFF[ER] Deletes all lines from the SQL buffer
DEL Deletes current line

Guidelines

» Ifyou press [Return] before completing a command, SQL*Plus prompts you with a line number.

* You terminate the SQL buffer by either entering one of the terminator characters (semicolon or
slash) or pressing [Return] twice. You then see the SQL prompt.

Introduction to Oracle: SQL and PL/SQL 1-30

SQL*Plus Editing Commands

* [[NPUT]
* [[NPUT] text
e L[IST]
e L[IST] n
e L[IST]mn
* R[UN]
°n
* n text
e 0 text
1-31 Copyright © Oracle Corporation, 1999. Al rights reseved. (ORACLE”

SQL*Plus Editing Commands (continued)

Command Description

[INPU T] Inserts an indefinite number of lines

[[NPUT] rext Inserts a line consisting of fext

LJIST] Lists all lines in the SQL buffer

L[IST] n Lists one line (specified by n)

L[IST] mn Lists a range of lines (m to n)

R[UN] Displays and runs the current SQL statement in the buffer
n Specifies the line to make the current line

n fext Replaces line » with fext

0 text Inserts a line before line 1

You can enter only one SQL*Plus command per SQL prompt. SQL*Plus commands are not stored in
the buffer. To continue a SQL*Plus command on the next line, end the current line with a hyphen (-).

Introduction to Oracle: SQL and PL/SQL 1-31

SQL*Plus File Commands

» SAVE filename

e GET filename
 START filename
* @ filename

e EDIT filename
 SPOOL filename
« EXIT

1-32 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

SQL*Plus File Commands

SQL statements communicate with the Oracle Server. SQL*Plus commands control the environment,
format query results, and manage files. You can use the commands identified in the following table:

Command Description

SAVIE] filename |.ext] Saves current contents of SQL buffer to a file. Use APPEND to

[REP[LACE]APP|END]] add to an existing file; use REPLACE to overwrite an existing
file. The default extension is . sgl.

GET filename |.ext| Writes the contents of a previously saved file to the SQL buffer.
The default extension for the filename is . sql.

STA[RT] filename |.ext] Runs a previously saved command file.

@ filename Runs a previously saved command file (same as START).

ED[IT] Invokes the editor and saves the buffer contents to a file named
afiedt.buf.

ED[IT] [filename] .ext]] Invokes editor to edit contents of a saved file.

SPO[OL] [filename].ext]| Stores query results in a file. OFF closes the spool file. OUT

OFF|OUT] closes the spool file and sends the file results to the system
printer.

EXIT Leaves SQL*Plus.

Introduction to Oracle: SQL and PL/SQL 1-32

Summary

SELECT [DISTINCT] {(*,column [alias],...}
FROM table;,

Use SQL*Plus as an environment to:
e Execute SQL statements
e Edit SQL statements

1-33 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

SELECT Statement

In this lesson, you have learned about retrieving data from a database table with the SELECT
statement.

SELECT [DISTINCT] {*,column [alias],...}

FROM table;
where: SELECT is a list of at least one column
DISTINCT suppresses duplicates
* selects all columns
column selects the named column
alias gives selected column a different heading
FROM table specifies the table containing the columns
SQL*Plus

SQL*Plus is an execution environment that you can use to send SQL statements to the database
server and to edit and save SQL statements. Statements can be executed from the SQL prompt or
from a script file.

Introduction to Oracle: SQL and PL/SQL 1-33

Practice Overview

» Selecting all data from different tables
» Describing the structure of tables

* Performing arithmetic calculations and
specifying column names

e Using SQL*Plus editor

1-34 Copyright © Oracle Corporation, 1999. All rights reseved. (ORACLE”

Practice Overview

This is the first of many practices. The solutions (if you require them) can be found in Appendix A.
Practices are intended to introduce all topics covered in the lesson. Questions 2—4 are paper-based.

In any practice, there may be “if you have time” or “if you want extra challenge™ questions. Do
these only if you have completed all other questions within the allocated time and would like a
further challenge to your skills.

Take the practice slowly and precisely. You can experiment with saving and running command
files. If you have any questions at any time, attract the instructor’s attention.

Paper-Based Questions

For questions 24, circle either True or False.

Introduction to Oracle: SQL and PL/SQL 1-34

Practice 1
1. Initiate a SQL*Plus session using the user ID and password provided by the instructor.

2. SQL*Plus commands access the database.

True/False
3. Will the SELECT statement execute successfully?
True/False
SQL> SELECT ename, Jjob, sal Salary
2 FROM emp ;

4. Will the SELECT statement execute successfully?

True/False
SQL> SELECT *
2 FROM salgrade;

5. There are four coding errors in this statement. Can you identify them?

SQL> SELECT empno, ename
2 salary x 12 ANNUAL SALARY
3 FROM emp ;

6. Show the structure of the DEPT table. Select all data from the DEPT table.

Name Null? Type

DEPTNO NOT NULL NUMBER(2)
DNAME VARCHAR2 (14)
LOC VARCHAR2 (13)
DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

Introduction to Oracle: SQL and PL/SQL 1-35

Practice 1 (continued)

7. Show the structure of the EMP table. Create a query to display the name, job, hire date,
and employee number for each employee, with employee number appearing first. Save

your SQL statement to a file named p1g7 .sgl.

Name Null? Type

EMPNO NOT NULL NUMBER (4)
ENAME VARCHAR2 (10)
JOB VARCHAR2 (9)
MGR NUMBER (4)
HIREDATE DATE

SAL NUMBER (7, 2)
COMM NUMBER (7, 2)
DEPTNO NOT NULL NUMBER (2)

8. Run your query in the file p1g7 .sgl.

EMPNO ENAME JOB HIREDATE
7839 KING PRESIDENT 17-NOV-81
7698 BLAKE MANAGER 01-MAY-81
7782 CLARK MANAGER 09-JUN-81
7566 JONES MANAGER 02-APR-81
7654 MARTIN SALESMAN 28-SEP-81
7499 ALLEN SALESMAN 20-FEB-81
7844 TURNER SALESMAN 08-SEP-81
7900 JAMES CLERK 03-DEC-81
7521 WARD SALESMAN 22-FEB-81
7902 FORD ANALYST 03-DEC-81
7369 SMITH CLERK 17-DEC-80
7788 SCOTT ANALYST 09-DEC-82
7876 ADAMS CLERK 12-JAN-83
7934 MILLER CLERK 23-JAN-82

14 rows selected.

Introduction to Oracle: SQL and PL/SQL 1-36

Practice 1 (continued)
9. Create a query to display unique jobs from the EMP table.

ANALYST
CLERK
MANAGER
PRESIDENT
SALESMAN

If you have time, complete the following exercises:

10. Load p1g7 - sql into the SQL buffer. Name the column headings Emp #, Employee, Job,
and Hire Date, respectively. Rerun your query.

Emp # Employee Job Hire Date
7839 KING PRESIDENT 17-NOV-81
7698 BLAKE MANAGER 01-MAY-81
7782 CLARK MANAGER 09-JUN-81
7566 JONES MANAGER 02-APR-81
7654 MARTIN SALESMAN 28-SEP-81
7499 ALLEN SALESMAN 20-FEB-81
7844 TURNER SALESMAN 08-SEP-81
7900 JAMES CLERK 03-DEC-81
7521 WARD SALESMAN 22-FEB-81
7902 FORD ANALYST 03-DEC-81
7369 SMITH CLERK 17-DEC-80
7788 SCOTT ANALYST 09-DEC-82
7876 ADAMS CLERK 12-JAN-83
7934 MILLER CLERK 23-JAN-82

14 rows selected.

Introduction to Oracle: SQL and PL/SQL 1-37

Practice 1 (continued)

11. Display the name concatenated with the job, separated by a comma and space, and name the
column Employee and Title.

Employee and Title
KING, PRESIDENT
BLAKE, MANAGER
CLARK, MANAGER
JONES, MANAGER
MARTIN, SALESMAN
ALLEN, SALESMAN
TURNER, SALESMAN
JAMES, CLERK
WARD, SALESMAN
FORD, ANALYST
SMITH, CLERK
SCOTT, ANALYST
ADAMS, CLERK
MILLER, CLERK

14 rows selected.

If you want extra challenge, complete the following exercise:

12. Create a query to display all the data from the EMP table. Separate each column by a
comma. Name the column THE _OUTPUT.

THE OUTPUT

7839, KING, PRESIDENT,, 17-NOV-81,5000,,10

7698, BLAKE, MANAGER, 7839, 01-MAY-81,2850,,30
7782 ,CLARK, MANAGER, 7839, 09-JUN-81, 2450, ,10
7566, JONES, MANAGER, 7839, 02-APR-81,2975,,20
7654 ,MARTIN, SALESMAN, 7698, 28-SEP-81,1250,1400, 30
7499,ALLEN, SALESMAN, 7698,20-FEB-81,1600,300, 30
7844, TURNER, SALESMAN, 7698, 08-SEP-81, 1500, 0, 30
7900, JAMES, CLERK, 7698, 03-DEC-81, 950, , 30
7521,WARD, SALESMAN, 7698, 22-FEB-81,1250,500, 30
7902, FORD, ANALYST, 7566, 03-DEC-81,3000,, 20
7369, SMITH, CLERK, 7902,17-DEC-80,800,, 20
7788,SCOTT, ANALYST, 7566, 09-DEC-82,3000,,20
7876,ADAMS, CLERK, 7788, 12-JAN-83,1100,,20

7934 ,MILLER,CLERK,7782,23-JAN-82,1300,,10

14 rows selected.

Introduction to Oracle: SQL and PL/SQL 1-38

Restricting and Sorting Data

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Objectives

After completing this lesson, you should
be able to do the following:

 Limit the rows retrieved by a query
» Sort the rows retrieved by a query

2-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Lesson Aim

While retrieving data from the database, you may need to restrict the rows of data that are displayed
or specify the order in which the rows are displayed. This lesson explains the SQL statements that
you will use to perform these actions.

Introduction to Oracle: SQL and PL/SQL 2-2

Limiting Rows Using a Selection

EMP
EMPNO| ENAME B DEPTN " .
© JO © ...retrieve all
7839| KING | PRESIDENT 10 _ employees
7698| BLAKE | MANAGER 30 J§ in department 10"
7782| CLARK| MANAGER 10
7566| JONES | MANAGER 20

EMP
EMPNO| ENAME | JOB DEPTNO
7839| KING PRESIDENT 10
7782| CLARK | MANAGER 10
7934| MILLER| CLERK 10

ORACLE"

2-3

Copyright © Oracle Corporation, 1999. All rights reserved.

Limiting Rows Using a Selection

In the example on the slide, assume that you want to display all the employees in department 10. The
highlighted set of rows with a value of 10 in DEPTNO column are the only ones returned. This
method of restriction is the basis of the WHERE clause in SQL.

Introduction to Oracle: SQL and PL/SQL 2-3

Limiting Rows Selected

* Restrict the rows returned by using the
WHERE clause.

SELECT [DISTINCT] {(*| column [alias],
FROM table

[WHERE condition(s)];

e The WHERE clause follows the FROM
clause.

2-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Limiting Rows Selected

You can restrict the rows returned from the query by using the WHERE clause. A WHERE clause
contains a condition that must be met, and it directly follows the FROM clause.

In the syntax:
WHERE restricts the query to rows that meet a condition

condition is composed of column names, expressions, constants, and a
comparison operator

The WHERE clause can compare values in columns, literal values, arithmetic expressions, or
functions. The WHERE clause consists of three elements:

* Column name
+ Comparison operator

* Column name, constant, or list of values

Introduction to Oracle: SQL and PL/SQL 2-4

Using the WHERE Clause

SQL> SELECT ename, Jjob, deptno
2 FROM emp
3 WHERE Jjob='CLERK';

ENAME JOB DEPTNO
JAMES CLERK 30
SMITH CLERK 20
ADAMS CLERK 20
MILLER CLERK 10

25 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Using the WHERE Clause

In the example, the SELECT statement retrieves the name, job title, and department number of all
employees whose job title is CLERK.

Note that the job title CLERK has been specified in uppercase to ensure that the match is made with
the job column in the EMP table. Character strings are case sensitive.

Introduction to Oracle: SQL and PL/SQL 2-5

Character Strings and Dates

e Character strings and date values are
enclosed in single quotation marks.

e Character values are case sensitive and
date values are format sensitive.

* The default date format is DD-MON-YY .

SQL> SELECT ename, Jjob, deptno
2 FROM emp

3 WHERE ename

2-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Character Strings and Dates

Character strings and dates in the WHERE clause must be enclosed in single quotation marks (').
Number constants, however, should not.

All character searches are case sensitive. In the following example, no rows are returned because the
EMP table stores all the data in uppercase:

SQL> SELECT ename, empno, Jjob, deptno
2 FROM emp
3 WHERE Jjob='clerk';

Oracle stores dates in an internal numeric format, representing the century, year, month, day, hours,
minutes, and seconds. The default date display is DD-MON-YY.

Note: Changing default date format will be covered in a subsequent lesson.

Number values are not enclosed within quotation marks.

Introduction to Oracle: SQL and PL/SQL 2-6

Comparison Operators

Operator | Meaning
= Equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
<> Not equal to

2.7 Copyright @ Oracle Corporation, 1999. Al rights reserved. (OIRACLE”

Comparison Operators

Comparison operators are used in conditions that compare one expression to another. They are used in
the WHERE clause in the following format:

Syntax
. WHERE expr operator value

Examples

. WHERE hiredate='01-JAN-95'
. WHERE sal>=1500
. WHERE ename='SMITH'

Introduction to Oracle: SQL and PL/SQL 2-7

Using the Comparison
Operators

SQL> SELECT ename, sal, comm
2 FROM emp
3 WHERE sal<=comm;

1250 <> 1400

2-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Using the Comparison Operators

In the example, the SELECT statement retrieves name, salary, and commission from the EMP table,
where the employee salary is less than or equal to the commission amount. Note that there is no
explicit value supplied to the WHERE clause. The two values being compared are taken from the
SAL and COMM columns in the EMP table.

Introduction to Oracle: SQL and PL/SQL 2-8

29

Other Comparison Operators

Operator Meaning

BETWEEN Between two values (inclusive)
...AND...

IN(list) Match any of a list of values
LIKE Match a character pattern

IS NULL Is a null value

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Introduction to Oracle: SQL and PL/SQL 2-9

Using the BETWEEN Operator

Use the BETWEEN operator to display
rows based on a range of values.

SQL> SELECT ename, sal
2 FROM emp
3 WHERE sal BETWEEN 1000 AND 1500;

——————————————————— Lower Higher
MARTIN 1250 limit limit
TURNER 1500

WARD 1250

ADAMS 1100

MILLER

2-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

The BETWEEN Operator

You can display rows based on a range of values using the BETWEEN operator. The range that you
specify contains a lower range and an upper range.

The SELECT statement on the slide returns rows from the EMP table for any employee whose salary
is between $1000 and $1500.

Values specified with the BETWEEN operator are inclusive. You must specify the lower limit first.

Introduction to Oracle: SQL and PL/SQL 2-10

Using the IN Operator

Use the IN operator to test for values in a
list.

SQL> SELECT empno, ename, sal, mgr
2 FROM emp
3 WHERE mgr IN (7902,

7566, 7788) ;

EMPNO ENAME SAL MGR
7902 FORD 3000 7566
7369 SMITH 800 7902
7788 SCOTT 3000 7566
7876 ADAMS 1100 7788

2-11 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

The IN Operator
To test for values in a specified list, use the IN operator.

The slide example displays employee number, name, salary, and manager’s employee number of all
the employees whose manager’s employee number is 7902, 7566, or 7788.

The IN operator can be used with any datatype. The following example returns a row from the EMP
table for any employee whose name is included in the list of names in the WHERE clause:

SQL> SELECT empno, ename, mgr, deptno
2 FROM emp
3 WHERE ename IN ('FORD' , 'ALLEN');

If characters or dates are used in the list, they must be enclosed in single quotation marks (').

Introduction to Oracle: SQL and PL/SQL 2-11

Using the LIKE Operator

* Use the LIKE operator to perform
wildcard searches of valid search string
values.

e Search conditions can contain either
literal characters or numbers.

- % denotes zero or many characters.
— _denotes one character.

SQL> SELECT ename
2 FROM emp

3 WHERE ename LIKE 'S

212 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

The LIKE Operator

You may not always know the exact value to search for. You can select rows that match a character
pattern by using the LIKE operator. The character pattern-matching operation is referred to as a
wildcard search. Two symbols can be used to construct the search string.

Symbol Description

% Represents any sequence of zero or more characters

Represents any single character

The SELECT statement above returns the employee name from the EMP table for any employee
whose name begins with an “S.” Note the uppercase “S.” Names beginning with an “s” will not be
returned.

The LIKE operator can be used as a shortcut for some BETWEEN comparisons. The following
example displays names and hire dates of all employees who joined between January 1981 and
December 1981:

SQL> SELECT ename, hiredate

2 FROM emp
3 WHERE hiredate LIKE '%1981';

Introduction to Oracle: SQL and PL/SQL 2-12

Using the LIKE Operator

* You can combine pattern-matching
characters.

SQL> SELECT ename
2 FROM emp
3 WHERE ename LIKE ' A%';

* You can use the ESCAPE identifier to

search for "%" or " _".

2-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Combining Wildcard Characters

The % and _ symbols can be used in any combination with literal characters. The example on the
slide displays the names of all employees whose name has an “A” as the second character.

The ESCAPE Option

When you need to have an exact match for the actual ‘% and © ° characters, use the ESCAPE option.
This option specifies what the ESCAPE character is. If you have HEAD QUARTERS as a
department name, you would search for it using the following SQL statement:

SQL> SELECT * FROM dept
2 WHERE dname LIKE %_%'ESCAPE "\';

DEPTNO DNAME LOC

50 HEAD QUARTERS ATLANTA

The ESCAPE option identifies the backslash (\) as the escape character. In the pattern, the escape
character precedes the underscore (). This causes the Oracle Server to interpret the underscore
literally.

Introduction to Oracle: SQL and PL/SQL 2-13

Using the IS NULL Operator

Test for null values with the IS NULL
operator.

SQL> SELECT ename, mgr
2 FROM emp
3 WHERE mgr IS NULL;

2-14 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

The IS NULL Operator

The IS NULL operator tests for values that are null. A null value means the value is unavailable,
unassigned, unknown, or inapplicable. Therefore, you cannot test with (=) because a null value
cannot be equal or unequal to any value. The slide example retrieves the name and manager of all
employees who do not have a manager.

For example, to display name, job title, and commission for all employees who are not entitled to get
a commission, use the following SQL statement:

SQL> SELECT ename, Jjob, comm
2 FROM emp
3 WHERE comm IS NULL;
ENAME JOB COMM
KING PRESIDENT
BLAKE MANAGER
CLARK MANAGER

Introduction to Oracle: SQL and PL/SQL 2-14

Logical Operators

Operator Meaning

AND Returns TRUE if both component
conditions are TRUE

OR Returns TRUE if either component
condition is TRUE

NOT Returns TRUE if the following
condition is FALSE

2-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Logical Operators

A logical operator combines the result of two component conditions to produce a single result based
on them or to invert the result of a single condition. Three logical operators are available in SQL:

+ AND
+ OR
+ NOT

All the examples so far have specified only one condition in the WHERE clause. You can use several
conditions in one WHERE clause using the AND and OR operators.

Introduction to Oracle: SQL and PL/SQL 2-15

Using the AND Operator
AND requires both conditions to be TRUE.

SQL> SELECT empno, ename, Jjob, sal
2 FROM emp
3 WHERE sal>=1100
AND Job='CLERK"';

EMPNO ENAME JOB SAL
7876 ADAMS CLERK 1100
7934 MILLER CLERK 1300

2-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

The AND Operator

In the example, both conditions must be true for any record to be selected. Therefore, an employee
who has a job title of CLERK and earns more than $1100 will be selected.

All character searches are case sensitive. No rows are returned if CLERK is not in uppercase.
Character strings must be enclosed in quotation marks.

AND Truth Table
The following table shows the results of combining two expressions with AND:

AND TRUE FALSE NULL
TRUE TRUE FALSE NULL
FALSE FALSE FALSE FALSE
NULL NULL FALSE NULL

Introduction to Oracle: SQL and PL/SQL 2-16

Using the OR Operator

OR requires either condition to be TRUE.

SQL> SELECT empno, ename, Jjob, sal
2 FROM emp
3 WHERE sal>=1100
4 OR job='CLERK' ;
EMPNO ENAME JOB SAL
7839 KING PRESTIDENT 5000
7698 BLAKE MANAGER 2850
7782 CLARK MANAGER 2450
7566 JONES MANAGER 2975
7654 MARTIN SALESMAN 1250
7900 JAMES CLERK 950
14 rows selected.

217 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

The OR Operator

In the example, either condition can be true for any record to be selected. Therefore, an employee
who has a job title of CLERK or earns more than $1100 will be selected.

The OR Truth Table

The following table shows the results of combining two expressions with OR:

OR TRUE FALSE NULL
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE NULL
NULL TRUE NULL NULL

Introduction to Oracle: SQL and PL/SQL 2-17

Using the NOT Operator

SQL> SELECT ename, job

2 FROM emp
Jjob NOT IN ('CLERK', 'MANAGER',6 'ANALYST');

3 WHERE

ENAME JOB

KING PRESTDENT
MARTIN SAT.ESMAN
ATLEN SAT.ESMAN
TURNER SAT.ESMAN
WARD SAT.ESMAN

2-18 Copyright © Oracle Corporation, 1999. All rights reserved.

ORACLE"

The NOT Operator

The slide example displays name and job title of all the employees whose job title is nor CLERK,

MANAGER, or ANALYST.
The NOT Truth Table

The following table shows the result of applying the NOT operator to a condition:

NOT

TRUE

FALSE

NULL

TRUE

FALSE

TRUE

NULL

Note: The NOT operator can also be used with other SQL operators, such as BETWEEN, LIKE, and

NULL.

. WHERE job NOT
. WHERE sal NOT
. WHERE ename NOT
. WHERE comm IS

IN ('CLERK', 'ANALYST')
BETWEEN 1000 AND

LIKE '%AS%'

NOT NULL

Introduction to Oracle: SQL and PL/SQL 2-18

Rules of Precedence

Order Evaluated | Operator
1 All comparison
operators
2 NOT
3 AND
4 OR

Override rules of precedence by using

parentheses.

2-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Introduction to Oracle: SQL and PL/SQL 2-19

Rules of Precedence

SQL> SELECT ename, Jjob, sal
2 FROM emp

3 WHERE job='SALESMAN'
4 OR job='PRESIDENT'
5 AND sal>1500;

ENAME JOB SAL
KING PRESIDENT 5000
MARTIN SAT.ESMAN 1250
ATLEN SAT.ESMAN 1600
TURNER SAT.ESMAN 1500
WARD SAT.ESMAN 1250

2-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE’

Example of Precedence of AND Operator
In the slide example, there are two conditions:
» The first condition is that job is PRESIDENT and salary is greater than 1500.
+ The second condition is that job is SALESMAN.
Therefore, the SELECT statement reads as follows:

“Select the row if an employee is a PRESIDENT and earns more than $1500 or if the employee is a
SALESMAN.”

Introduction to Oracle: SQL and PL/SQL 2-20

Rules of Precedence

Use parentheses to force priority.

SQL> SELECT ename, Jjob, sal

2 FROM emp

3 WHERE (Job="SALESMAN'
4 OR job="PRESIDENT')
5 -AND sal>1500;

ENAME JOB SAL
KING PRESIDENT 5000
ATLEN SAT.ESMAN 1600

2-21 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Using Parentheses
In the example, there are two conditions:
» The first condition is that job is PRESIDENT or SALESMAN.
» The second condition is that salary is greater than 1500.

Therefore, the SELECT statement reads as follows:
“Select the row if an employee is a PRESIDENT or a SALESMAN and if the employee earns more
than $1500.”

Introduction to Oracle: SQL and PL/SQL 2-21

ORDER BY Clause
e Sort rows with the ORDER BY clause
— ASC: ascending order, default
— DESC: descending order
* The ORDER BY clause comes last in the

SELECT statement.
SQL> SELECT ename, Jjob, deptno, hiredate
2 FROM emp

3 ORDER BY hiredate;

ENAME JOB DEPTNO HIREDATE
SMITH CLERK 20 17-DEC-80
ATLEN SAT.ESMAN 30 20-FEB-81

14 rows selected.

2-22 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE’

The ORDER BY Clause

The order of rows returned in a query result is undefined. The ORDER BY clause can be used to sort

the rows. If you use the ORDER BY clause, you must place last. You can specify an expression or an
alias to sort.

Syntax

SELECT expr

FROM table

[WHERE condition(s)|

[ORDER BY {column, expr} | ASC|DESC]];

where: ORDER BY specifies the order in which the retrieved rows are displayed

ASC orders the rows in ascending order (thisis the default order)
DESC orders the rows in descending order

If the ORDER BY clause is not used, the sort order is undefined, and the Oracle Server may not fetch

rows in the same order for the same query twice. Use the ORDER BY clause to display the rows in a
specific order.

Introduction to Oracle: SQL and PL/SQL 2-22

Sorting in Descending Order

SQL> SELECT ename, Jjob, deptno, hiredate
2 FROM emp
3 ORDER BY hiredate DESC;

ENAME JOB DEPTNO HIREDATE
ADAMS CLERK 20 12-JAN-83
SCOTT ANATYST 20 09-DEC-82
MILLER CLERK 10 23-JAN-82
JAMES CLERK 30 03-DEC-81
FORD ANATYST 20 03-DEC-81
KING PRESIDENT 10 17-NOV-81
MARTIN SAT.ESMAN 30 28-SEP-81

14 rows selected.

2-23 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE’

Default Ordering of Data
The default sort order is ascending:
» Numeric values are displayed with the lowest values first—for example, 1-999.

» Date values are displayed with the earliest value first—for example, 01-JAN-92 before
01-JAN-95.

* Character values are displayed in alphabetical order—for example, A first and Z last.
» Null values are displayed last for ascending sequences and first for descending sequences.
Reversing the Default Order

To reverse the order in which rows are displayed, specify the keyword DESC after the column name
in the ORDER BY clause. The slide example sorts the result by the most recently hired employee.

Introduction to Oracle: SQL and PL/SQL 2-23

Sorting by Column Alias

SQL> SELECT empno, ename, sal*l2 annsal
2 FROM emp
3 ORDER BY annsal;

EMPNO ENAME ANNSAL
7369 SMITH 9600
7900 JAMES 11400
7876 ADAMS 13200
7654 MARTIN 15000
7521 WARD 15000
7934 MILLER 15600
7844 TURNER 18000

14 rows selected.

2-24 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Sorting by Column Aliases

You can use a column alias in the ORDER BY clause. The slide example sorts the data by annual
salary.

Introduction to Oracle: SQL and PL/SQL 2-24

Sorting by Multiple Columns
* The order of ORDER BY list is the order of

sort.
SQL> SELECT ename, deptno, sal
2 FROM emp

3 ORDER BY deptno, sal DESC;

ENAME DEPTNO SAL
KING 10 5000
CLARK 10 2450
MILLER 10 1300
FORD 20 3000

14 rows selected.

* You can sort by a column that is not in the
SELECT list.

2-25 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE’

Sorting by Multiple Columns

You can sort query results by more than one column. The sort limit is the number of columns in the
given table.

In the ORDER BY clause, specify the columns, and separate the column names using commas. If you
want to reverse the order of a column, specify DESC after its name. You can order by columns that
are not included in the SELECT clause.

Example

Display name and salary of all employees. Order the result by department number and then
descending order by salary.

SQL> SELECT ename, sal
2 FROM emp
3 ORDER BY deptno, sal DESC;

Introduction to Oracle: SQL and PL/SQL 2-25

Summary

{*| column [alias],

[DISTINCT]
table
condition(s)]
{column, expr, alias}

SELECT

FROM
[WHERE
[ORDER BY

[ASCIDESC]] ;

ORACLE"

2-26 Copyright © Oracle Corporation, 1999. All rights reserved.

Summary
In this lesson, you have learned about restricting and sorting rows returned by the SELECT

statement. You have also learned how to implement various operators.

Introduction to Oracle: SQL and PL/SQL 2-26

Practice Overview

e Selecting data and changing the order
of rows displayed

* Restricting rows by using the WHERE
clause

* Using the double quotation marks in
column aliases

2-27 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Practice Overview
This practice gives you a variety of exercises using the WHERE clause and the ORDER BY clause.

Introduction to Oracle: SQL and PL/SQL 2-27

Practice 2

1. Create a query to display the name and salary of employees earning more than $2850.
Save your SQL statement to a file named p2g1.sgl. Run your query.

ENAME SAL
KING 5000
JONES 2975
FORD 3000
SCOTT 3000

2. Create a query to display the employee name and department number for employee number
7566.

ENAME DEPTNO

3. Modify p2gl.sqgl to display the name and salary for all employees whose salary is not in the
range of $1500 and $2850. Resave your SQL statement to a file named p2g3.sgl. Rerun

your query.
ENAME SAL
KING 5000
JONES 2975
MARTIN 1250
JAMES 950
WARD 1250
FORD 3000
SMITH 800
SCOTT 3000
ADAMS 1100

MILLER 1300
10 rows selected.

Introduction to Oracle: SQL and PL/SQL 2-28

Practice 2 (continued)

4. Display the employee name, job, and start date of employees hired between February 20,
1981, and May 1, 1981. Order the query in ascending order by start date.

ENAME JOB HIREDATE
ALLEN SALESMAN 20-FEB-81
WARD SALESMAN 22-FEB-81
JONES MANAGER 02-APR-81
BLAKE MANAGER 01-MAY-81

5. Display the employee name and department number of all employees in departments 10 and
30 in alphabetical order by name.

ENAME DEPTNO
ALLEN 30
BLAKE 30
CLARK 10
JAMES 30
JONES 10
MARTIN 30
MILLER 10
TURNER 30
WARD 30

9 rows selected.

6. Modify p2g3.sqgl to list the name and salary of employees who earn more than $1500 and
are in department 10 or 30. Label the columns Employee and Monthly Salary, respectively.
Resave your SQL statement to a file named p2g6 . sgl. Rerun your query.

Fmployee Monthly Salary

KING 5000
BLAKE 2850
CLARK 2450
ALLEN 1600

Introduction to Oracle: SQL and PL/SQL 2-29

Practice 2 (continued)
7. Display the name and hire date of every employee who was hired in 1982,

ENAME HIREDATE

SCOTT 09-DEC-82
MILLER 23-JAN-82

8. Display the name and job title of all employees who do not have a manager.

ENAME JOB

KING PRESIDENT

9. Display the name, salary, and commission for all employees who earn commissions. Sort
data in descending order of salary and commissions.

ENAME SAL COMM

ALLEN 1600 300

TURNER 1500 0
MARTIN 1250 1400
WARD 1250 500

If you have time, complete the following exercises:
10. Display the names of all employees where the third letter of their name is an 4.

11. Display the name of all employees who have two Ls in their name and are in department 30 or
their manager is 7782.

ALLEN
MILLER

Introduction to Oracle: SQL and PL/SQL 2-30

Practice 2 (continued)
If you want extra challenge, complete the following exercises:

12. Display the name, job, and salary for all employees whose job is Clerk or Analyst and
their salary is not equal to $1000, $3000, or $5000.

ENAME JOB SAL
JAMES CLERK 950
SMITH CLERK 800
ADAMS CLERK 1100
MILLER CLERK 1300

13. Modify p2g6 . sq1l to display the name, salary, and commission for all employees whose
commission amount is greater than their salary increased by 10%. Rerun your query. Resave
your query as p2gl3.sqgl.

Employee Monthly Salary COMM

MARTIN 1250 1400

Introduction to Oracle: SQL and PL/SQL 2-31

Introduction to Oracle: SQL and PL/SQL 2-32

Single-Row Functions

Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Objectives

After completing this lesson, you should
be able to do the following:

* Describe various types of functions
available in SQL

* Use character, number, and date
functions in SELECT statements

e Describe the use of conversion
functions

3-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Lesson Aim

Functions make the basic query block more powerful and are used to manipulate data values. This is
the first of two lessons that explore functions. You will focus on single-row character, number, and
date functions, as well as those functions that convert data from one type to another—for example,
character data to numeric.

Introduction to Oracle: SQL and PL/SQL 3-2

SQL Functions

In > .
put — Function Output
-
arg 1 Function
5 performs action
ar
9 Result
g value
O
argn
3-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

SQL Functions

Functions are a very powerful feature of SQL and can be used to do the following:

» Perform calculations on data
* Modify individual data items

» Manipulate output for groups of rows

» Format dates and numbers for display

» Convert column datatypes

SQL functions may accept arguments and always return a value.

Note: Most of the functions described in this lesson are specific to Oracle’s version of SQL.

Introduction to Oracle: SQL and PL/SQL 3-3

Two Types of SQL Functions

Functions
Single-row »| Multiple-row
— gle — — P —
functions —p»| functions
3-4 Copyright © Oracle Corporation, 1999. All rights reserved. C)RACLG °

SQL Functions (continued)
There are two distinct types of functions:
» Single-row functions
* Multiple-row functions
Single-Row Functions

These functions operate on single rows only and return one result per row. There are different types
of single-row functions. This lesson covers the following ones:

» Character
* Number
+ Date
+ Conversion
Multiple-Row Functions
These functions manipulate groups of rows to give one result per group of rows.

For more information, see Oracle Server SQL Reference, Release 8, for the complete list of available
functions and syntax.

Introduction to Oracle: SQL and PL/SQL 3-4

Single-Row Functions

 Manipulate data items

» Accept arguments and return one value
e Act on each row returned

e Return one result per row

 May modify the datatype

e Can be nested

function name (column|expression, [argl, arg2,...])

35 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Single-Row Functions

Single-row functions are used to manipulate data items. They accept one or more arguments and
return one value for each row returned by the query. An argument can be one of the following;:

» User-supplied constant

* Variable value

* Column name

+ Expression
Features of single-row functions:

* Act on each row returned in the query

* Return one result per row

* May retumn a data value of a different type than that referenced

+ May expect one or more arguments

» Can be used in SELECT, WHERE, and ORDER BY clauses; can be nested
In the syntax:

function_name isthe name of the function

column is any named database column
expression is any character string or calcul ated expression
argl, arg2 is any argument to be used by the function

Introduction to Oracle: SQL and PL/SQL 3-5

Single-Row Functions

Character

General (| _—~ Number

Single-row
functions

RN

Conversion Date

3-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Single-Row Functions (continued)
This lesson covers the following single-row functions:
» Character functions: Accept character input and can return both character and number values
* Number functions: Accept numeric input and return numeric values

» Date functions: Operate on values of the date datatype (All date functions return a value of date
datatype except the MONTHS BETWEEN function, which returns a number.)

» Conversion functions: Convert a value from one datatype to another
* General functions:

— NVL function

— DECODE function

Introduction to Oracle: SQL and PL/SQL 3-6

Character Functions
Character
functions
| |
Case conversion Character manipulation
functions functions
LOWER CONCAT
UPPER SUBSTR
INITCAP LENGTH
INSTR
LPAD
TRIM
3-7 Copyright © Oracle Corporation, 1999. All rights reserved. C)RACLG °

Character Functions

Single-row character functions accept character data as input and can return both character and
number values. Character functions can be divided into the following:

» Case conversion functions

» Character manipulation functions

Function

Purpose

LOWER(column|expression)

Converts alpha character values to lowercase

UPPER(column|expression)

Converts alpha character values to uppercase

INITCAP(column|expression)

Converts alpha character values to uppercase for the first letter
of each word, all other letters in lowercase

CONCAT(columnllexpressionl,
column2|expression2)

Concatenates the first character value to the second character
value; equivalent to concatenation operator (||)

SUBSTR(column|expression,m/[,n])

Returns specified characters from character value starting at
character position m, n characters long (If m is negative, the
count starts from the end of the character value. If # 1s omitted,
all characters to the end of the string are returned.)

Note: The functions discussed in this lesson is a subset of the available functions.

Introduction to Oracle: SQL and PL/SQL 3-7

Character Functions
Character
functions
| |
Case conversion Character manipulation
functions functions
LOWER CONCAT
UPPER SUBSTR
INITCAP LENGTH
INSTR
LPAD
TRIM
3-8 Copyright © Oracle Corporation, 1999. All rights reserved. C)RACLG °
Character Functions (continued)
Function Purpose

LENGTH(column|expression)

Returns the number of characters in value

INSTR(column|expression,m)

Returns the numeric position of a named character

LPAD(column|expression, n,
'string')

Pads the character value right-justified to a total width of
character positions

TRIM(leading|trailing|both,
trim_character FROM
trim_source)

Enables you to trim heading or trailing characters (or both) from
a character string. If trim_character or trim_source is a
character literal, you must enclose it in single quotes.

This is a feature available from Oracle8i onward.

Introduction to Oracle: SQL and PL/SQL 3-8

Case Conversion Functions

Convert case for character strings

Function Result
LOWER('SQL Course') [sql course
UPPER('SQL Course') |SQL COURSE
INITCAP('SQL Course') | Sql Course

39 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Case Conversion Functions
LOWER, UPPER, and INITCAP are the three case conversion functions.
+ LOWER: Converts mixed case or uppercase character string to lowercase
» UPPER: Converts mixed case or lowercase character string to uppercase

» INITCAP: Converts first letter of each word to uppercase and remaining letters to lowercase

SQL> SELECT 'The job title for '||INITCAP(ename) ||' is '
2 | | LOWER (job) AS "EMPLOYEE DETAILS"
3 FROM emp;

EMPLOYEE DETATLS

The job title for King is president
The job title for Blake is manager
The job title for Clark is manager

14 rows selected.

Introduction to Oracle: SQL and PL/SQL 3-9

Using Case Conversion Functions

Display the employee number, name, and
department number for employee Blake.

SQL> SELECT empno, ename, deptno
2 FROM emp
3 WHERE ename = 'blake';

no rows selected

SQL> SELECT empno, ename, deptno
2 FROM emp
3 WHERE ename = UPPER('blake') ;

EMPNO ENAME DEPTNO

7698 BLAKE 30

3-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Case Conversion Functions (continued)
The slide example displays the employee number, name, and department number of employee BLAKE.
The WHERE clause of the first SQL statement specifies the employee name as "blake. ' Since all the
data in the EMP table is stored in uppercase, the name 'blake' does not find a match in the EMP table
and as a result no rows are selected.
The WHERE clause of the second SQL statement specifics that the employee name in the EMP table is
compared to "blake', converted to upper case. Since both the names are in uppercase now, a match is
found and one row is selected. The WHERE clause can be rewritten in the following manner to produce
the same result:

. WHERE ename = 'BLAKE'

The name in the output appears as it was stored in the database. To display the name with the first letter
capitalized, use the INITCAP function in the SELECT statement.

SQL> SELECT empno, INITCAP (ename), deptno
2 FROM emp
3 WHERE ename = UPPER('blake');

Introduction to Oracle: SQL and PL/SQL 3-10

Character Manipulation Functions

Manipulate character strings

Function Result
CONCAT('Good', 'String') GoodString
SUBSTR(' String',1,3) Str
LENGTH(' String ') 6
INSTR('String', 'r') 3
LPAD(sal,10,'*') *xxx*x5000
TRIM(*'S' FROM 'SSMITH ') MITH
3-11 Copyright © Oracle Corporation, 1999. All rights reserved. (R ACLE”

Character Manipulation Functions

CONCAT, SUBSTR, LENGTH, INSTR, LPAD, and TRIM are the six character manipulation
functions covered in this lesson.

» CONCAT: Joins values together (You are limited to using two parameters with CONCAT))
+ SUBSTR: Extracts a string of determined length
» LENGTH: Shows the length of a string as a numeric value
» INSTR: Finds numeric position of a named character
» LPAD: Pads the character value right-justified
Note: RPAD character manipulation function pads the character value left-justified

TRIM: Trims heading or trailing characters (or both) from a character string. If trim_character or
trim_source is a character literal, you must enclose it in single quotes.

Introduction to Oracle: SQL and PL/SQL 3-11

Using the Character
Manipulation Functions

SQL> SELECT ename, CONCAT (ename, job) , LENGTH{(ename),
2 INSTR(ename, 'A"Y)
3 FROM emp
4 WHERE SUBSTR(job,1,5) = 'SAIES';

ENAME CONCAT (ENAME , JOB) LENGTH (ENAME) INSTR(ENAME,'A'")
MARTIN MARTINSALESMAN 6 2
ALLEN ALTENSALESMAN 5 1
TURNER TURNERSALE SMAN 6 €]

WARDSALE SMAN 4 2

312

Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Character Manipulation Functions (continued)

The slide example displays employee name and job joined together, length of the employee name,
and the numeric position of the letter A in the employee name, for all employees who are in sales.
Example

Modify the SQL statement on the slide to display the data for those employees whose names end with
an N.

SQL> SELECT ename, CONCAT (ename, job), LENGTH (ename),

2 INSTR (ename, 'A')

3 FROM emp

4 WHERE SUBSTR (ename, -1, 1) = 'N';
ENAME CONCAT (ENAME, JOB) LENGTH (ENAME) INSTR (ENAME, 'A'")
MARTIN MARTINSALESMAN 6 2
ALLEN ALLENSALESMAN 5 1

Introduction to Oracle: SQL and PL/SQL 3-12

Number Functions

* ROUND: Rounds value to specified
decimal

ROUND(45.926,2) ——— 45.93

* TRUNC: Truncates value to specified
decimal

TRUNC(45.926,2) ——> 45.92

e MOD: Returns remainder of division
MOD(1600, 300) — 100

3-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Number Functions

Number functions accept numeric input and return numeric values. This section describes some of the

number functions.

Function

Purpose

ROUND(column|expression, n)

Rounds the column, expression, or value to » decimal places or
if is omitted, no decimal places (If » is negative, numbers
to left of the decimal point are rounded.)

TRUNC(column|expression,n)

Truncates the column, expression, or value to n decimal
places or if » is omitted, no decimal places (If # is negative,
numbers left of the decimal point are truncated to zero.)

MOD(@m,n)

Returns the remainder of m divided by n.

Note: This list is a subset of the available number functions.

For more information, see Oracle Server SOL Reference, Release 8, “Number Functions.”
2

Introduction to Oracle: SQL and PL/SQL 3-13

Using the ROUND Function

SQL> SELECT ROUND(45.923,2), ROUND-H4A5-9230),
2 ROUND (45.923,-1)
3 FROM DUAL;

ROUND(45.923,2) ROUND(45.923,0) ROUND(45.923 ,-1)

3-14 Copyright © Oracle Corporation, 1999. All rights reserved. ORrRACLES

ROUND Function

The ROUND function rounds the column, expression, or value to # decimal places. If the second
argument is 0 or is missing, the value is rounded to zero decimal places. If the second argument is 2,
the value is rounded to two decimal places. Conversely, if the second argument is-2, thevaueis
rounded to two decimal placesto the left.

The ROUND function can also be used with date functions. You will see examples later in this
lesson.

The DUAL is a dummy table. More about this will be covered later.

Introduction to Oracle: SQL and PL/SQL 3-14

Using the TRUNC Function

SQL> SELECT TRUNC (45.923,2), TRUNC (45.923),
2 TRUNC (45 . 923 ,-1)
3 FROM DUAL;

TRUNC (45.923,2) TRUNC(45.923) TRUNC(45.923,-1)

3-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

TRUNC Function
The TRUNC function truncates the column, expression, or value to » decimal places.

The TRUNC function works with arguments similar to those of the ROUND function. If the second
argument is 0 or is missing, the value is truncated to zero decimal places. If the second argument is 2,
the value is truncated to two decimal places. Conversely, if the second argument is -2, the value is
truncated to two decimal places to the left.

Like the ROUND function, the TRUNC function can be used with date functions.

Introduction to Oracle: SQL and PL/SQL 3-15

Using the MOD Function

Calculate the remainder of the ratio of
salary to commission for all employees
whose job title is salesman.

SQL> SELECT ename, sal, comm, MOD(sal, comm)
2 FROM emp
3 WHERE job = 'SALESMAN';

ENAME SAL COMM MOD (SAL ,COMM)

3-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

MOD Function

The MOD function finds the remainder of valuel divided by value2. The slide example calculates the
remainder of the ratio of salary to commission for all employees whose job title is salesman.

Introduction to Oracle: SQL and PL/SQL 3-16

Working with Dates

e Oracle stores dates in an internal
numeric format: century, year, month,
day, hours, minutes, seconds.

* The default date format is DD-MON-YY.

« SYSDATE is a function returning date
and time.

* DUAL is a dummy table used to view
SYSDATE.

317 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Oracle Date Format

Oracle stores dates in an internal numeric format, representing the century, year, month, day, hours,
minutes, and seconds.

The default display and input format for any date is DD-MON-YY. Valid Oracle dates are between
January 1, 4712 B.C., and December 31, 9999 A.D.

SYSDATE

SYSDATE is a date function that returns the current date and time. You can use SYSDATE just as

you would use any other column name. For example, you can display the current date by selecting
SYSDATE from a table. It is customary to select SYSDATE from a dummy table called DUAL.

DUAL

The DUAL table is owned by the user SYS and can be accessed by all users. It contains one column,
DUMMY, and one row with the value X. The DUAL table is useful when you want to return a value
once only—for instance, the value of a constant, pseudocolumn, or expression that is not derived
from a table with user data. The DUAL table is generally used for SELECT clause syntax
completeness, because both SELECT and FROM clauses are mandatory, and several calculations do
not need to select from actual tables.

Example

Display the current date using the DUAL table.

SQL> SELECT SYSDATE
2 FROM DUAL;

Introduction to Oracle: SQL and PL/SQL 3-17

Arithmetic with Dates

 Add or subtract a number to or from a
date for a resultant date value.

e Subtract two dates to find the number of
days between those dates.

* Add hours to a date by dividing the
number of hours by 24.

3-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Arithmetic with Dates

Since the database stores dates as numbers, you can perform calculations using arithmetic operators
such as addition and subtraction. You can add and subtract number constants as well as dates.

You can perform the following operations:

Operation Result Description

date + number Date Adds a number of days to a date

date - number Date Subtracts a number of days from a date
date - date Number of days Subtracts one date from another

date + number/24 Date Adds a number of hours to a date

Introduction to Oracle: SQL and PL/SQL 3-18

Using Arithmetic Operators
with Dates

SQL> SELECT ename, (SYSDATE-hiredate)/7 WEEKS
2 FROM emp
3 WHERE deptno = 10;

830.93709

853.93709
MILLER 821.36566

3-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Arithmetic with Dates (continued)

The example on the slide displays the name and the number of weeks employed for all employees in
department 10. It subtracts the current date (SYSDATE) from the date on which the employee was
hired and divides the result by 7 to calculate the number of weeks that a worker has been employed.

Note: SYSDATE is a SQL function that retums the current date and time. Y our results may differ
from the example.

Introduction to Oracle: SQL and PL/SQL 3-19

Date Functions

Function Description

MONTHS_BETWEEN | Number of months
between two dates

ADD_MONTHS Add calendar months to
date

NEXT_DAY Next day of the date
specified

LAST_DAY Last day of the month

ROUND Round date

TRUNC Truncate date

3-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Date Functions

Date functions operate on Oracle dates. All date functions return a value of DATE datatype except
MONTHS_BETWEEN, which returns a numeric value.

+ MONTHS BETWEEN(date!l, date2): Finds the number of months between date/ and date?2.
The result can be positive or negative. If dare/ is later than date2, the result is positive; if date !
is earlier than dafe2, the result is negative. The noninteger part of the result represents a portion
of the month.

+ ADD_MONTHS(date, n): Adds n number of calendar months to date. The value of n must be
an integer and can be negative.
 NEXT_DAY/(date, 'char'): Finds the date of the next specified day of the weekaf ')
following date. The value othar may be a number representing a day or a character string.
 LAST DAY(date): Finds the date of the last day of the month that contiaies
» ROUND(ated], " fmt']): Returnsdate rounded tahe unit specified by the format modaeit. If
the format modeint is omitted,date is rounded to the nearest day.

« TRUNC(datq], 'fmt']): Returnsdate with the time portion of the day truncated to the unit
specified by the format mod#tt. If the format modelmt is omitted,date is truncated to the
nearest day.

This list is a subset of the available date functions. The format models are covered later in this lesson.
Examples of format models are month and year.

Introduction to Oracle: SQL and PL/SQL 3-20

Using Date Functions

MONTHS_BETWEEN ('01-SEP-95','11-JAN-94")
—> 19.6774194

ADD_MONTHS ('11-JAN-94',6) -» '11-JUL-94"

NEXT_DAY ('01-SEP-95','FRIDAY'") —» '08.SEP-95'

LAST_DAY('01-SEP-95') —» '30-SEP-95'

3-21 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Date Functions (continued)

For all employees employed for fewer than 200 months, display the employee number, hire date,
number of months employed, six-month review date, first Friday after hire date, and last day of the
month when hired.

SQL> SELECT empno, hiredate,
2 MONTHS_BETWEEN(SYSDATE, hiredate) TENURE,
3 ADD_MONTHS(hiredate, 6) REVIEW,
4 NEXT_DAY(hiredate, '"FRIDAY') , LAST_DAY(hiredate)
5 FROM emp
6 WHERE MONTHS BETWEEN (SYSDATE, hiredate)<200;

EMPNO HIREDATE TENURE REVIEW NEXT DAY (LAST DAY (--

7839 17-NOV-81 192.24794 17-MAY-82 20-NOV-81 30-NOV-81
7698 01-MAY-81 198.76407 01-NOV-81 08-MAY-81 31-MAY-81

11 rows selected.

Introduction to Oracle: SQL and PL/SQL 3-21

Using Date Functions

ROUND('25-JUL-95''MONTH') —>» 01-AUG-95

ROUND('25-JUL-95','YEAR') —» 01-JAN-96

TRUNC('25-JUL-95','MONTH') — 01-JUL-95

TRUNC('25-JUL-95''YEAR') —3>» 01-JAN-95

3-22 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Date Functions (continued)

The ROUND and TRUNC functions can be used for number and date values. When used with dates,
these functions round or truncate to the specified format model. Therefore, you can round dates to the
nearest year or month.

Example
Compare the hire dates for all employees who started in 1982. Display the employee number, hire
date, and month started using the ROUND and TRUNC functions.

SQL> SELECT empno, hiredate,
2 ROUND (hiredate, 'MONTH'), TRUNC (hiredate, 'MONTH')
3 FROM emp
4 WHERE hiredate like '%1982';

EMPNO HIREDATE ROUND (HIR TRUNC (HIR

7788 09-DEC-82 01-DEC-82 01-DEC-82
7934 23-JAN-82 01-FEB-82 01-JAN-82

Introduction to Oracle: SQL and PL/SQL 3-22

Conversion Functions

Datatype
conversion

Implicit datatype Explicit datatype
conversion conversion

3-23 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Conversion Functions

In addition to Oracle datatypes, columns of tables in an Oracle8 database can be defined using ANSI,
DB2, and SQL/DS datatypes. However, the Oracle Server internally converts such datatypes to
Oracle8 datatypes.

In some cases, Oracle Server allows data of one datatype where it expects data of a different datatype.
This is allowed when Oracle Server can automatically convert the data to the expected datatype. This
datatype conversion can be done implicitly by Oracle Server or explicitly by the user.

Implicit datatype conversions work according to the rules explained in next two slides.

Explicit datatype conversions are done by using the conversion functions. Conversion functions
convert a value from one datatype to another. Generally, the form of the function names follows the
convention datatype TO datatype. The first datatype is the input datatype; the last datatype is the
output.

Note: Although implicit datatype conversion is available, it is recommended that you do explicit
datatype conversion to ensure reliability of your SQL statements.

Introduction to Oracle: SQL and PL/SQL 3-23

Implicit Datatype Conversion

For assignments, the Oracle Server can
automatically convert the following:

From To

VARCHAR2 or CHAR NUMBER

VARCHAR2 or CHAR DATE

NUMBER VARCHAR2
DATE VARCHAR2
3-24 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Implicit datatype Conversion

The assignment succeeds if the Oracle Server can convert the datatype of the value used in the
assignment to that of the assignment target.

Introduction to Oracle: SQL and PL/SQL 3-24

Implicit Datatype Conversion

For expression evaluation, the Oracle Server
can automatically convert the following:

From To
VARCHAR2 or CHAR NUMBER
VARCHAR2 or CHAR DATE
3-25 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Implicit Datatype Conversion

In general, the Oracle Server uses the rule for expression when a datatype conversion is needed in

places not covered by a rule for assignment conversions.
Note: CHAR to NUMBER conversions succeed only if the character string represents a valid

number. CHAR to DATE conversions succeed only if the character string has the default format DD-

MON-YY.

Introduction to Oracle: SQL and PL/SQL 3-25

Explicit Datatype Conversion

TO_NUMBER TO_DATE

NN

NUMBER

CHARACTER DATE

A

TO_CHAR

TO_CHAR

3-26 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE’

Explicit Datatype Conversion

SQL provides three functions to convert a value from one datatype to another:

Function

Purpose

TO CHAR@umber|date,| finf],
[nlsparams))

Converts a number or date value to a VARCHAR2
character string with format model fin.

Number Conversion:

nlsparams parameter specifies the following
characters, which are returned by number format
elements:

¢ Decimal character

e Group separator

¢ Local currency symbol

¢ International currency symbol

If nlsparams or any other parameter is omitted, this
function uses the default parameter values for the
session.

Introduction to Oracle: SQL and PL/SQL 3-26

Explicit Datatype Conversion

TO_NUMBER TO_DATE

NN

NUMBER CHARACTER DATE

A

TO_CHAR TO_CHAR

3-27 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE’

Explicit Datatype Conversion (continued)

Function Purpose

TO CHAR(@umber|date,| fint],
[nlsparams])

Date Conversion:

The nlsparams parameter specifies the language in
which month and day names and abbreviations are
returned. If this parameter is omitted, this function
uses the default date languages for the session.

TO_NUMBER(char.[fimt], [nisparams]) Converts a character string containing digits to a

number in the format specified by the optional format
model fint.

The nlsparams parameter has the same purpose in this
function as in the TO_CHAR function for number
conversion.

TO_DATE(Char.[fini), [nisparams]) Converts a character string representing a date to a

date value according to the finf specified. If fint is
omitted, the format is DD-MON-YY.

The nlsparams parameter has the same purpose in this
function as in the TO_CHAR function for date
conversion.

Introduction to Oracle: SQL and PL/SQL 3-27

Explicit Datatype Conversion

TO_NUMBER TO_DATE

NN

NUMBER CHARACTER DATE

A

TO_CHAR TO_CHAR

3-28 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE’

Explicit Datatype Conversion (continued)
Note: The list of functions mentioned in this lesson are a subset of the available conversion functions.

For more information, see Oracle§ Server SQL Reference, Release 8.0, “Conversion Functions.”

Introduction to Oracle: SQL and PL/SQL 3-28

TO_CHAR Function with Dates

| TO_CHAR(date, 'fmt') I

The format model:

* Must be enclosed in single quotation marks
and is case sensitive

e Can include any valid date format element

* Has an fm element to remove padded
blanks or suppress leading zeros

* |s separated from the date value by a
comma

3-29 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Displaying a Date in a Specific Format

Previously, all Oracle date values were displayed in the DD-MON-YY format. The TO CHAR
function allows you to convert a date from this default format to one specified by vou.

Guidelines
» The format model must be enclosed in single quotation marks and is case sensitive.

» The format model can include any valid date format element. Be sure to separate the date value
from the format model by a comma.

» The names of days and months in the output are automatically padded with blanks.
» To remove padded blanks or to suppress leading zeros, use the fill mode fin element.

* You can resize the display width of the resulting character field with the SQL*Plus COLUMN
command.

» The resultant column width is 80 characters by default.

SQL> SELECT empno, TO_ CHAR (hiredate, "MM/YY ') Month Hired
2 FROM emp
3 WHERE ename = 'BLAKE';

Introduction to Oracle: SQL and PL/SQL 3-29

Elements of Date Format Model

YYYY Full year in numbers

YEAR Year spelled out

MM Two-digit value for month

MONTH Full name of the month

DY Three-letter abbreviation of the
day of the week

DAY Full name of the day

3-30 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Sample Elements of Valid Date Formats

Element Description

SCC or CC Century; S prefixes BC date with -

Yearsindates YYYY or SYYYY Year, S prefixes BC date with -

YYYorYYorY Last three, two, or one digits of year

Y. YYY Year with comma in this position

IYYY,IYY,IY,I Four, three, two, or one digit year based on the ISO standard
SYEAR or YEAR Year spelled out; S prefixes BC date with -

BCor AD BC/AD indicator

B.C. or AD. BC/AD indicator with periods

Q Quarter of year

MM Month, two-digit value

MONTH Name of month padded with blanks to length of nine characters
MON Name of month, three-letter abbreviation

RM Roman numeral month

WWor W Week of year or month

DDD or DD or D Day of year, month, or week

DAY Name of day padded with blanks to length of 9 characters
DY Name of day; three-letter abbreviation

J Julian day; the number of days since 31 December 4713 BC

Introduction to Oracle: SQL and PL/SQL 3-30

Elements of Date Format Model

* Time elements format the time portion of
the date.

HH24:MI:SS AM 15:45:32 PM

* Add character strings by enclosing them
in double quotation marks.

DD "of" MONTH 12 of OCTOBER

* Number suffixes spell out numbers.
ddspth fourteenth

3-31 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE”

Time Formats

Use the formats listed in the following tables to display time information and literals and to change
numerals to spelled numbers.

Element Description

AM or PM M eridian indicator

A.M. or P.M. Meridian indicator with periods

HH or HH12 or HH24 Hour of day or hour (1-12) or hour (0-23)

Ml Minute (0-59)

SS Second (0-59)

SSSSS Seconds past midnight (0-86399)
Other Formats

Element Description

/L, Punctuation is reproduced in the result

“of the” Quoted string is reproduced in the result

Specifying Suffixes to Influence Number Display

Element Description
TH Ordinal number (for example, DDTH for 4TH)
SP Spelled-out number (for example, DDSP for FOUR)

SPTH or THSP

Spelled-out ordinal numbers (for example, DDSPTH for
FOURTH)

Introduction to Oracle: SQL and PL/SQL 3-31

Using TO_CHAR Function
with Dates

SQL> SELECT ename,
2 TO _CHAR (hiredate, 'fmDD Month YYYY') HIREDATE
3 FROM emp;

ENAME HIREDATE

KING 17 November 1981
BLAKE 1 May 1981

CLARK 9 June 1981

JONES 2 April 1981
MARTIN 28 September 1981
ALLEN 20 February 1981

14 rows selected.

3-32 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

TO_CHAR Function with Dates

The SQL statement on the slide displays the name and hire dates for all the employees. The hire date
appears as 17 November 1981.

Example

Modify the slide example to display the dates in a format that appears as Seventh of February 1981
08:00:00 AM.

SQL> SELECT ename,
2 TO_CHAR(hiredate, 'fmDdspth "of" Month YYYY fmHH:MI:SS AM')
3 HIREDATE
4 FROM emp ;

ENAME HIREDATE
KING Seventeenth of November 1981 12:00:00 AM
BLAKE First of May 1981 12:00:00 AM

14 rows selected.

Notice that the month follows the format model specified, in other words, the first letter is capitalized
and the rest in lower case.

Introduction to Oracle: SQL and PL/SQL 3-32

TO_CHAR Function with Numbers

| TO_CHAR (number, 'fmt') I

Use these formats with the TO_CHAR
function to display a number value as a

character:
9 Represents a number
0 Forces a zero to be displayed
$ Places a floating dollar sign
L Uses the floating local currency symbol
Prints a decimal point
) Prints a thousand indicator
3-33 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

TO_CHAR Function with Numbers

When working with number values such as character strings, you should convert those numbers to the
character datatype using the TO_CHAR function, which translates a value of NUMBER datatype to
VARCHAR? datatype. This technique is especially useful with concatenation.

Number Format Elements

If you are converting a number to character datatype, you can use the following elements:

Element | Description Example Result
9 Numeric position (number of 9s determine display 999999 1234
width)
0 Display leading zeros 099999 001234
Floating dollar sign $999999 $1234
L Floating local currency symbol 1.999999 FF1234
Decimal point in position specified 999999.99 1234.00
Comma in position specified 999,999 1,234
MI Minus signs to right (negative values) 999999MI 1234-
PR Parenthesize negative numbers 999999PR <1234>
EEEE Scientific notation (format must specity four Es) 99.999EEEE | 1.234E+03
\ Multiply by 10 n times (n = number of 9s after V) 9999V 99 123400
B Display zero values as blank, not O B9999.99 1234.00

Introduction to Oracle: SQL and PL/SQL 3-33

Using TO _CHAR Function
with Numbers

SQL> SELECT TO CHAR(sal, '$99,999') SALARY
2 FROM emp
3 WHERE ename = 'SCOTT';

3-34 Copyright © Oracle Corporation, 1999. All rights reserved. (ORACLE”

Guidelines

» The Oracle Server displays a string of pound signs (#) in place of a whole number whose digits
exceed the number of digits provided in the format model.

» The Oracle Server rounds the stored decimal value to the number of decimal spaces provided in
the format model.

Introduction to Oracle: SQL and PL/SQL 3-34

TO _NUMBER and TO DATE
Functions

e Convert a character string to a number
format using the TO_NUMBER function

| TO_NUMBER (char[, 'fmt']) I

e Convert a character string to a date
format using the TO_DATE function

| TO _DATE (char[, '"fmt']) I

Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

3-35

TO_NUMBER and TO_DATE Functions

You may want to convert a character string to either a number or a date. To accomplish this task, you
use the TO_ NUMBER or TO_DATE functions. The format model you choose will be based on the
previously demonstrated format elements.

Example
Display the names and hire dates of all the employees who joined on February 22, 1981.

SQL> SELECT ename, hiredate
2 FROM emp

3 WHERE hiredate = TO_DATE ('February 22, 1981', 'Month dd, YYYY');
ENAME HIREDATE
WARD 22-FEB-81

Introduction to Oracle: SQL and PL/SQL 3-35

RR Date Format

Current Year Specified Date RR Format | YY Format
1995 27-0CT-95 1995 1995
1995 27-0CT-17 2017 1917
2001 27-0CT-17 2017 2017
2001 27-0CT-95 1995 2095

If the specified two-digit year is:

049 50-99
If two digits The return date is in | The return date is in
of the 0-49 | the current century | the century before
current the current one
year are: The return date is in | The return date is in
50-99 | the century after the current century
the current one
3-36 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

The RR Date Format Element

The RR date format is similar to the YY element, but it allows you to specify different centuries. You
can use the RR date format element instead of YY, so that the century of the return value varies
according to the specified two-digit year and the last two digits of the current year. The table on the
slide summarizes the behavior of the RR element.

Current Year Given Date Interpreted (RR) Interpreted (YY)
1994 27-OCT-95 1995 1995
1994 27-OCT-17 2017 1917
2001 27-0OCT-17 2017 2017

Introduction to Oracle: SQL and PL/SQL 3-36

NVL Function

Converts null to an actual value

» Datatypes that can be used are date,
character, and number.

» Datatypes must match
- NVL(comm,0)
— NVL(hiredate,'01-JAN-97')
— NVL(job,'No Job Yet')

3-37 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

The NVL Function

To convert a null value to an actual value, use the NVL function.

Syntax
NVL (exprl, exprZ2)
where: exprl/ is the source value or expression that may contain null
expr2 is the target value for converting null

You can use the NVL function to convert any datatype, but the return value is always the same as
the datatype of expri.

NVL Conversions for Various Datatypes

Data type Conversion Example

NUMBER NVL (number_column,9)

DATE NVL(date_column, '01-JAN-95")
CHAR or VARCHAR2 NVL(character_column, 'Unavailable)

Introduction to Oracle: SQL and PL/SQL 3-37

Using the NVL Function

SQL> SELECT ename, sal, comm, (sal*12)+NVL(comm,O)
2 FROM emp;

ENAME SAL COMM (SAL*12)+NVL (COMM,0)
KING 5000 60000
BLAKE 2850 34200
CLARK 2450 29400
JONES 2975 35700
MARTIN 1250 1400 16400
ALLEN 1600 300 19500

14 rows selected.

3-38 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

NVL Function

To calculate the annual compensation of all employees, you need to multiply the monthly salary by
12 and then add the commission to it.

SQL> SELECT ename, sal, comm, (sal*12)+comm

2 FROM emp ;
ENAME SAL COMM (SAL*12)+COMM
KING 5000
BLAKE 2850
CLARK 2450
JONES 2975
MARTIN 1250 1400 16400

14 rows selected.

Notice

that the annual compensation is calculated only for those employees who earn a commission.

If any column value in an expression is null, the result is null. To calculate values for all employees,
you must convert the null value to a number before applying the arithmetic operator. In the example
on the slide, the NVL function to is used to convert null values to zero.

Introduction to Oracle: SQL and PL/SQL 3-38

DECODE Function

Facilitates conditional inquiries by doing
the work of a CASE or IF-THEN-ELSE
statement

DECODE (col/expression, searchl, resultl
[, search2, resultZ2,...,]

[, default])

3-39 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

The DECODE Function

The DECODE function decodes an expression in a way similar to the IF-THEN-ELSE logic used in
various languages. The DECODE function decodes expression after comparing it to each search
value. If the expression is the same as search, result is returned.

If the default value is omitted, a null value is returned where a search value does not match any of the
result values.

Introduction to Oracle: SQL and PL/SQL 3-39

Using the DECODE Function

SQL> SELECT job, sal,

2 DECODE (job, 'ANALYST', SAL*1.1,
3 '"CLERK', SAL*1.15,
4 'MANAGER', SAL*1.20,
5 SAL)

6 REVISED SALARY

7

JOB SAL REVISED SATARY
PRESIDENT 5000 5000
MANAGER 2850 3420
MANAGER 2450 2940

14 rows selected.

3-40 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Using the DECODE Function

In the SQL statement above, the value of JOB is decoded. If JOB is ANALYST, the salary increase is
10%; if JOB is CLERK, the salary increase is 15%; if JOB is MANAGER, the salary increase is 20%.
For all other job roles, there is no increase in salary.

The same statement can be written as an IF-THEN-ELSE statement:

IF job = 'ANALYST' THEN sal = sal*l.1
IF job = 'CLERK' THEN sal = sal*1.15
IF job = 'MANAGER' THEN sal = sal*1.20

ELSE sal = sal

Introduction to Oracle: SQL and PL/SQL 3-40

Using the DECODE Function

Display the applicable tax rate for each
employee in department 30.

SQL> SELECT ename, sal,
2 DECODE (TRUNC (sal/1000, 0),
3 0, 0.00,
4 1, 0.09,
5 2, 0.20,
6 3, 0.30,
7 4, 0.40,
8 5, 0.42,
9 6, 0.44,
10 0.45) TAX RATE
11 FROM emp
12 WHERE deptno = 30;

3-41 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Example

The slide shows another example using the DECODE function. In this example, we determine the tax
rate for each employee in department 30 based on the monthly salary. The tax rates are as per the
values mentioned in the following table.

Monthly Salary Range | Rate

$0.00 - 999.99 0%
$1,000.00 - 1,999.99 9%
$2,000.00 - 2,999.99 20%
$3,000.00 - 3,999.99 30%

$4,000.00 - 4,999.99 40%
$5,000.00 - 2,999.99 42%

$6,000.00 - 6,999.99 44%

$7.,000.00 or greater 45%
ENAME SAL TAX RATE
BLAKE 2850 .2
MARTIN 1250 .09
ALLEN 1600 .09
TURNER 1500 .09

6 rows selected.
Introduction to Oracle: SQL and PL/SQL 3-41

Nesting Functions

 Single-row functions can be nested to
any level.

* Nested functions are evaluated from
deepest level to the least-deep level.

F3(F2(F1l(col,argl) ,arg2) ,arg3)

* Step 1 =Result 1 *

Step 2 = Result 2

Step 3 =Result 3

3-42 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Nesting Functions

Single-row functions can be nested to any depth. Nested functions are evaluated from the innermost
level to the outermost level. Some examples follow to show you the flexibility of these functions.

Introduction to Oracle: SQL and PL/SQL 3-42

Nesting Functions

SQL> SELECT ename,
2 NVL(TO_CHAR (mgr) , 'No Manager')
3 FROM emp
4 WHERE mgr IS NULL;

3-43 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Nesting Functions (continued)

The slide example displays the head of the company, who has no manager. The evaluation of the
SQL statement involves two steps:

1. Evaluate the inner function to convert a number value to a character string.
— Result] =TO_CHAR(mgr)
2. Evaluate the outer function to replace the null value with a text string.
— NVL(Resultl, No Manager’)
The entire expression becomes the column heading because no column alias was given.
Example

Display the date of the next Friday that is six months from the hire date. The resulting date should
appear as Friday, March 12th, 1982. Order the results by hire date.

SQL> SELECT TO_CHAR(NEXT_DAY(ADD_MONTHS
2 (hiredate, 6), 'FRIDAY'),
3 'fmDay, Month ddth, YYYY')
4 "Next 6 Month Review"
5 FROM emp
6 ORDER BY hiredate;

Introduction to Oracle: SQL and PL/SQL 3-43

Summary

Use functions to do the following:

* Perform calculations on data

* Modify individual data items

* Manipulate output for groups of rows
* Alter date formats for display

e Convert column datatypes

3-44 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Single-Row Functions
Single-row functions can be nested to any level. Single-row functions can manipulate the following:
» Character data: LOWER, UPPER, INITCAP, CONCAT, SUBSTR, INSTR, LENGTH
» Number data: ROUND, TRUNC, MOD

+ Date data: MONTHS BETWEEN, ADD MONTHS, NEXT DAY, LAST DAY, ROUND,
TRUNC

» Date values can also use arithmetic operators.

+ Conversion functions can convert character, date, and numeric values: TO_CHAR, TO _DATE,
TO NUMBER

SYSDATE and DUAL

SYSDATE is a date function that returns the current date and time. It is customary to select
SYSDATE from a dummy table called DUAL.

Introduction to Oracle: SQL and PL/SQL 3-44

Practice Overview

e Creating queries that require the use of
numeric, character, and date functions

* Using concatenation with functions

» Writing case-insensitive queries to test
the usefulness of character functions

* Performing calculations of years and
months of service for an employee

e Determining the review date for an
employee

3-45 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLES

Practice Overview

This practice is designed to give you a variety of exercises using different functions available for
character, number, and date datatypes.

Remember that for nested functions, the results are evaluated from the innermost function to the
outermost function.

Introduction to Oracle: SQL and PL/SQL 3-45

Practice 3
1. Write a query to display the current date. Label the column Date.
Date

28-0CT-97

2. Display the employee number, name, salary, and salary increase by 15% expressed as a
whole number. Label the column New Salary. Save your SQL statement to a file named
p3g2.sql.

3. Run your query in the file p3g2 .sgl.

EMPNO ENAME SAL New Salary
7839 KING 5000 5750
7698 BLAKE 2850 3278
7782 CLARK 2450 2818
7566 JONES 2975 3421
7654 MARTIN 1250 1438
7499 ALLEN 1600 1840
7844 TURNER 1500 1725
7900 JAMES 950 1093
7521 WARD 1250 1438
7902 FORD 3000 3450
7369 SMITH 800 920
7788 SCOTT 3000 3450
7876 ADAMS 1100 1265
7934 MILLER 1300 1495

14 rows selected.

4. Modify your query p3g2 .sgl to add a column that will subtract the old salary from
the new salary. Label the column Increase. Rerun your query.

EMPNO ENAME SAL New Salary Increase
7839 KING 5000 5750 750
7698 BLAKE 2850 3278 428
7782 CLARK 2450 2818 368
7566 JONES 2975 3421 446
7654 MARTIN 1250 1438 188
7499 ALLEN 1600 1840 240
7844 TURNER 1500 1725 225
7900 JAMES 950 1093 143

14 rows selected.

Introduction to Oracle: SQL and PL/SQL 3-46

Practice 3 (continued)

5. Display the employee’s name, hire date, and salary review date, which is the first Monday after
six months of service. Label the column REVIEW. Format the dates to appear in the format
similar to “Sunday, the Seventh of September, 1981.”

ENAME HIREDATE REVIEW

KING 17-NOV-81 Monday, the Twenty-Fourth of May, 1982
BLAKE 01-MAY-81 Monday, the Second of November, 1981
CLARK 09-JUN-81 Monday, the Fourteenth of December, 1981
JONES 02-APR-81 Monday, the Fifth of October, 1981

MARTIN 28-SEP-81 Monday, the Twenty-Ninth of March, 1982
ALLEN 20-FEB-81 Monday, the Twenty-Fourth of August, 1981
TURNER 08-SEP-81 Monday, the Fifteenth of March, 1982
JAMES 03-DEC-81 Monday, the Seventh of June, 1982

WARD 22-FEB-81 Monday, the Twenty-Fourth of August, 1981
FORD 03-DEC-81 Monday, the Seventh of June, 1982

SMITH 17-DEC-80 Monday, the Twenty-Second of June, 1981
SCOTT O09-DEC-82 Monday, the Thirteenth of June, 1983
ADAMS 12-JAN-83 Monday, the Eighteenth of July, 1983
MILLER 23-JAN-82 Monday, the Twenty-Sixth of July, 1982

14 rows selected.

6. For each employee display the employee name and calculate the number of months between
today and the date the employee was hired. Label the column MONTHS WORKED. Order
your results by the number of months employed. Round the number of months up to the closest
whole number.

ENAME MONTHS WORKED
ADAMS 177
SCOTT 178
MILLER 188
JAMES 190
FORD 190
KING 191
MARTIN 192
TURNER 193
CLARK 196
BLAKE 197
JONES 198
WARD 199
ALLEN 199
SMITH 202

14 rows selected

Introduction to Oracle: SQL and PL/SQL 3-47

Practice 3 (continued)

7. Write a query that produces the following for each employee:
<employee name> earns <salary> monthly but wants <3 times salary>. Label the column
Dream Salaries.

Dream Salaries

KING earns $5,000.00 monthly but wants $15,000.00.
BLAKE earns $2,850.00 monthly but wants $8,550.00.
CLARK earns $2,450.00 monthly but wants $7,350.00.
JONES earns $2,975.00 monthly but wants $8,925.00.
MARTIN earns $1,250.00 monthly but wants $3,750.00.
ALLEN earns $1,600.00 monthly but wants $4,800.00
TURNER earns $1,500.00 monthly but wants $4,500.00.
JAMES earns $950.00 monthly but wants $2,850.00.
WARD earns $1,250.00 monthly but wants $3,750.00.
FORD earns $3,000.00 monthly but wants $9,000.00.
SMITH earns $800.00 monthly but wants $2,400.00.
SCOTT earns $3,000.00 monthly but wants $9,000.00.
ADAMS earns $1,100.00 monthly but wants $3,300.00
MILLER earns $1,300.00 monthly but wants $3,900.00.

14 rows selected.

If you have time, complete the following exercises:

8. Create a query to display name and salary for all employees. Format the salary to be 15
characters long, left-padded with $. Label the column SALARY.

ENAME SALARY

SMITH $S55855555535800
ALLEN $55585555551600
WARD $85585555551250
JONES $S5585555552975
MARTIN $85585555551250
BLAKE $55585555552850
CLARK $55585555552450
SCOTT $55585555553000
KING $85585555555000
TURNER $85585555551500
ADAMS $55585555551100
JAMES $S5585555555950
FORD $55585555553000

MILLER S88888888851300

14 rows selected.

Introduction to Oracle: SQL and PL/SQL 3-48

Practice 3 (continued)

9. Write a query that will display the employee’s name with the first letter capitalized and all
other letters lowercase and the length of their name, for all employees whose name starts with
J, A, or M. Give each column an appropriate label.

Jones

Martin

Allen

James

Adams

Miller

6 rows select

® o O 01 01 oy O

d.

10. Display the name, hire date, and day of the week on which the employee started. Label
the column DAY . Order the results by the day of the week starting with Monday.

ENAME HIREDATE DAY
MARTIN 28-SEP-81 MONDAY
CLARK 09-JUN-81 TUESDAY
KING 17-NOV-81 TUESDAY
TURNER 08-SEP-81 TUESDAY
SMITH 17-DEC-80 WEDNESDAY
ADAMS 12-JAN-83 WEDNESDAY
JONES 02-APR-81 THURSDAY
FORD 03-DEC-81 THURSDAY
SCOTT 09-DEC-82 THURSDAY
JAMES 03-DEC-81 THURSDAY
ALLEN 20-FEB-81 FRIDAY
BLAKE 01-MAY-81 FRIDAY
MILLER 23-JAN-82 SATURDAY
WARD 22-FEB-81 SUNDAY

14 rows selected.

Introduction to Oracle: SQL and PL/SQL 3-49

Practice 3 (continued)
If you want extra challenge, complete the following exercises:

11. Create a query that will display the employee name and commission amount. If the employee
does not earn commission, put “No Commission.” Label the column COMM.

SMITH No Commission
ALLEN 300
WARD 500
JONES No Commission

MARTIN 1400
BLAKE No Commission
CLARK No Commission

SCOTT No Commission
KING No Commission
TURNER O

ADAMS No Commission
JAMES No Commission
FORD No Commission
MILLER No Commission

14 rows selected.

12. Create a query that displays the employees’ names and indicates the amounts of their salaries
through asterisks. Each asterisk signifies a hundred dollars. Sort the data in descending order
of salary. Label the column EMPLOYEE AND THEIR SALARIES.

EMPLOYEE AND THEIR SALARIES

KING EaR iR i i e S b b b b b b b b b b b S S S b e S b S R I b b b S S S S S b b b b b b i b b Y
FORD RR R b i S b b b b b b b i b S b S S i b bk S
SCOTT RR R b i S b b b b b b b i b S b S S i b bk S
JONES Rk b i i b b b b b S b b b i b S S S ik e b b i
BLAKE Rk b i b b b b b S R b I b i S R i i b
CLARK Rk b i i b b b b b b b b b b b o S S S

ATLTEN Rk b i b b b b i b b b S

TURNER khkkhkrkkhk Ak KRk rrhk Kk rkK

MITLLER *hkkhkrkkhk Ak rkkhk Ak Kkk K

MARTIN *hkkhkrkkhk KRk Kk Kk rKhk

WARD *hkkhkrkkhk KRk Kk Kk rKhk

ADAMS *hkkhkrkkhkk Rk Kk kK

JAME S *hkkhkrkkhk kK kK

SMITH *hkkhkrk kKK

14 rows selected.

Introduction to Oracle: SQL and PL/SQL 3-50

Practice 3 (continued)
If you want an extra challenge, complete the following exercise:

13. Write a query that displays the grade of all employees based on the value of the column JOB, as
per the table shown below:

JOB GRADE
PRESIDENT A
MANAGER B
ANALYST C
SALESMAN D
CLERK E
None of the above 0]

CLERK
SALESMAN
SALESMAN
MANAGER
SALESMAN
MANAGER
MANAGER
ANALYST
PRESIDENT
SALESMAN
CLERK
CLERK
ANALYST

m QO &H M@ O P Q @W w g w o g H

CLERK

14 rows selected.

Introduction to Oracle: SQL and PL/SQL 3-51

Introduction to Oracle: SQL and PL/SQL 3-52

Ly —

Displaying Data
from Multiple Tables

Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Objectives

After completing this lesson, you should
be able to do the following:

» Write SELECT statements to access
data from more than one table using
equality and nonequality joins

* View data that generally does not meet a
join condition by using outer joins

e Join a table to itself

4-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

Lesson Aim

This lesson covers how to obtain data from more than one table, using the different methods
available.

Introduction to Oracle: SQL and PL/SQL 4-2

Obtaining Data from Multiple Tables

EMP DEPT
EMPNO ENAME ... DEPTNO | DEPTNO DNAME Loc

7839 KING .. 10 10 ACCOUNTING NEW YORK
7698 BLAKE ... 30 20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

7934 MILLER

7839 10 NEW YORK
7698 30 CHICAGO
7782 10 NEW YORK
7566 20 DALLAS
7654 30 CHICAGO
7499 30 CHICAGO

14 rows selected.

4-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

Data from Multiple Tables

Sometimes you need to use data from more than one table. In the slide example, the report displays
data from two separate tables.

+ EMPNO exists in the EMP table.
» DEPTNO exists in both the EMP and DEPT tables.
» LOC exists in the DEPT table.
To produce the report, you need to link EMP and DEPT tables and access data from both of them.

Introduction to Oracle: SQL and PL/SQL 4-3

What Is a Join?

Use a join to query data from more than
one table.

SELECT tablel.column, tablel2.column
FROM tablel, tableZ2

WHERE tablel.columnl = tablel2.columnZ2;

* Write the join condition in the WHERE
clause.

* Prefix the column name with the table
name when the same column name
appears in more than one table.

4-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

Defining Joins

When data from more than one table in the database is required, ajoin condition is used. Rowsin
one table can be joined to rows in another table according to common values existing in
corresponding columns, that is, usually primary and foreign key columns.

To display datafrom two or more related tables, write asimple join condition in the WHERE clause.

In the syntax:
tablel.column denotes the table and column from which dataiis retrieved
tablel.columnl = is the condition that joins (or relates) the tables together

table2.column2

Guidelines

When writing a SELECT statement that joins tables, precede the column name with the table
name for clarity and to enhance database access.

If the same column name appears in more than one table, the column name must be prefixed
with the table name.

To join # tables together, you need a minimum of (#-7) join conditions. Therefore, to join four
tables, a minimum of three joins are required. This rule may not apply if your table has a
concatenated primary key, in which case more than one column is required to uniquely identify
cach row.

For more information, see Oracle Server SOL Reference Manual, Release 8, “SELECT.”

Introduction to Oracle: SQL and PL/SQL 4-4

Cartesian Product

e A Cartesian product is formed when:
— A join condition is omitted
— A join condition is invalid

— All rows in the first table are joined to
all rows in the second table

* To avoid a Cartesian product, always
include a valid join condition in a
WHERE clause.

4-5 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

Cartesian Product

When a join condition is invalid or omitted completely, the result is a Carfesian product in which all
combinations of rows will be displayed. All rows in the first table are joined to all rows in the second
table.

A Cartesian product tends to generate a large number of rows, and its result is rarely useful. You
should always include a valid join condition in a WHERE clause, unless you have a specific need to
combine all rows from all tables.

Introduction to Oracle: SQL and PL/SQL 4-5

Generating a Cartesian Product

EMP (14 rows)

DEPT (4 rows)

EMPNO ENAME

DEPTNO

7839 KING ce 10
7698 BLAKE ... 30

7934 MILLER

DEPTNO DNAME
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO

40 OPERATIONS BOSTON

ENAME
_ KING
“Cartesian BLAKE
product: =p-| - - -
* A ”» KING
14*4=56 rows B .

ACCOUNTING
ACCOUNTING

RESEARCH
RESEARCH

56 rows selected.

ORACLE"

4-6 Copyright © Oracle Corporation, 1999. All rights reserved.

Cartesian Product (continued)

A Cartesian product is generated if a join condition is omitted. The example on the slide displays
employee name and department name from EMP and DEPT tables. Because no WHERE clause has
been specified, all rows (14 rows) from the EMP table are joined with all rows (4 rows) in the DEPT
table, thereby generating 56 rows in the output.

SQL> SELECT ename, dname
2 FROM emp, dept;
ENAME DNAME
KING ACCOUNTING
BLAKE ACCOUNTING
KING RESEARCH
BLAKE RESEARCH
56 rows selected.

Introduction to Oracle: SQL and PL/SQL 4-6

Types of Joins

Equijoin Non-equijoin Outer join Self join

QI Q Q=[] Q> Q Q=

4-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

Types of Joins

There are two main types of join conditions:
+ Equijoins
+ Non-equijoins

Additional join methods include the following:
» Quter joins
+ Self joins
» Set operators

Note: Set operators are not covered in this course. They are covered in another SQL course.

Introduction to Oracle: SQL and PL/SQL 4-7

What Is an Equijoin?

EMP DEPT
EMPNO ENAME DEPTNO DEPTNO DNAME LOC

7839 KING 10 10 ACCOUNTING NEW YORK
7698 BLAKE 30 30 SALES CHICAGO
7782 CLARK 10 10 ACCOUNTING NEW YORK
7566 JONES 20 20 RESEARCH DALLAS
7654 MARTIN 30 30 SALES CHICAGO
7499 ALLEN 30 30 SALES CHICAGO
7844 TURNER 30 30 SALES CHICAGO
7900 JAMES 30 30 SALES CHICAGO
7521 WARD 30 30 SALES CHICAGO
7902 FORD 20 20 RESEARCH DALLAS
7369 SMITH 20 RESEARCH DALLAS

14 rows selected. selected.

Foreign key Primary key

4-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

Equijoins
To determine the name of an employee’s department, you compare the value in the DEPTNO column
in the EMP table with the DEPTNO values in the DEPT table. The relationship between the EMP and

DEPT tables is an equijoin—that is, values in the DEPTNO column on both tables must be equal.
Frequently, this type of join involves primary and foreign key complements.

Note: Equijoins are also called simple joins or inner joins.

Introduction to Oracle: SQL and PL/SQL 4-8

Retrieving Records
with Equijoins

SQL> SELECT emp.empno, emp .ename, emp.deptno,
2 dept.deptno, dept.loc
3 FROM emp, dept
4 WHERE emp .deptno=dept.deptno;

EMPNO ENAME DEPTNO DEPTNO LOC

7839 KING 10 10 NEW YORK
7698 BLAKE 30 30 CHICAGO
7782 CLARK 10 10 NEW YORK
7566 JONES 20 20 DALLAS

14 rows selected.

4-9 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Retrieving Records with Equijoins
In the slide example:
» The SELECT clause specifies the column names to retrieve:

— employee name, employee number, and department number, which are
columns in the EMP table

— department number, department name, and location, which are columns in
the DEPT table

» The FROM clause specifies the two tables that the database must access:
— EMP table
— DEPT table

» The WHERE clause specifics how the tables are to be joined:
EMP.DEPTNO=DEPT.DEPTNO

Because the DEPTNO column is common to both tables, it must be prefixed by the table
name to avoid ambiguity.

Introduction to Oracle: SQL and PL/SQL 4-9

Qualifying Ambiguous
Column Names

» Use table prefixes to qualify column
names that are in multiple tables.

* Improve performance by using table
prefixes.

 Distinguish columns that have identical
names but reside in different tables by
using column aliases.

4-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

Qualifying Ambiguous Column Names

You need to qualify the names of the columns in the WHERE clause with the table name to avoid
ambiguity. Without the table prefixes, the DEPTNO column could be from either the DEPT table or
the EMP table. It is necessary to add the table prefix to execute your query.

If there are no common column names between the two tables, there is no need to qualify the
columns. However, you will gain improved performance by using the table prefix because you tell the
Oracle Server exactly where to go to find columns.

The requirement to qualify ambiguous column names is also applicable to columns that may be
ambiguous in other clauses, such as the SELECT clause or the ORDER BY clause.

Introduction to Oracle: SQL and PL/SQL 4-10

Additional Search Conditions
Using the AND Operator

EMP DEPT
EMPNO ENAME DEPTNO DEPTNO DNAME LOC

7839 KING 10 10 ACCOUNTING NEW YORK
7698 BLAKE 30 30 SALES CHICAGO
7782 CLARK 10 10 ACCOUNTING NEW YORK
7566 JONES 20 20 RESEARCH DALLAS
7654 MARTIN 30 30 SALES CHICAGO
7499 ALLEN 30 30 SALES CHICAGO
7844 TURNER 30 30 SALES CHICAGO
7900 JAMES 30 30 SALES CHICAGO
7521 WARD 30 30 SALES CHICAGO
7902 FORD 20 20 RESEARCH DALLAS
7369 SMITH 20 20 RESEARCH DALLAS

14 rows selected. I 14 rows selected.

4-11 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

Additional Search Conditions

In addition to the join, you may have criteria for your WHERE clause. For example, to display
employee King’s employee number, name, department number, and department location, you need an
additional condition in the WHERE clause.

SQL> SELECT empno, ename, emp.deptno, loc
2 FROM emp, dept
3 WHERE emp.deptno = dept.deptno

4 AND INITCAP (ename) = 'King';
EMPNO ENAME DEPTNO LOC
7839 KING 10 NEW YORK

Introduction to Oracle: SQL and PL/SQL 4-11

Using Table Aliases

Simplify queries by using table aliases.

SQL> SELECT emp.empno, emp.ename, emp.deptno,

2 dept.deptno, dept.loc
3 FROM emp, dept
4 WHERE emp.deptno=dept.deptno;

SQL> SELECT e.empno, e.ename, e.deptno,
2 d.deptno, d.loc
3 FROM emp e, dept d

4 WHERE

e.deptno= d.deptno;

4-12 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Table Aliases
Qualifying column names with table names can be very time consuming, particularly if table names
are lengthy. You can use table aliases instead of table names. Just as a column alias gives a column
another name, a table alias gives a table another name. Table aliases help to keep SQL code smaller,
therefore using less memory.

Notice how table aliases are identified in the FROM clause in the example. The table name is
specified in full, followed by a space and then the table alias. The EMP table has been given an alias
of E, whercas the DEPT table has an alias of D.

Guidelines

Table aliases can be up to 30 characters in length, but the shorter they are the better.

If a table alias is used for a particular table name in the FROM clause, then that table alias
must be substituted for the table name throughout the SELECT statement.

Table aliases should be meaningful.
The table alias is valid only for the current SELECT statement.

Introduction to Oracle: SQL and PL/SQL 4-12

Joining More Than Two Tables
CUSTOMER

JOCKSPORTS

TKB SPORT SHOP
VOLLYRITE

JUST TENNIS
K+T SPORTS
SHAPE UP
WOMENS SPORTS

9 rows selected. I
|

64 rows selected.

4-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

Additional Search Conditions

Sometimes you may need to join more than two tables. For example, to display the name, the orders
placed, the item numbers, the total for each item, and the total for each order for customer TKB
SPORT SHOP, you will have to join the CUSTOMER, ORD, and ITEM tables.

SQL> SELECT c.name, o.ordid, i.itemid, i.itemtot, o.total

2 FROM customer ¢, ord o, item i

3 WHERE c.custid = o.custid

4 AND o.ordid = i.ordid

5 AND c.name = 'TKB SPORT SHOP';
NAME ORDID ITEMID ITEMTOT TOTAL
TKB SPORT SHOP 610 3 58 101.4
TKB SPORT SHOP 610 1 35 101.4
TKB SPORT SHOP 610 2 8.4 101.4

Introduction to Oracle: SQL and PL/SQL 4-13

Non-Equijoins

EMP SALGRADE
EMPNO ENAME SAL

7839 KING 5000

7698 BLAKE 2850

7782 CLARK 2450

7566 JONES 2975

7654 MARTIN 1250

7499 ALLEN 1600

7844 TURNER 1500

7900 JAMES 950 .
o “salary in the EMP
14 rows selected. table is between

low salary and high
salary in the SALGRADE
table”

4-14 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Non-Equijoins

The relationship between the EMP table and the SALGRADE table is a non-equijoin,
meaning that no column in the EMP table corresponds directly to a column in the
SALGRADE table. The relationship between the two tables is that the SAL column in the
EMP table is between the LOSAL and HISAL column of the SALGRADE table. The
relationship is obtained using an operator other than equal (=).

Introduction to Oracle: SQL and PL/SQL 4-14

Retrieving Records
with Non-Equijoins

SQL> SELECT e.ename, e.sal, s.grade
2 FROM emp e, salgrade s
3 WHERE e.sal
4 BETWEEN s.losal AND s.hisal;

ENAME SAL GRADE
JAMES 950 1
SMITH 800 1
ADAMS 1100 1

14 rows selected.

4-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

Non-Equijoins (continued)

The slide example creates a non-equijoin to evaluate an employee’s salary grade. The salary must be
between any pair of the low and high salary ranges.

It is important to note that all employees appear exactly once when this query is executed. No
employee is repeated in the list. There are two reasons for this:

» None of the rows in the salary grade table contain grades that overlap. That is, the salary value
for an employee can only lie between the low salary and high salary values of one of the rows in
the salary grade table.

» All of the employees’ salaries lic within the limits provided by the salary grade table. That is, no
employee earns less than the lowest value contained in the LOSAL column or more than the
highest value contained in the HISAL column.

Note: Other operators such as <= and >= could be used, but BETWEEN is the simplest. Remember
to specify the low value first and the high value last when using BETWEEN. Table aliases have been
specified for performance reasons, not because of possible ambiguity.

Introduction to Oracle: SQL and PL/SQL 4-15

Outer Joins

EMP DEPT
ENAME DEPTNO f DEPTNO DNAME
KING 10 % 10 ACCOUNTING
BLAKE 30 5 30 SALES
CLARK 10 % 10 ACCOUNTING
JONES 20 . 20 RESEARCH

q 40 OPERATIONS

No employee in the
OPERATIONS department

4-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

Returning Records with No Direct Match with Outer Joins

If a row does not satisfy a join condition, the row will not appear in the query result. For example, in
the equijoin condition of EMP and DEPT tables, department OPERATIONS does not appear because
no one works in that department.

SQL> SELECT e.ename, e.deptno, d.dname
2 FROM emp e, dept d
3 WHERE e.deptno = d.deptno;

ENAME DEPTNO DNAME

KING 10 ACCOUNTING
BLAKE 30 SALES
CLARK 10 ACCOUNTING
JONES 20 RESEARCH
ALLEN 30 SALES
TURNER 30 SALES
JAMES 30 SALES

14 rows selected.

Introduction to Oracle: SQL and PL/SQL 4-16

Outer Joins

* You use an outer join to also see rows
that do not usually meet the join
condition.

e Outer join operator is the plus sign (+).

SELECT tablel.column, tablel2.column
FROM tablel, tableZ2
WHERE tablel.column (+) = table2.column;

SELECT tablel.column, tablel2.column
FROM tablel, tableZ2
WHERE tablel.column = tablelZ.column(+);

4-17 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

Returning Records with No Direct Match with Outer Joins

The missing row(s) can be returned if an outer join operator is used in the join condition. The
operator is a plus sign enclosed in parentheses (+), and it is placed on the “side” of the join that is
deficient in information. This operator has the effect of creating one or more null rows, to which one
or more rows from the nondeficient table can be joined.

In the syntax:
tablel.column = is the condition that joins (or relates) the tables together.

table2.column (+) isthe outer join symbol, which can be placed on either side of the
WHERE clause condition, but not on both sides (Place the outer
join symbol following the name of the column in the table without
the matching rows.)

Introduction to Oracle: SQL and PL/SQL 4-17

Using Outer Joins

SQL> SELECT e.ename, d.deptno, d.dname
2 FROM emp e, dept d
3 WHERE e.deptno(+) = d.deptno
ORDER BY e.deptno;

ENAME DEPTNO DNAME
KING 10 ACCOUNTING
CLARK 10 ACCOUNTING

40 OPERATIONS
15 rows selected.

4-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

Returning Records with No Direct Match with Outer Joins (continued)
The slide example displays numbers and names for all the departments. The OPERATIONS
department, which does not have any employees, is also displayed.

Outer Join Restrictions

» The outer join operator can appear on only orne side of the expression—the side that has
information missing. It returns those rows from one table that have no direct match in the other
table.

* A condition involving an outer join cannot use the IN operator or be linked to another condition
by the OR operator.

Introduction to Oracle: SQL and PL/SQL 4-18

Self Joins

EMP (WORKER) EMP (MANAGER)

EMPNO ENAME

7698 BLAKE 7839
7782 CLARK 7839
7566 JONES 7839
7654 MARTIN 7698
7499 ALLEN 7698

J

“MGR in the WORKER table is equal to EMPNO in the
MANAGER table”

4-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

Joining a Table to Itself

Sometimes you need to join a table to itself. To find the name of each employee’s manager, you need
to join the EMP table to itself, or perform a self join. For example, to find the name of Blake’s
manager, you need to:

+ Find Blake in the EMP table by looking at the ENAME column.

* Find the manager number for Blake by looking at the MGR column. Blake’s manager number is
7839.

» Find the name of the manager with EMPNO 7839 by looking at the ENAME column. King’s
employee number is 7839, so King is Blake’s manager.

In this process, you look in the table twice. The first time you look in the table to find Blake in the
ENAME column and MGR value of 7839. The second time you look in the EMPNQO column to find
7839 and the ENAME column to find King.

Introduction to Oracle: SQL and PL/SQL 4-19

Joining a Table to Itself

SQL> SELECT worker.ename||' works for '||manager.ename

2 FROM emp worker, emp manager

3 WHERE worker.mgr = manager.empno;

WORKER .ENAME | | "WORKSFOR' | | MANAG
BLAKE works for KING

CLARK works for KING

JONES works for KING

MARTIN works for BLAKE

13 rows selected.

4-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Joining a Table to Itself (continued)

The slide example joins the EMP table to itself. To simulate two tables in the FROM clause, there
are two aliases, namely WORKER and MANAGER, for the same table, EMP.

In this example, the WHERE clause contains the join that means “where a worker’s manager number
matches the employee number for the manager.”

Introduction to Oracle: SQL and PL/SQL 4-20

Summary

SELECT tablel.column, tablel2.column
FROM tablel, tableZ2

WHERE tablel.columnl = tablel2.columnZ2;

Equijoin Non-equijoin Outer join Self join

Q> Q Q=1 Q> Q Q=—>»Q
4-21 Copyright © Oracle Corporation, 1999. All rights reserved. C)RAC |_€ ¢
Summary

There are multiple ways to join tables. The common thread, though, is that you want to link them
through a condition in the WHERE clause. The method you choose will be based on the required
result and the data structures that you are using.

SELECT tablel.column, tableZ.column
FROM tablel, table’Z
WHERE tablel.columnl = tableZ.column2;

Introduction to Oracle: SQL and PL/SQL 4-21

Practice Overview

 Joining tables using an equijoin
* Performing outer and self joins
» Adding conditions

4-22 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Practice Overview

This practice is intended to give you practical experience in extracting data from more than one
table. You will be required to join and restrict rows in the WHERE clause.

Introduction to Oracle: SQL and PL/SQL 4-22

Practice 4

1. Write a query to display the name, department number, and department name for
all employees.

ENAME DEPTNO DNAME

KING 10 ACCOUNTING
BLAKE 30 SALES
CLARK 10 ACCOUNTING
JONES 20 RESEARCH
MARTIN 30 SALES
ALLEN 30 SALES
TURNER 30 SALES
JAMES 30 SALES

WARD 30 SALES

FORD 20 RESEARCH
SMITH 20 RESEARCH
SCOTT 20 RESEARCH
ADAMS 20 RESEARCH
MILLER 10 ACCOUNTING

14 rows selected.

2. Create a unique listing of all jobs that are in department 30. Include the location of
department 30 in the output.

CLERK CHICAGO
MANAGER CHICAGO
SALESMAN CHICAGO

3. Write a query to display the employee name, department name, and location of all
employees who eam a commission.

ENAME DNAME LOC

ALLEN SALES CHICAGO
WARD SALES CHICAGO
MARTIN SALES CHICAGO
TURNER SALES CHICAGO

Introduction to Oracle: SQL and PL/SQL 4-23

Practice 4 (continued)

4. Display the employee name and department name for all employees who have an 4 in their
name. Save your SQL statement in a file called p4g4 .sql.

ENAME DNAME
BLAKE SALES
CLARK ACCOUNTING

MARTIN SALES

ALLEN SALES
JAMES SALES
WARD SALES
ADAMS RESEARCH

7 rows selected.

5. Write a query to display the name, job, department number, and department name for all
employees who work in DALLAS.

ENAME JOB DEPTNO DNAME

SMITH CLERK 20 RESEARCH
ADAMS CLERK 20 RESEARCH
FORD ANALYST 20 RESEARCH
SCOTT ANALYST 20 RESEARCH
JONES MANAGER 20 RESEARCH

6. Display the employee name and employee number along with their manager’s name and
manager number. Label the columns Employee, Emp#, Manager, and Mgr#, respectively.
Save your SQL statement in a file called p4g6.sqgl.

Employee Emp# Manager Mgr#
SCOTT 7788 JONES 7566
FORD 7902 JONES 7566
ATLLEN 7499 BLAKE 7698
WARD 7521 BLAKE 7698
JAMES 7900 BLAKE 7698
TURNER 7844 BLAKE 7698
MARTIN 7654 BLAKE 7698
MILLER 7934 CLARK 7782
ADAMS 7876 SCOTT 7788
JONES 7566 KING 7839
CLARK 7782 KING 7839
BLAKE 7698 KING 7839
SMITH 7369 FORD 7902

13 rows selected.
Introduction to Oracle: SQL and PL/SQL 4-24

Practice 4 (continued)

7. Modify p4g6.sgl to display all employees including King, who has no manager.
Resave as p4g7.sgl. Runpdg7.sqgl.

Employee Emp# Manager Mgr#

SCOTT 7788 JONES 7566
FORD 7902 JONES 7566
ALLEN 7499 BLAKE 7698
WARD 7521 BLAKE 7698
JAMES 7900 BLAKE 7698
TURNER 7844 BLAKE 7698
MARTIN 7654 BLAKE 7698
MILLER 7934 CLARK 7782
ADAMS 7876 SCOTT 7788
JONES 7566 KING 7839
CLARK 7782 KING 7839
BLAKE 7698 KING 7839
SMITH 7369 FORD 7902
KING 7839

14 rows selected.
If you have time, complete the following exercises:

8. Create a query that will display the employee name, department number, and all the
employees that work in the same department as a given employee. Give each column an
appropriate label.

DEPARTMENT EMPLOYEE COLLEAGUE

10 CLARK KING

10 CLARK MILLER
10 KING CLARK
10 KING MILLER

10 MILLER CLARK
10 MILLER KING

20 ADAMS FORD

20 ADAMS JONES
20 ADAMS SCOTT
20 ADAMS SMITH
20 FORD ADAMS
20 FORD JONES
20 FORD SCOTT

56 rows selected.

Introduction to Oracle: SQL and PL/SQL 4-25

Practice 4 (continued)

9. Show the structure of the SALGRADE table. Create a query that will display the name, job,
department name, salary, and grade for all employees.

Name Null®? Type

GRADE NUMBER

LOSAL NUMBER

HISAL NUMBER

ENAME JOB DNAME SAL GRADE
MILLER CLERK ACCOUNTING 1300 2
CLARK MANAGER ACCOUNTING 2450 4
KING PRESIDENT ACCOUNTING 5000 5
SMITH CLERK RESEARCH 800 1
SCOTT ANALYST RESEARCH 3000 4
FORD ANALYST RESEARCH 3000 4
ADAMS CLERK RESEARCH 1100 1
JONES MANAGER RESEARCH 2975 4
JAMES CLERK SALES 950 1
BLAKE MANAGER SALES 2850 4
TURNER SALESMAN SALES 1500 3
ALLEN SALESMAN SALES 1600 3
WARD SALESMAN SALES 1250 2
MARTIN SALESMAN SALES 1250 2

14 rows selected.

If you want extra challenge, complete the following exercises:

10. Create a query to display the name and hire date of any employee hired after employee Blake.

ENAME HIREDATE

KING 17-NOV-81
CLARK 09-JUN-81
MARTIN 28-SEP-81
TURNER 08-SEP-81
JAMES 03-DEC-81
FORD 03-DEC-81
SCOTT 09-DEC-82
ADAMS 12-JAN-83
MILLER 23-JAN-82

9 rows selected.

Introduction to Oracle: SQL and PL/SQL 4-26

Practice 4 (continued)

11. Display all employees” names and hire dates along with their manager’s name and hire date
for all employees who were hired before their managers. Label the columns Employee, Emp
Hiredate, Manager, and Mgr Hiredate, respectively.

Employee Emp Hiredate Manager Mgr Hiredate

ALLEN 20-FEB-81 BLAKE 01-MAY-81
WARD 22-FEB-81 BLAKE 01-MAY-81
JONES 02-APR-81 KING 17-NOV-81
CLARK 09-JUN-81 KING 17-NOV-81
BLAKE 01-MAY-81 KING 17-NOV-81
SMITH 17-DEC-80 FORD 03-DEC-81

6 rows selected.

Introduction to Oracle: SQL and PL/SQL 4-27

Introduction to Oracle: SQL and PL/SQL 4-28

=
J

Aggregating Data
Using Group Functions

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Objectives

After completing this lesson, you should
be able to do the following:

* Identify the available group functions
* Describe the use of group functions
* Group data using the GROUP BY clause

* Include or exclude grouped rows by
using the HAVING clause

5-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Lesson Aim

This lesson further addresses functions. It focuses on obtaining summary information, such as
averages, for groups of rows. It discusses how to group rows in a table into smaller sets and how to
specify search criteria for groups of rows.

Introduction to Oracle: SQL and PL/SQL 5-2

What Are Group Functions?

Group functions operate on sets of rows to give
one result per group.

EMP

DEPTNO SAL

“maximum
salary in
the EMP table”

5-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG °

Group Functions

Unlike single-row functions, group functions operate on sets of rows to give one result
per group. These sets may be the whole table or the table split into groups.

Introduction to Oracle: SQL and PL/SQL 5-3

Types of Group Functions

* AVG

« COUNT

* MAX

* MIN

« STDDEV

« SUM

* VARIANCE

5-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Group Functions (continued)

Each of the functions accepts an argument. The following table identifies the options that you can use
in the syntax:

Function Description
AVG(|DISTINCT|ALL]#) Average value of n, ignoring null values
COUNT({*|[DISTINCT|ALL]expr}) | Number of rows, where expr evaluates to something other

than null (Count all selected rows using *, including
duplicates and rows with nulls.)

MAX([DISTINCT|ALL]expr) Maximum value of expr, ignoring null values
MIN(|DISTINCT|ALL]expr) Minimum value of expr, ignoring null values
STDDEV([DISTINCT|ALL]x) Standard deviation of n, ignoring null values

SUM(|DISTINCT|ALL]#) Sum values of #n, ignoring null values

VARIANCE(|DISTINCT|ALL]x) Variance of », ignoring null values

Introduction to Oracle: SQL and PL/SQL 5-4

Using Group Functions

SELECT [column,] group function (column)
FROM table

[WHERE condition]

[GROUP BY column]

[ORDER BY column] ;

5-5 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Guidelines for Using Group Functions

DISTINCT makes the function consider only nonduplicate values; ALL makes it consider every
value including duplicates. The default is ALL and therefore does not need to be specified.

The datatypes for the arguments may be CHAR, VARCHAR2, NUMBER, or DATE where
expr s listed.

All group functions except COUNT(*) ignore null values. To substitute a value for null values,
use the NVL function.

The Oracle Server implicitly sorts the result set in ascending order when using a GROUP BY
clause. To override this default ordering, DESC can be used in an ORDER BY clause.

Introduction to Oracle: SQL and PL/SQL 5-5

Using AVG and SUM Functions

You can use AVG and SUM for numeric data.

SQL> SELECT AVG(sal), MAX(sal),
2 MIN(sal) , SUM(sal)
3 FROM emp

4 WHERE job LIKE 'SALESS';

AVG(SAL) MAX(SAL) MIN(SAL) SUM(SAL)

5-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Group Functions

You can use AVG, SUM, MIN, and MAX functions against columns that can store numeric data. The
example on the slide displays the average, highest, lowest, and sum of monthly salaries for all
salespeople.

Introduction to Oracle: SQL and PL/SQL 5-6

Using MIN and MAX Functions

You can use MIN and MAX for any datatype.

SQL> SELECT MIN(hiredate), MAX(hiredate)
2 FROM emp

MIN (HIRED MAX(HIRED

17-DEC-80 12-JAN-83

5-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Group Functions (continued)

You can use MAX and MIN functions for any datatype. The slide example displays the most junior
and most senior employee.

The following example displays the employee name that is first and the employee name that is the
last in an alphabetized list of all employees.

SQL> SELECT MIN (ename) , MAX (ename)
2 FROM emp ;

MIN (ENAME) MAX (ENAME)

Note: AVG, SUM, VARIANCE, and STDDEYV functions can be used only with numeric datatypes.

Introduction to Oracle: SQL and PL/SQL 5-7

Using the COUNT Function

COUNT(*) returns the number of rows in a
table.

SQL> SELECT COUNT (*)
2 FROM emp
3 WHERE deptno = 30;

COUNT (*)

5-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °
The COUNT Function
The COUNT function has two formats:
+ COUNT(*)

+ COUNT(expr)

COUNT(*) returns the number of rows in a table, including duplicate rows and rows containing null
values in any of the columns. If a WHERE clause is included in the SELECT statement, COUNT(¥*)
returns the number of rows that satisfies the condition in the WHERE clause.

In contrast, COUNT(expr) returns the number of nonnull rows in the column identified by expr.

The slide example displays the number of employees in department 30.

Introduction to Oracle: SQL and PL/SQL 5-8

Using the COUNT Function

COUNT(expr) returns the number of
nonnull rows.

SQL> SELECT COUNT (comm)
2 FROM emp
3 WHERE deptno = 30;

COUNT (COMM)

5-9 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

The COUNT Function (continued)

The slide example displays the number of employees in department 30 who can earn a commission.
Notice that the result gives the total number of rows to be four because two employees in department
30 cannot earn a commission and contain a null value in the COMM column.

Example
Display the number of departments in the EMP table.

SQL> SELECT COUNT (deptno)
2 FROM emp;

COUNT (DEPTNO)

Display the number of distinct departments in the EMP table.

SQL> SELECT COUNT (DISTINCT (deptno))
2 FROM emp ;

COUNT (DISTINCT (DEPTNO))

Introduction to Oracle: SQL and PL/SQL 5-9

Group Functions and Null Values

Group functions ignore null values in the
column.

SQL> SELECT AVG (comm)
2 FROM emp;

AVG (COMM)

5-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Group Functions and Null Values

All group functions except COUNT (*) ignore null values in the column. In the slide
example, the average is calculated based onfy on the rows in the table where a valid value
is stored in the COMM column. The average is calculated as total commission being paid
to all employees divided by the number of employees receiving commission (4).

Introduction to Oracle: SQL and PL/SQL 5-10

Using the NVL Function
with Group Functions

The NVL function forces group functions
to include null values.

SQL> SELECT AVG(NVL (comm,0))
2 FROM emp;

AVG (NVL(COMM,0))

5-11 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG °

Group Functions and Null Values (continued)

The NVL function forces group functions to include null values. In the slide example, the
average is calculated based on all rows in the table regardless of whether null values are
stored in the COMM column. The average is calculated as total commission being paid to
all employees divided by the total number of employees in the company (14).

Introduction to Oracle: SQL and PL/SQL 5-11

Creating Groups of Data

DEPTNO SAL

2916.6667
“average DEPTNO AVG (SAL)
salary |
in EMP
2175
table 10 2916.6667
for each 20 2175
department” 30 1566.6667

1566.6667

5-12 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Groups of Data

Until now, all group functions have treated the table as one large group of information.

At times, you need to divide the table of information into smaller groups. This can be
done by using the GROUP BY clause.

Introduction to Oracle: SQL and PL/SQL 5-12

Creating Groups of Data:
GROUP BY Clause

SELECT column, group function (column)
FROM table

[WHERE condition]

[GROUP BY group by expression]

[ORDER BY column] ;

Divide rows in a table into smaller groups
by using the GROUP BY clause.

5-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

The GROUP BY Clause

You can use the GROUP BY clause to divide the rows in a table into groups. You can then use the
group functions to return summary information for each group.

In the syntax:

group by expression specifies columns whose values determine the basis for
grouping rows

Guidelines

If you include a group function in a SELECT clause, you cannot select individual results as
well unless the individual column appears in the GROUP BY clause. You will receive an error
message if you fail to include the column list.

Using a WHERE clause, you can preexclude rows before dividing them into groups.
You must include the columns in the GROUP BY clause.
You cannot use the column alias in the GROUP BY clause.

By default, rows are sorted by ascending order of the columns included in the GROUP BY list.
You can override this by using the ORDER BY clause.

Introduction to Oracle: SQL and PL/SQL 5-13

Using the GROUP BY Clause

All columns in the SELECT list that are not
in group functions must be in the GROUP
BY clause.

SQL> SELECT deptno, AVG(sal)
2 FROM emp
3 GROUP BY deptno;

DEPTNO AVG (SAL)
10 2916.6667
20 2175
30 1566.6667

5-14 Copyright © Oracle Corporation, 1999. All rights reserved. ORrRACLES

The GROUP BY Clause (continued)

When using the GROUP BY clause, make sure that all columns in the SELECT list that
are not in the group functions are included in the GROUP BY clause. The example on the
slide displays the department number and the average salary for each department. Here is
how this SELECT statement, containing a GROUP BY clause, is evaluated:

» The SELECT clause specifies the columns to be retrieved:
— Department number column in the EMP table

— The average of all the salaries in the group you specified in the GROUP BY
clause

+ The FROM clause specifies the tables that the database must access: the EMP table.

» The WHERE clause specifies the rows to be retrieved. Since there is no WHERE
clause, by default all rows are retrieved.

» The GROUP BY clause specifies how the rows should be grouped. The rows are
being grouped by department number, so the AVG function that is being applied to
the salary column will calculate the average salary for each department.

Introduction to Oracle: SQL and PL/SQL 5-14

Using the GROUP BY Clause

The GROUP BY column does not have to
be in the SELECT list.

SQL> SELECT AVG (sal)
2 FROM emp
3 GROUP BY deptno;

AVG (SAL)

2916.6667
2175
1566 .6667

5-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

The GROUP BY Clause (continued)

The GROUP BY column does not have to be in the SELECT clause. For example, the SELECT
statement on the slide displays the average salaries for each department without displaying the
respective department numbers. Without the department numbers, however, the results do not look
meaningful.

You can use the group function in the ORDER BY clause.

SQL> SELECT deptno, AVG(sal)
2 FROM emp
3 GROUP BY deptno
4 ORDER BY AVG(sal) ;

DEPTNO AVG (SAL)
30 1566.6667
20 2175
10 2916.6667

Introduction to Oracle: SQL and PL/SQL 5-15

Grouping by More
Than One Column

EMP

DEPTNO JOB SAT

10 MANAGER 2450
DEPTNO JOB SUM (SAT)
10 PRESIDENT 50008
ZO=CLERK 1300 = 10 CLERK 1300
20 CLERK 800 E“sum salaries in 10 MANAGER 2450
20 CLERK 1100 tfhe EMI;t_alla)Ie 10 PRESIDENT 5000

20 ANALYST 3000 or each jo

groupedjby, 20 ANATYST 6000

20 ANATLYST 3000
d rt 7 20 CIERK 1900

20 MANAGER 2975 epartmen

20 MANAGER 2975
30 SALESMAN 1600 PP p—— 550
S0-MANAGER 2850 30 MANAGER 2850

30 SALESMAN 1250
30 SALESMAN 5600

30 CLERK 950

30 SALESMAN 1500

30 SATLESMAN 1250

5-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Groups Within Groups

Sometimes there is a need to see results for groups within groups. The slide shows a report that
displays the total salary being paid to each job title, within each department.

The EMP table is grouped first by department number, and within that grouping, it is grouped by job
title. For example, the two clerks in department 20 are grouped together and a single result (total
salary) is produced for all salespeople within the group.

Introduction to Oracle: SQL and PL/SQL 5-16

Using the GROUP BY Clause
on Multiple Columns

SQL> SELECT deptno, job, sum(sal)
2 FROM emp
3 GROUP BY deptno, job;

DEPTNO JOB SUM (SAL)
10 CLERK 1300
10 MANAGER 2450
10 PRESIDENT 5000
20 ANALYST 6000
20 CLERK 1900

9 rows selected.

5-17 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Groups Within Groups (continued)

You can return summary results for groups and subgroups by listing more than one GROUP BY
column. You can determine the default sort order of the results by the order of the columns in the
GROUP BY clause. Here is how the SELECT statement on the slide, containing a GROUP BY
clause, is evaluated:

» The SELECT clause specifies the column to be retrieved:
— Department number in the EMP table
— Job title in the EMP table
— The sum of all the salaries in the group that you specified in the
GROUP BY clause
» The FROM clause specifies the tables that the database must access: the EMP table.
+ The GROUP BY clause specifies how you must group the rows:
— First, the rows are grouped by department number.
— Second, within the department number groups, the rows are grouped by job title.

So the SUM function is being applied to the salary column for all job titles within each
department number group.

Introduction to Oracle: SQL and PL/SQL 5-17

lllegal Queries
Using Group Functions

Any column or expression in the SELECT

list that is not an aggregate function must
be in the GROUP BY clause.

SQL> SELECT deptno, COUNT (ename)

2 FROM emp; . GROUP BY clause
 column

SELECT deptno, COUNT (ename)
*

ERROR at line 1:
ORA-00937: not a single-group group function

5-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

lllegal Queries Using Group Functions

Whenever you use a mixture of individual items (DEPTNO) and group functions (COUNT) in the
same SELECT statement, you must include a GROUP BY clause that specifies the individual items
(in this case, DEPTNQ). If the GROUP BY clause is missing, then the error message “not a single-

group group function” appears and an asterisk (*) points to the offending column. You can correct the
error on the slide by adding the GROUP BY clause.

SQL> SELECT deptno, COUNT (ename)
2 FROM emp
3 GROUP BY deptno;

DEPTNO COUNT (ENAME)

10 3
20 5
30 6

Any column or expression in the SELECT list that is not an aggregate function must be in the GROUP
BY clause.

Introduction to Oracle: SQL and PL/SQL 5-18

lllegal Queries
Using Group Functions
* You cannot use the WHERE clause to restrict

groups.
* You use the HAVING clause to restrict groups.

SQL> SELECT deptno, AVG(sal)

FROM emp
WHERE AVG(sal) > 2000

GROUP BY deptno;

A
WHERE AVG (sal) > 2000 \)ee “\G‘\o
* (Gj‘ <) Gﬁa
ERROR at line 3(}9(\ X

ORA-00934: group function is not allowed here

5-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

lllegal Queries Using Group Functions (continued)
The WHERE clause cannot be used to restrict groups. The SELECT statement on the slide results in
an error because it uses the WHERE clause to restrict the display of average salaries of those
departments that have an average salary greater than $2000.
You can correct the slide error by using the HAVING clause to restrict groups.

SQL> SELECT deptno, AVG(sal)
2 FROM emp
3 GROUP BY deptno
4 HAVING AVG(sal) > 2000;

DEPTNO AVG (SAL)
10 2916.6667
20 2175

Introduction to Oracle: SQL and PL/SQL 5-19

Excluding Group Results

5000
“maximum DEPTNO MAX (SAL)
3000 salary
per department
greater than

$2900”

2850
5-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Restricting Group Results

In the same way that you use the WHERE clause to restrict the rows that you select, you use the
HAVING clause to restrict groups. To find the maximum salary of each department, but show only
the departments that have a maximum salary of more than $2900, you need to do the following:

» Find the average salary for each department by grouping by department number.

» Restrict the groups to those departments with a maximum salary greater than $2900.

Introduction to Oracle: SQL and PL/SQL 5-20

Excluding Group Results:
HAVING Clause
Use the HAVING clause to restrict groups
 Rows are grouped.
* The group function is applied.

e Groups matching the HAVING clause are
displayed.

SELECT column, group function
FROM table

[WHERE condition]

[GROUP BY group by expression]
[HAVING group condition]

[ORDER BY column] ;

5-21 Copyright © Oracle Corporation, 1999. Al rights reserved. (ORACLE”

The HAVING Clause

You use the HAVING clause to specify which groups are to be displayed. Therefore, you further
restrict the groups on the basis of aggregate information.

In the syntax:

group condition restricts the groups of rows returned to those groups for which
the specified condition is TRUE

The Oracle Server performs the following steps when you use the HAVING clause:
* Rows are grouped.
» The group function is applied to the group.
» The groups that match the criteria in the HAVING clause are displayed.

The HAVING clause can precede the GROUP BY clause, but it is recommended that you place the
GROUP BY clause first because it is more logical. Groups are formed and group functions are
calculated before the HAVING clause is applied to the groups in the SELECT list.

Introduction to Oracle: SQL and PL/SQL 5-21

Using the HAVING Clause

SQL> SELECT deptno, max(sal)
FROM emp
GROUP BY deptno
HAVING max (sal) >2900;

DEPTNO MAX(SAL)

5-22 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

The HAVING Clause (continued)
The slide example displays department numbers and maximum salary for those departments whose
maximum salary is greater than $2900.
You can use the GROUP BY clause without using a group function in the SELECT list.
If you restrict rows based on the result of a group function, you must have a GROUP BY clause as
well as the HAVING clause.

The following example displays the department numbers and average salary for those departments
whose maximum salary is greater than $2900:

SQL> SELECT deptno, AVG(sal)
2 FROM emp
3 GROUP BY deptno
4 HAVING MAX (sal) > 2900;

DEPTNO AVG(SAL)

10 2916.6667
20 2175

Introduction to Oracle: SQL and PL/SQL 5-22

Using the HAVING Clause

SQL> SELECT job, SUM(sal) PAYROLL
2 FROM emp
3 WHERE job NOT LIKE 'SALES%'

4 GROUP BY job

6 ORDER BY

5-23 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

The HAVING Clause (continued)

The slide example displays the job title and total monthly salary for each job title with a total payroll
exceeding $5000. The example excludes salespeople and sorts the list by the total monthly salary.

Introduction to Oracle: SQL and PL/SQL 5-23

Nesting Group Functions

Display the maximum average salary.

SQL> SELECT max (avg (sal))
2 FROM emp
3 GROUP BY deptno;

MAX (AVG (SAL))

29016 6667

5-24 Copyright © Oracle Corporation, 1999. All rights reserved. ORrRACLES

Nesting Group Functions

Group functions can be nested to a depth of two. The slide example displays the maximum average
salary.

Introduction to Oracle: SQL and PL/SQL 5-24

Summary

SELECT column, group function (column)
FROM table

[WHERE condition]

[GROUP BY group by expression]

[HAVING group condition]

[ORDER BY column] ;

Order of evaluation of the clauses:
* WHERE clause

« GROUP BY clause

* HAVING clause

525 Copyright © Oracle Corporation, 1999. All rights reserved. (OIRACLE”
Summary
Seven group functions are available in SQL:

« AVG

« COUNT

+ MAX

+ MIN

+ SUM

+ STDDEV

+ VARIANCE

You can create subgroups by using the GROUP BY clause. Groups can be excluded using the
HAVING clause.

Place the HAVING and GROUP BY clauses after the WHERE clause 1n a statement. Place the
ORDER BY clause last.

The Oracle Server evaluates the clauses in the following order:
» Ifthe statement contains a WHERE clause, the server establishes the candidate rows.
» The server identifies the groups specified in the GROUP BY clause.
* The HAVING clause further restricts result groups that do not meet the group criteria in the
HAVING clause.

Introduction to Oracle: SQL and PL/SQL 5-25

Practice Overview

» Showing different queries that use
group functions

* Grouping by rows to achieve more than
one result

* Excluding groups by using the HAVING
clause

5-26 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Practice Overview

At the end of'this practice, you should be familiar with using group functions and selecting groups of
data.

Paper-Based Questions
For questions 1-3, circle either True or False.

Note: Column aliases are used for the queries.

Introduction to Oracle: SQL and PL/SQL 5-26

Practice 5

Determine the validity of the following statements. Circle either True or False.

L.

Group functions work across many rows to produce one result per group.
True/False

Group functions include nulls in calculations.
True/False

The WHERE clause restricts rows prior to inclusion in a group calculation.
True/False

Display the highest, lowest, sum, and average salary of all employees. Label the columns
Maximum, Minimum, Sum, and Average, respectively. Round your results to the nearest whole
number. Save your SQL statement in a file called p5g4 . sql.

Maximum Minimum Sum Average

5000 800 29025 2073

Modify p5g4 . sql to display the minimum, maximum, sum, and average salary for each job
type. Resave to a file called p5g5 . sgl. Rerun your query.

JOB Maximum Minimum Sum Average
ANALYST 3000 3000 6000 3000
CLERK 1300 800 4150 1038
MANAGER 2975 2450 8275 2758
PRESIDENT 5000 5000 5000 5000
SALESMAN 1600 1250 5600 1400

ANALYST 2
CLERK 4
MANAGER 3
PRESIDENT 1
SALESMAN 4

Introduction to Oracle: SQL and PL/SQL 5-27

Practice 5 (continued)

7. Determine the number of managers without listing them. Label the column Number of
Managers.

Number of Managers

8. Write a query that will display the difference between the highest and lowest salaries. Label
the column DIFFERENCE.

DIFFERENCE

If you have time, complete the following exercises:

9. Display the manager number and the salary of the lowest paid employee for that manager.
Exclude anyone whose manager is not known. Exclude any groups where the minimum
salary is less than $1000. Sort the output in descending order of salary.

MGR MIN (SAL)
7566 3000
7839 2450
7782 1300
7788 1100

10. Write a query to display the department name, location name, number of employees, and
the average salary for all employees in that department. Label the columns dname, loc,
Number of People, and Salary, respectively. Round the average salary to two decimal places.

DNAME LoC Number of People Salary
ACCOUNTING NEW YORK 3 2916.67
RESEARCH DALLAS 5 2175

SALES CHICAGO 6 1566.67

Introduction to Oracle: SQL and PL/SQL 5-28

Practice 5 (continued)

If you want extra challenge, complete the following exercises:

1.

12.

Create a query that will display the total number of employees and of that total the number
who were hired in 1980, 1981, 1982, and 1983. Give appropriate column headings.

TOTAL 1980 1981 1982 1983

Create a matrix query to display the job, the salary for that job based on department
number, and the total salary for that job for all departments, giving each column an
appropriate heading,.

Job Dept 10 Dept 20 Dept 30 Total
ANALYST 6000 6000
CLERK 1300 1900 950 4150
MANAGER 2450 2975 2850 8275
PRESTIDENT 5000 5000
SALESMAN 5600 5600

Introduction to Oracle: SQL and PL/SQL 5-29

Introduction to Oracle: SQL and PL/SQL 5-30

ra

o

Subqueries

Copyright © Oracle Corporation, 1999. All rights reserved.

ORACLE"

Objectives

After completing this lesson, you should
be able to do the following:

» Describe the types of problems that
subqueries can solve

* Define subqueries
e List the types of subqueries

* Write single-row and multiple-row
subqueries

6-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Lesson Aim

In this lesson, you will learn about more advanced features of the SELECT statement. You can write
subqueries in the WHERE clause of another SQL statement to obtain values based on an unknown
conditional value. This lesson covers single-row subqueries and multiple-row subqueries.

Introduction to Oracle: SQL and PL/SQL 6-2

Using a Subquery
to Solve a Problem

“Who has a salary greater than Jones’?”

Main Query

“Which employees have a salary greater
! than Jones’ salary?”

Subquery

? -
jj “What is Jones’ salary?”

6-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG °

Using a Subquery to Solve a Problem
Suppose you want to write a query to find out who earns a salary greater than Jones” salary.

To solve this problem, you need two queries: one query to find what Jones earns and a second query
to find who earns more than that amount.

You can solve this problem by combining the two queries, placing one query inside the other query.

The inner query or the subguery returns a value that is used by the outer query or the main query.
Using a subquery is equivalent to performing two sequential queries and using the result of the first
query as the search value in the second query.

Introduction to Oracle: SQL and PL/SQL 6-3

Subqueries

SELECT select list

FROM table

WHERE expr operator
(SELECT select list
FROM table) ;

* The subquery (inner query) executes
once before the main query.

* The result of the subquery is used by
the main query (outer query).

6-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Subqueries

A subquery is a SELECT statement that is embedded in a clause of another SELECT statement. You
can build powerful statements out of simple ones by using subqueries. They can be very useful when
you heed to select rows from atable with a condition that depends on the datain the table itself.

You can place the subquery in a number of SQL clauses:
* WHERE clause
* HAVING clause
+ FROM clause

In the syntax:

operator includes a comparison operator such as>, =, or IN
Note: Comparison operators fall into two classes: single-row operators (>, =, >=, <, <>, <=) and
multiple-row operators (IN, ANY, ALL).

The subquery is often referred to as a nested SELECT, sub-SELECT, or inner SELECT statement.
The subquery generally executes first, and its output is used to complete the query condition for the
main or outer query.

Introduction to Oracle: SQL and PL/SQL 6-4

Using a Subquery

SQL> SELECT ename
2 FROM emp 2975

WHERE sal ><_\
(SELECT sal

FROM emp
WHERE empno=7566) ;

6-5 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG °

Using a Subquery

In the slide, the inner query determines the salary of employee 7566. The outer query takes the
result of the inner query and uses this result to display all the employees who earn more than this
amount.

Introduction to Oracle: SQL and PL/SQL 6-5

Guidelines for Using Subqueries

* Enclose subqueries in parentheses.

* Place subqueries on the right side of the
comparison operator.

* Do not add an ORDER BY clause to a
subquery.

* Use single-row operators with single-
row subqueries.

* Use multiple-row operators with
multiple-row subqueries.

6-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Guidelines for Using Subqueries
A subquery must be enclosed in parentheses.
A subquery must appear on the right side of the comparison operator.

Subqueries cannot contain an ORDER BY clause. You can have only one ORDER BY clause
for a SELECT statement, and if specified it must be the last clause in the main SELECT
statement.

Two classes of comparison operators are used in subqueries: single-row operators and
multiple-row operators.

Introduction to Oracle: SQL and PL/SQL 6-6

Types of Subqueries

» Single-row subquery

Main query

returns

Subquery » CLERK

e Multiple-row subquery

Main query
returns CLERK
LD > MANAGER

e Multiple-column subquery

Main query
returns
Subquery » CLERK 7900
MANAGER 7698
6-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG °

Types of Subqueries
+ Single-row subqueries: Queries that return only one row from the inner SELECT statement

» Multiple-row subqueries: Queries that return more than one row from the inner SELECT
statement

» Multiple-column subqueries: Queries that return more than one column from the inner
SELECT statement

Introduction to Oracle: SQL and PL/SQL 6-7

Single-Row Subqueries

* Return only one row
» Use single-row comparison operators

Operator | Meaning
= Equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
<> Not equal to

6-8 Copyright @ Oracle Corporation, 1999. All rights reseved. (DR ACLE”®

Single-Row Subqueries

A single-row subquery is one that returns one row from the inner SELECT statement. This type of
subquery uses a single-row operator. The slide gives a list of single-row operators.

Example
Display the employees whose job title is the same as that of employee 7369.

SQL> SELECT ename, Jjob
2 FROM emp

3 WHERE job =
4 (SELECT job
5 FROM emp
6 WHERE empno = 7369) ;
ENAME JOB
JAMES CLERK
SMITH CLERK
ADAMS CLERK
MILLER CLERK

Introduction to Oracle: SQL and PL/SQL 6-8

Executing Single-Row Subqueries

SQL> SELECT ename, Jjob

2 FROM emp

3 WHERE job = CLERK

4 (SELECT job

5 FROM emp

6 WHERE empno = 7369)
7 AND sal > 1100

8 (;E_Lm

9 FROM emp

10 WHERE empno = 7876) ;

6-9 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Executing Single-Row Subqueries

A SELECT statement can be considered as a query block. The example on the slide displays
employees whose job title is the same as that of employee 7369 and whose salary is greater than that
of employee 7876.

The example consists of three query blocks: the outer query and two inner queries. The inner query
blocks are executed first, producing the query results: CLERK and 1100, respectively. The outer
query block is then processed and uses the values returned by the inner queries to complete its search
conditions.

Both inner queries return single values (CLERK and 1100, respectively), so this SQL statement is
called a single-row subquery.

Note: The outer and inner queries can get data from different tables.

Introduction to Oracle: SQL and PL/SQL 6-9

Using Group Functions
in a Subquery

SQL> SELECT ename, job, sal

2 FROM emp 800

3 WHERE sal = m
4 (SELECT MIN (sal)

5 FROM emp) ;

6-10

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Using Group Functions in a Subquery

You can display data from a main query by using a group function in a subquery to return a single
row. The subquery is in parentheses and is placed after the comparison operator.

The example on the slide displays the employee name, job title, and salary of all employees whose

salary is equal to the minimum salary. The MIN group function returns a single value (800) to the
outer query.

Introduction to Oracle: SQL and PL/SQL 6-10

HAVING Clause with Subqueries

* The Oracle Server executes subqueries
first.

* The Oracle Server returns results into
the HAVING clause of the main query.

SQL> SELECT deptno, MIN(sal)
2 FROM emp
3 GROUP BY deptno 300
4 HAVING MIN(sal) >
5 (Sm
6 FROM emp
7 WHERE deptno = 20) ;

6-11 Copyright © Oracle Corporation, 1999. All rights reserved. (ORACLE”

HAVING Clause with Subqueries

You can use subqueries not only in the WHERE clause, but also in the HAVING clause. The Oracle
Server executes the subquery, and the results are returned into the HAVING clause of the main query.

The SQL statement on the slide displays all the departments that have a minimum salary greater than
that of department 20.

DEPTNO MIN (SAL)

Example
Find the job with the lowest average salary.

SQL> SELECT job, AVG(sal)
2 FROM emp
3 GROUP BY job
4 HAVING AVG(sal) = (SELECT MIN (AVG (sal))
5 FROM EMP
6 GROUP BY job) ;

Introduction to Oracle: SQL and PL/SQL 6-11

What Is Wrong
with This Statement?

SQL> SELECT empno, ename
2 FROM emp

3 WHERE sal =
4 W (SELECT MIN(sal)
5 atof FROM
e‘ N emp
6 oW opP ove'Y Grour BY deptno) ;

-

S\

ERROR:
ORA-01427: single-row subquery returns more than
one row

no rows selected

6-12 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Errors with Subqueries
One common error with subqueries is more than one row returned for a single-row subquery.

In the SQL statement on the slide, the subquery contains a GROUP BY (deptno) clause, which
implies that the subquery will return multiple rows, one for each group it finds. In this case, the
result of the subquery will be 800, 1300, and 950.

The outer query takes the results of the subquery (800, 950, 1300) and uses these results in its

WHERE clause. The WHERE clause contains an equal (=) operator, a single-row comparison
operator expecting only one value. The = operator cannot accept more than one value from the
subquery and hence generates the error.

To correct this error, change the = operator to IN.

Introduction to Oracle: SQL and PL/SQL 6-12

Will This Statement Work?

SQL> SELECT ename, Jjob
2 FROM emp
3 WHERE job =

4 (SELECT job
5 FROM emp
6 WHERE ename='SMYTHE ") ;

o V2

v\
no rows selected i\‘\““s) I

uo*®

6-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Problems with Subqueries
A common problem with subqueries is no rows being returned by the inner query.

In the SQL statement on the slide, the subquery contains a WHERE (ename="SMYTHE ") clause.
Presumably, the intention is to find the employee whose name is Smythe. The statement seems to
be correct but selects no rows when executed.

The problem is that Smythe is misspelled. There is no employee named Smythe. So the subquery
returns no rows. The outer query takes the results of the subquery (null) and uses these results in

its WHERE clause. The outer query finds no employee with a job title equal to null and so returns
no rows.

Introduction to Oracle: SQL and PL/SQL 6-13

Multiple-Row Subqueries

e Return more than one row
* Use multiple-row comparison operators

Operator Meaning
IN Equal to any member in the list
ANY Compare value to each value returned by
the subquery
ALL Compare value to every value returned
by the subquery
6-14 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Multiple-Row Subqueries

Subqueries that return more than one row are called mulfiple-row subqueries. Y ou use a multiple-row
operator, instead of a single-row operator, with a multiple-row subquery. The multiple-row operator
expects one or more values.

SQL> SELECT ename, sal, deptno
2 FROM emp
3 WHERE sal IN (SELECT MIN (sal)
4 FROM emp
5 GROUP BY deptno) ;
Example

Find the employees who earn the same salary as the minimum salary for departments.

The inner query is executed first, producing a query result containing three rows: 800, 950, 1300. The
main query block is then processed and uses the values returned by the inner query to complete its
search condition. In fact, the main query would look like the following to the Oracle Server:

SQL> SELECT ename, sal, deptno
2 FROM emp
3 WHERE sal IN (800, 950, 1300);

Introduction to Oracle: SQL and PL/SQL 6-14

Using ANY Operator
in Multiple-Row Subqueries

SQL> SELECT empno, enam 10b 1300
2 FROM emp %0
WHERE sal < ANY

3

1 m

5 FROM emp

6 WHERE job = 'CLERK')
7 AND job <> 'CLERK';

7654 MARTIN SAT.ESMAN
7521 WARD SAT.ESMAN

6-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Multiple-Row Subqueries (continued)

The ANY operator (and its synonym SOME operator) compares a value to each value returned by a
subquery. The slide example displays employees whose salary is less than any clerk and who are not
clerks. The maximum salary that a clerk earns is $1300. The SQL statement displays all the
employees who are not clerks but eam less than $1300.

<ANY means less than the maximum. >ANY means more than the minimum. =ANY is equivalent to
IN.

Introduction to Oracle: SQL and PL/SQL 6-15

Using ALL Operator
in Multiple-Row Subqueries

SQL> SELECT empno, ename, Job

2 FROM emp 2175

3 WHERE sal > ALL ﬁw
4 (SEm
5 FROM emp

6 GROUP BY deptno) ;

EMPNO ENAME JOB
7839 KING PRESIDENT
7566 JONES MANAGER
7902 FORD ANATYST
7788 SCOTT ANATYST

6-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Multiple-Row Subqueries (continued)

The ALL operator compares a value to every value returned by a subquery. The slide example
displays employees whose salary is greater than the average salaries of all the departments. The
highest average salary of a department is $2916.66, so the query returns those employees whose
salary is greater than $2916.66.

>ALL means more than the maximum and <ALL means less than the minimum.
The NOT operator can be used with IN, ANY, and ALL operators.

Introduction to Oracle: SQL and PL/SQL 6-16

Summary

Subqueries are useful when a query is
based on unknown values.

SELECT select list

FROM table

WHERE expr operator
(SELECT select list
FROM table) ;

6-17 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Summary

A subquery is a SELECT statement that is embedded in a clause of another SQL statement.
Subqueries are useful when a query is based on a search criteria with unknown intermediate values.

Subqueries have the following characteristics:

» Can pass one row of data to a main statement that contains a single-row operator, such as =, <>,
> >= < or <=

» Can pass multiple rows of data to a main statement that contains a multiple-row operator, such
as IN

* Are processed first by the Oracle Server, and the WHERE or HAVING clause uses the results

+ Can contain group functions

Introduction to Oracle: SQL and PL/SQL 6-17

Practice Overview

* Creating subqueries to query values
based on unknown criteria

» Using subqueries to find out what
values exist in one set of data and not in
another

6-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Practice Overview
In this practice, you will write complex queries using nested SELECT statements.
Paper-Based Questions

You may want to consider creating the inner query first for these questions. Make sure that it runs
and produces the data that you anticipate before coding the outer query.

Introduction to Oracle: SQL and PL/SQL 6-18

Practice 6

1. Write a query to display the employee name and hire date for all employvees in the same
department as Blake. Exclude Blake.

ENAME HIREDATE
ALLEN 20-FEB-81
WARD 22-FEB-81
MARTIN 28-SEP-81
TURNER 08-SEP-81
JAMES 03-DEC-81

5 rows selected.

2. Create a query to display the employee number and name for all employees who earn more than
the average salary. Sort the results in descending order of salary.

EMPNO ENAME

7782 CLARK
6 rows selected.

3. Write a query that will display the employee number and name for all employees who work in a
department with any employee whose name contains a 7. Save your SQL statement in a file
called p6g3.sqgl.

7698 BLAKE
7654 MARTIN
7499 ALLEN
7844 TURNER
7900 JAMES
7521 WARD

11 rows selected.

Introduction to Oracle: SQL and PL/SQL 6-19

Practice 6 (continued)

4. Display the employee name, department number, and job title for all employees whose
department location is Dallas.

ENAME

DEPTNO

JOB
MANAGER
ANALYST
CLERK
ANALYST
CLERK

5. Display the employee name and salary of all employees who report to King.

SAL
2850
2450
2975

6. Display the department number, name, and job for all employees in the Sales department.

DEPTNO

6 rows

BLAKE
MARTIN
ALLEN
TURNER
JAMES
WARD
selecte

MANAGER

SALESMAN

SALESMAN

SALESMAN

CLERK

SALESMAN
d.

If you have time, complete the following exercises:

7. Modify p6g3.sqgl to display the employee number, name, and salary for all employees who
cam more than the average salary and who work in a department with any employee with a 7’
in their name. Resave as p6g7 . sgl. Rerun your query.

EMPNO

ENAME
JONES
SCOTT
FORD

BLAKE

SAL
2975
3000
3000
2850

Introduction to Oracle: SQL and PL/SQL 6-20

I

Multiple-Column Subqueries

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Objectives

After completing this lesson, you should
be able to do the following:

* Write a multiple-column subquery

* Describe and explain the behavior of
subqueries when null values are
retrieved

» Write a subquery in a FROM clause

7-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Lesson Aim

In this lesson, you will learn how to write multiple-column subqueries and subqueries in the FROM
clause of a SELECT statement.

Introduction to Oracle: SQL and PL/SQL 7-2

Multiple-Column Subqueries

Main query
MANAGER 10

Subquery

SALESMAN 30

MANAGER 10

CLERK 20
Main query o |Values from a multiple-row and
compares multiple-column subquery
MANAGER 10 SALESMAN 30
MANAGER 10
CLERK 20
7-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Multiple-Column Subqueries

So far you have written single-row subqueries and multiple-row subqueries where only one column
was compared in the WHERE clause or HAVING clause of the SELECT statement. If you want to
compare two or more columns, you must write a compound WHERE clause using logical operators.
Multiple-column subqueries enable you to combine duplicate WHERE conditions into a single
WHERE clause.

Syntax
SELECT column, column,
FROM table
WHERE (column, column, ...) IN

(SELECT column, column,
FROM table
WHERE condition):

Introduction to Oracle: SQL and PL/SQL 7-3

Using Multiple-Column
Subqueries

Display the order id, product id, and quantity of
items in the item table that match both the
product id and quantity of an item in order 605.

SQL> SELECT ordid, prodid, gty
2 FROM item
WHERE (prodid, gty) IN
(SELECT prodid, gty
FROM item
WHERE ordid = 605)

~NNo oW

AND ordid <> 605;

7-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG °

Using Multiple-Column Subqueries

The example on the slide is that of a multiple-column subquery because the subquery returns more
than one column. It compares the values in the PRODID column and the QTY column of each
candidate row in the ITEM table to the values in the PRODID column and QTY column for items in
order 605.

First, execute the subquery to see the PRODID and QTY values for each item in order 605.

SQL> SELECT prodid, gty
2 FROM item
3 WHERE ordid = 605;

PRODID QTY
100861 100
100870 500
100890 5
101860 50
101863 100
102130 10

6 rows selected.

Introduction to Oracle: SQL and PL/SQL 7-4

Using Multiple-Column
Subqueries

Display the order number, product number, and
quantity of any item in which the product
number and quantity match both the product
number and quantity of an item in order 605.

SQL> SELECT ordid, prodid, gty
2 FROM item
3 WHERE (prodid, gty) IN
4 (SELECT prodid, gty
5 FROM item
6 WHERE ordid = 605)
7

AND ordid <> 605;

75 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Using Multiple-Column Subqueries (continued)

When the SQL statement on the slide is executed, the Oracle server compares the values in both the
PRODID and QTY columns and returns those orders where the product number and quantity for that
product match both the product number and quantity for an item in order 605.

The output of the SQL statement is:

ORDID PRODID QTY
617 100861 100
617 100870 500
616 102130 10

The output shows that there are three items in other orders that contain the same product number and
quantity as an item in order 605. For example, order 617 has ordered a quantity 500 of product
100870. Order 605 has also ordered a quantity 500 of product 100870. Therefore, these candidate
rows are part of the output.

Introduction to Oracle: SQL and PL/SQL 7-5

Column Comparisons

Pairwise Nonpairwise
PRODID QTY PRODID QTY
101863 100 101863 100
100861 <<«—> 100 100861 100
102130 <«—> 10 102130 10
100890 5 100890 E SE 5
100870 <«—>» 500 100870 500
101860 50 101860 50

7-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Pairwise Versus Nonpairwise Comparisons

Column comparisons in a multiple-column subquery can be pairwise comparisons or nonpairwise
comparisons.

The slide shows the product numbers and quantities of the items in order 605.

In the example on the previous slide, a pairwise comparison was executed in the WHERE clause.
Each candidate row in the SELECT statement must have both the same product number and same
quantity as an item in order 605. This is illustrated on the left side of the slide above. The arrows
indicate that both the product number and quantity in a candidate row match a product number and
quantity of an item in order 605.

A multiple-column subquery can also be a nonpairwise comparison. If you want a nonpairwise
comparison (a cross product), you must use a WHERE clause with multiple conditions. A candidate
row must match the multiple conditions in the WHERE clause but the values are compared
individually. A candidate row must match some product number in order 605 as well as some
quantity in order 605, but these values do not need to be in the same row. This is illustrated on the
right side of the slide. For example, product 102130 appears in other orders, one order matching the
quantity in order 605 (10), and another order having a quantity of 500. The arrows show a sampling
of the various quantities ordered for a particular product.

Introduction to Oracle: SQL and PL/SQL 7-6

Nonpairwise Comparison
Subquery

Display the order number, product number, and
quantity of any item in which the product number
and quantity match any product number and any
quantity of an item in order 605.

SQL> SELECT ordid, prodid, gty
2 FROM item
3 WHERE prodid IN (SELECT prodid
4 FROM item
5 WHERE ordid = 605)
6 AND qty IN (SELECT qty
7 FROM item
8 WHERE ordid = 605)
9 AND ordid <> 605;

7-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG °

Nonpairwise Comparison Subquery

The slide example does a nonpairwise comparison of the columns. It displays the order number, product
number, and quantity of any item in which the product number and quantity match any product number
and quantity of an item in order 605. Order 605 is not included in the output.

Introduction to Oracle: SQL and PL/SQL 7-7

Nonpairwise Subquery

ORDID PRODID QTY
609 100870 5
616 100861 10
616 102130 10
621 100861 10
618 100870 10
618 100861 50
616 100870 50
617 100861 100
619 102130 100
615 100870 100
617 101860 100
621 100870 100
617 102130 100

16 rows selected.

7-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Nonpairwise Subquery

The results of the nonpairwise subquery are shown in the slide. Sixteen candidate rows in the ITEM
table match the multiple conditions in the WHERE clause.

For example, an item from order 621 is returned from the SQL statement. A product in order 621
(product number 100861) matches a product in an item in order 605. The quantity for product 100861
in order 621 (10) matches the quantity in another item in order 605 (the quantity for product 102130).

Introduction to Oracle: SQL and PL/SQL 7-8

Null Values in a Subquery

SQL> SELECT employee.ename

2 FROM emp employee

3 WHERE employee.empno NOT IN

4 (SELECT manager .mgr
5 FROM emp manager) ;

no rows selected.

79 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Returning Nulls in the Resulting Set of a Subquery

The SQL statement on the slide attempts to display all the employees who do not have any
subordinates. Logically, this SQL statement should have returned eight rows. However, the SQL
statement does not return any rows. One of the values retumed by the inner query is a null value and
hence the entire query retums no rows. The reason is that all conditions that compare a null value result
in a null. So whenever null values are likely to be part of the resultant set of a subquery, do not use the
NOT IN operator. The NOT IN operator is equivalent to =ALL.

Notice that the null value as part of the resultant set of a subquery will not be a problem if you are using
the IN operator. The IN operator is equivalent to =ANY . For example, to display the employees who
have subordinates, use the following SQL statement:

SQL> SELECT employee.ename
2 FROM emp employee
3 WHERE employee.empno IN (SELECT manager.mgr
4 FROM emp manager) ;
ENAME
KING

6 rows selected.

Introduction to Oracle: SQL and PL/SQL 7-9

Using a Subquery
in the FROM Clause

SQL> SELECT a.ename, a.sal, a.deptno, b.salavg

2 FROM emp a, (SELECT deptno, avg(sal) salavg
3 FROM emp
4 GROUP BY deptno) b
5 WHERE a.deptno = b.deptno
6 AND a.sal > b.salavg;
ENAME SAL DEPTNO SATAVG
KING 5000 10 2916.6667
JONES 2975 20 2175
SCOTT 3000 20 2175

6 rows selected.

7-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Using a Subquery in the FROM Clause

You can use a subquery in the FROM clause of a SELECT statement, which is very similar to how
views are used. A subquery in the FROM clause of a SELECT statement defines a data source for that
particular SELECT statement, and only that SELECT statement. The slide example displays employee
names, salaries, department numbers, and average salaries for all the employees who make more than
the average salary in their department.

Introduction to Oracle: SQL and PL/SQL 7-10

Summary

e A multiple-column subquery returns
more than one column.

e Column comparisons in multiple-
column comparisons can be pairwise or
nonpairwise.

* A multiple-column subquery can also be
used in the FROM clause of a SELECT
statement.

7-11 Copyright © Oracle Corporation, 1999. Al rights reserved. (ORACLE”

Summary

Multiple-column subqueries enable you to combine duplicate WHERE conditions into a single
WHERE clause. Column comparisons in a multiple-column subquery can be pairwise comparisons or
nonpairwise comparisons. You can use a subquery to define a table to be operated on by a containing
query. You do this by placing the subquery in the FROM clause of the containing query as you would
a table name.

Introduction to Oracle: SQL and PL/SQL 7-11

Practice Overview

Creating multiple-column subqueries

7-12 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Practice Overview

In this practice, you will write multiple-value subqueries.

Introduction to Oracle: SQL and PL/SQL 7-12

Practice 7

1. Write a query to display the name, department number, and salary of any employee whose
department number and salary match the department number and salary of any employee
who earns a commission.

ENAME DEPTNO SAL
MARTIN 30 1250
WARD 30 1250
TURNER 30 1500
ALLEN 30 1600

2. Display the name, department name, and salary of any employee whose salary and
commission match the salary and commission of any employee located in Dallas.

ENAME DNAME SAL
SMITH RESEARCH 800
ADAMS RESEARCH 1100
JONES RESEARCH 2975
FORD RESEARCH 3000
SCOTT RESEARCH 3000

3. Create a query to display the name, hire date, and salary for all employees who have both the
same salary and commission as Scott.

Note: Do not display SCOTT in the result set.

ENAME HIREDATE SAL

FORD 03-DEC-81 3000

4. Create a query to display the employees that earn a salary that is higher than the salary of
all of the clerks. Sort the results on salary from highest to lowest.

ENAME JOB SAL
KING PRESIDENT 5000
FORD ANALYST 3000
SCOTT ANALYST 3000
JONES MANAGER 2975
BLAKE MANAGER 2850
CLARK MANAGER 2450
ALLEN SALESMAN 1600
TURNER SALESMAN 1500

8 rows selected.

Introduction to Oracle: SQL and PL/SQL 7-13

Introduction to Oracle: SQL and PL/SQL 7-14

)
Y

Producing Readable Output
with SQL*Plus

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Objectives

After completing this lesson, you should
be able to do the following:

* Produce queries that require an input
variable

e Customize the SQL*Plus environment
* Produce more readable output

* Create and execute script files

e Save customizations

8-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Lesson Aim

In this lesson, you will learn how to include SQL*Plus commands to produce more readable SQL
output.

You can create a command file containing a WHERE clause to restrict the rows displayed. To change
the condition each time the command file is run, you use substitution variables. Substitution variables
can replace values in the WHERE clause, a text string, and even a column or a table name.

Introduction to Oracle: SQL and PL/SQL 8-2

Interactive Reports

| want to input query
values at runtime.

User

8-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG ¢

Interactive Reports

The examples so far have not been interactive in any way. In a finished application, the user would
trigger the report, and the report would run without further prompting. The range of data would be
predetermined by the fixed WHERE clause in the SQL*Plus script file.

Using SQL*Plus, you can create reports that prompt the user to supply their own values to restrict
the range of data returned. To create interactive reports, you can embed substitution variables in a
command file or in a single SQL statement. A variable can be thought of as a container in which the
values are temporarily stored.

Introduction to Oracle: SQL and PL/SQL 8-3

Substitution Variables

* Use SQL*Plus substitution variables to
temporarily store values.

- Single ampersand (&)
— Double ampersand (&&)
— DEFINE and ACCEPT commands

e Pass variable values between SQL
statements.

 Dynamically alter headers and footers.

8-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Substitution Variables
In SQL*Plus, you can use single-ampersand (&) substitution variables to temporarily store values.

You can predefine variables in SQL*Plus by using the ACCEPT or DEFINE commands. ACCEPT
reads a line of user input and stores it in a variable. DEFINE creates and assigns a value to a variable.

Examples of Restricted Ranges of Data
» Report figures for the current quarter or specified date range only
» Report on data relevant to the user requesting the report only
» Display personnel within a given department only

Other Interactive Effects

Interactive effects are not restricted to direct user interaction with the WHERE clause. The same
principles can be used to achieve other goals. For example:

* Dynamically altering headers and footers
» Obtaining input values from a file rather than from a person
* Passing values from one SQL statement to another

SQL*Plus does not support validation checks (except for datatype) on user input. Make sure that the
prompts that you write for the user are simple and unambiguous.

Introduction to Oracle: SQL and PL/SQL 8-4

Using the & Substitution Variable

Use a variable prefixed with an ampersand
(&) to prompt the user for a value.

SQL> SELECT empno, ename, sal, deptno
2 FROM emp

3 WHERE empno = &employee num;

Enter value for employee num: 7369

EMPNO ENAME SAL DEPTNO
7369 SMITH 800 20
8-5 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Single-Ampersand Substitution Variable

When running a report, users often want to restrict the data returned dynamically. SQL*Plus provides
this flexibility by means of user variables. Use an ampersand (&) to identify each variable in your
SQL statement. You do not need to define the value of each variable.

Notation Description

&user variable Indicates a variable in a SQL statement; if the variable does
not exist, SQL*Plus prompts the user for a value (SQL*Plus
discards a new variable once it is used.)

The example on the slide creates a SQL statement to prompt the user for an employee number at
runtime and displays employvee number, name, salary, and department number for that employee.

With the single ampersand, the user is prompted every time the command is executed, if the variable
does not exist.

Introduction to Oracle: SQL and PL/SQL 8-5

Using the SET VERIFY Command

Toggling the display of the text of a
command before and after SQL*Plus
replaces substitution variables with values.

SQL> SET VERIFY ON
SQL> SELECT empno, ename, sal, deptno
2 FROM emp
3 WHERE empno = &employee num;

Enter value for employee num: 7369
old 3: WHERE empno = &employee num
new 3: WHERE empno = 7369

8-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

The SET VERIFY Command

To confirm the changes in the SQL statement, use the SQL*Plus SET VERIFY command. Setting
SET VERIFY ON forces SQL*Plus to display the text of a command before and after it replaces

substitution variables with values.
The example on the slide displays the old as well as the new value of the column EMPNQO.

Introduction to Oracle: SQL and PL/SQL 8-6

Character and Date Values
with Substitution Variables

Use single quotation marks for date and
character values.

SQL> SELECT ename, deptno, sal*1l2
2 FROM emp
3 WHERE Job='&job title';

Enter value for job title: ANALYST

ENAME DEPTNO SAL*12

8-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Specifying Character and Date Values with Substitution Variables

In a WHERE clause, date and character values must be enclosed within single quotation marks. The
same rule applies to the substitution variables.

To avoid entering the quotation marks at runtime, enclose the variable in single quotation marks
within the SQL statement itself.

The slide shows a query to retrieve the employee name, department number, and annual salary of all
employees based on the job title entered at the prompt by the user.

Note: You can also use functions such as UPPER and LOWER with the ampersand. Use
UPPER(" &job _title ') so that the user does not have to enter the job title in uppercase.

Introduction to Oracle: SQL and PL/SQL 8-7

Specifying Column Names,
Expressions, and Text at Runtime

Use substitution variables to supplement
the following:

« WHERE condition

* ORDER BY clause

e Column expression

e Table name

e Entire SELECT statement

8-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Specifying Column Names, Expressions, and Text at Runtime

Not only can you use the substitution variables in the WHERE clause of a SQL statement, but also
these variables can be used to substitute column names, expressions, or text.

Example

Display the employee number and any other column and any condition of employees.

SQL> SELECT empno, &column name
2 FROM emp
3 WHERE &condition;

Enter value for column name: Jjob
Enter value for condition: deptno = 10

EMPNO JOB

7839 PRESIDENT
7782 MANAGER
7934 CLERK

If you do not enter a value for the substitution variable, you will get an error when you execute the

preceding statement.
Introduction to Oracle: SQL and PL/SQL 8-8

Specifying Column Names,
Expressions, and Text at Runtime

SQL> SELECT empno, ename, Jjob, &column name
2 FROM emp
3 WHERE &condition
4 ORDER BY &order column;

Enter value for column name: sal
Enter value for condition: sal>=3000
Enter value for order column: ename

EMPNO ENAME JOB SAL
7902 FORD ANATYST 3000
7839 KING PRESIDENT 5000
7788 SCOTT ANATYST 3000

8-9 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Specifying Column Names, Expressions, and Text at Runtime (continued)

The slide example displays the employee number, name, job title, and any other column specified by
the user at runtime, from the EMP table. The user can also specify the condition for retrieval of rows
and the column name by which the resultant data has to be ordered.

Introduction to Oracle: SQL and PL/SQL 8-9

Using the && Substitution Variable

Use the double-ampersand (&&) if you
want to reuse the variable value without
prompting the user each time.

SQL> SELECT empno, ename, Jjob, &&column name
2 FROM emp
3 ORDER BY &column name;

Enter value for column name: deptno

EMPNO ENAME JOB DEPTNO
7839 KING PRESIDENT 10
7782 CLARK MANAGER 10
7934 MILLER CLERK 10

14 rows selected.

8-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Double-Ampersand Substitution Variable

You can use the double-ampersand (&&) substitution variable if you want to reuse the variable value
without prompting the user each time. The user will see the prompt for the value only once. In the
example on the slide, the user is asked to give the value for variable column_name only once. The
value supplied by the user (deptno) is used both for display and ordering of data.

SQL*Plus stores the value supplied by using the DEFINE command; it will use it again whenever
you reference the variable name. Once a user variable is in place, you need to use the UNDEFINE
command to delete it.

Introduction to Oracle: SQL and PL/SQL 8-10

Defining User Variables

* You can predefine variables using one
of two SQL*Plus commands:

— DEFINE: Create a CHAR datatype
user variable

— ACCEPT: Read user input and store it
in a variable

* If you need to predefine a variable that
includes spaces, you must enclose the
value within single quotation marks
when using the DEFINE command.

8-11 Copyright © Oracle Corporation, 1999. All rights reserved. (ORACLE”

Defining User Variables

You can predefine user variables before executing a SELECT statement. SQL*Plus provides two
commands for defining and setting user variables: DEFINE and ACCEPT.

Command Description

DEFINE variable = value Creates a CHAR datatype user variable and assigns a
value to it

DEFINE variable Displays the variable, its value, and its datatype

DEFINE Displays all user variables with value and datatype

ACCEPT (see syntax on next slide) Reads a line of user input and stores it in a variable

Introduction to Oracle: SQL and PL/SQL 8-11

The ACCEPT Command

* Creates a customized prompt when
accepting user input

» Explicitly defines a NUMBER or DATE
datatype variable

* Hides user input for security reasons

ACCEPT variable [datatype] [FORMAT format]
[PROMPT text] [HIDE]

8-12 Copyright © Oracle Corporation, 1999. All rights reseved. (O[RACLE”
The ACCEPT Command
In the syntax:

variable is the name of the variable that stores the value (If it does not exist,
SQL*Plus creates it.)

datatype is NUMBER, CHAR, or DATE (CHAR has a maximum length limit
of 240 bytes. DATE checks against a format model, and the datatype is
CHAR))

FOR[MAT] format specifies the format model—for example, A10 or 9.999

PROMPT fext displays the text before the user can enter the value

HIDE suppresses what the user enters—for example, a password

Note: Do not prefix the SQL* Plus substitution parameter with the ampersand (&) when referencing
the substitution parameter in the ACCEPT command.

Introduction to Oracle: SQL and PL/SQL 8-12

Using the ACCEPT Command

ACCEPT dept PROMPT 'Provide the department name: '

SELECT *
FROM dept
WHERE dname = UPPER('&dept')

/

Provide the department name: Sales

DEPTNO DNAME LOC

30 SALES CHICAGO

8-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Using the ACCEPT Command

The ACCEPT command reads in a variable named DEPT. The prompt that it displays when asking
the user for the variable is “Provide the department name:”. The SELECT statement then takes the
department value that the user enters and uses it to retrieve the appropriate row from the DEPT
table.

If the user enters a valid value for department name, the SELECT statement executes in the same
way as any other SELECT statement, taking the user-entered value and using it in the WHERE
clause to compare with DNAME.

Note that the & character does not appear with the DEPT variable in the ACCEPT command. The
& appears only in the SELECT statement.

Guidelines

» The ACCEPT and DEFINE commands will create a variable if the variable does not exist;
these commands will automatically redefine a variable if it exists.

* When using the DEFINE command, use single quotation marks (' ') to enclose a string that
contains an embedded space.

» Use the ACCEPT command to:

— Give a customized prompt when accepting user input; otherwise, you will see the
default “Enter value for variable”

— Explicitly define a NUMBER or DATE datatype variable
— Hide user input for security reasons

Introduction to Oracle: SQL and PL/SQL 8-13

DEFINE and UNDEFINE Commands

A variable remains defined until you either:
- Use the UNDEFINE command to clear it
- Exit SQL*Plus

* You can verify your changes with the
DEFINE command.

* To define variables for every session,
modify your login. sql file so that the
variables are created at startup.

8-14 Copyright © Oracle Corporation, 1999. All rights reserved. (ORACLE”

The DEFINE and UNDEFINE Commands
Variables are defined until you either:
Issue the UNDEFINE command on a variable
Exit SQL*Plus

When you undefine variables, you can verify your changes with the DEFINE command. When you
exit SQL*Plus, variables defined during that session are lost. To define those variables for every
session, modify your 1ogin. sql file so that those variables are created at startup.

Introduction to Oracle: SQL and PL/SQL 8-14

Using the DEFINE Command

e Create a variable to hold the department
name.

SQL> DEFINE deptname = sales
SQL> DEFINE deptname

DEFINE DEPTNAME = "sales" (CHAR)

* Use the variable as you would any other
variable.

SQL> SELECT *
2 FROM dept

3 WHERE dname = UPPER('&deptname’) ;

8-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Using the DEFINE Command
You can use the DEFINE command to create a variable and then use the variable as you would any
other variable. The example on the slide creates a variable DEPTNAME that contains the

department name, SALES. The SQL statement then uses this variable to display the number and
location of the sales department.

DEPTNO DNAME LOC

30 SALES CHICAGO

To erase the variable, you use the UNDEFINE command:

SQL> UNDEFINE deptname
SQL> DEFINE deptname
symbol deptname is UNDEFINED

Introduction to Oracle: SQL and PL/SQL 8-15

Customizing the SQL*Plus
Environment

e Use SET commands to control current
session.

| SET system variable value I

 Verify what you have set by using the
SHOW command.

SQL> SET ECHO ON I
SQL> SHOW ECHO
echo ON

8-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Customizing the SQL*Plus Environment

You can control the environment in which SQL*Plus is currently operating by using the SET
commands.

In the syntax:
system_variable is a variable that controls one aspect of the session environment
value is a value for the system variable

You can verify what you have set by using the SHOW command. The SHOW command on the
slide checks whether ECHO had been set on or off.

To see all SET variable values, use the SHOW ALL command.

For more information, see SQL*Plus User’s Guide and Reference, Release 8, “Command
Reference.”

Introduction to Oracle: SQL and PL/SQL 8-16

SET Command Variables

« ARRAYSIZE {20 | n}

« COLSEP {_| texf}

« FEEDBACK {6 | n |OFF | ON}
« HEADING {OFF | ON}

- LINESIZE {80 | n}

- LONG {80 | n}

« PAGESIZE {24 | n}

« PAUSE {OFF | ON | texf}

« TERMOUT {OFF | ON}

8-17 Copyright © Oracle Corporation, 1999. All rights reseved. (O[RACLE”
SET Command Variables

SET Variable and Values Description

ARRAY|[SIZE] {20| n} Sets the database data fetch size

COLSEP { |text} Sets text to be printed between columns (The default is single
space.)

FEED|BACK] {6[n|OFF|ON} Displays the number of records returned by a query when the
query selects at least n records

HEA[DING] {OFF|ON} Determines whether column headings are displayed in
reports

LIN|ESIZE] {80|n} Sets the number of characters per line to » for reports

LONG {80|n} Sets the maximum width for displaying LONG values

PAGES[IZE] {24|n} Specifies the number of lines per page of output

PAU[SE] {OFF|ON]|fext} Allows you to control scrolling of your terminal (You must
press [Return] after seeing each pause.)

TERM[OUT] {OFF|ON} Determines whether output is displayed on screen

Note: The value » represents a numeric value. The underlined values indicate default values. If you
enter no value with the variable, SQL*Plus assumes the default value.

Introduction to Oracle: SQL and PL/SQL 8-17

Saving Customizations
in the 1login. sql File

* The 1login. sql file contains standard
SET and other SQL*Plus commands that
are implemented at login.

* You can modify login. sql to contain
additional SET commands.

8-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Default Settings Using the 1ogin.sql File

The 1ogin. sql file contains standard SET and other SQL*Plus commands that you may require
for every session. The file is read and commands are implemented at login. When you log out of your
session, all customized settings are lost.

Changing the Default Settings

The settings implemented by 1ogin. sgl can be changed during the current session. Changes made
are current only for that session. As soon as you log out, those settings are lost.

Add permanent changes to settings to the 1ogin. sql file.

Introduction to Oracle: SQL and PL/SQL 8-18

SQL*Plus Format Commands

* COLUMN [column option]

* TTITLE [text| OFF | ON]

* BTITLE [text| OFF | ON]

* BREAK [ON report_element]

8-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Obtaining More Readable Reports

You can control the report features by using the following commands:

Command Description

COL[UMN] [column option] Controls column formats

TTI[TLE] [fext|OFF|ON] Specifies a header to appear at the top of each page

BTI[TLE] [texf{OFF|ON] Specifies a footer to appear at the bottom of each page of
the report

BRE[AK] [ON report _element] | Suppresses duplicate values and sections rows of data with
line feeds

Guidelines

» All format commands remain in effect until the end of the SQL*Plus session or until the format
setting is overwritten or cleared.

» Remember to reset your SQL*Plus settings to default values after every report.

» There is no command for setting a SQL*Plus variable to its default value; you must know the
specific value or log out and log in again.

+ If you give an alias to your column, you must reference the alias name, not the column name.

Introduction to Oracle: SQL and PL/SQL 8-19

The COLUMN Command

Controls display of a column

| COL[UMN] [{column|alias} [option]] I

 CLE[AR]: Clears any column formats

 FOR[MAT] format: Changes the display
of the column using a format model

« HEA[DING] text: Sets the column
heading

* JUS[TIFY] {align}: Aligns the column
heading to be left, center, or right

8-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

COLUMN Command Options

Option Description

CLE[AR] Clears any column formats

FOR|MAT] format Changes the display of the column data

HEA[DING] fext Sets the column heading (A vertical line () will force a line feed in
the heading if you do not use justification.)

JUS|TIFY] {align} Justifies the column heading (not the data) to be left, center, or
right

NOPRI|NT] Hides the column

NUL[L] fext Specifies text to be displayed for null values

PRI|NT] Shows the column

TRU[NCATED] Truncates the string at the end of the first line of display

WRA[PPED] Wraps the end of the string to the next line

Introduction to Oracle: SQL and PL/SQL 8-20

Using the COLUMN Command

e Create column headings.

COLUMN ename HEADING 'Employee|Name' FORMAT Al5
COLUMN sal JUSTIFY LEFT FORMAT $99,990.00

COLUMN mgr FORMAT 999999999 NULL 'No manager'

* Display the current setting for the ENAME
column.

| COLUMN ename I

 Clear settings for the ENAME column.

|COLUMN ename CLEAR I

8-21 Copyright © Oracle Corporation, 1999. All rights reserved. (ORACLE”

Displaying or Clearing Settings

To show or clear the current COLUMN command settings, use the following commands:

Command Description

COL[UMN] column Displays the current settings for the specified
column

COL[UMN] Displays the current settings for all columns

COLJUMN] column CLE[AR] Clears the settings for the specified column

CLEJAR] COL|[UMN] Clears the settings for all columns

If you have a lengthy command, you can continue it on the next line by ending the current line with a
hyphen (-).

Introduction to Oracle: SQL and PL/SQL 8-21

COLUMN Format Models

Element | Description Example Result

An Sets a display width of n N/A N/A

9 Single zero-suppression 999999 1234
digit

0 Enforces leading zero 099999 01234

$ Floating dollar sign $9999 $1234

L Local currency L9999 L1234
Position of decimal point 9999.99 1234.00

, Thousand separator 9,999 1,234

8-22 Copyright © Oracle Corporation, 1999. All rights reserved. (ORACLE”

COLUMN Format Models
The slide displays sample COLUMN format models.

The Oracle Server displays a string of pound signs (#) in place of a whole number whose digits
exceed the number of digits provided in the format model. It also displays pound signs in place of a
value whose format model is alphanumeric but whose actual value is numeric.

Introduction to Oracle: SQL and PL/SQL 8-22

Using the BREAK Command

Suppresses duplicates and sections rows
* To suppress duplicates

| SQL> BREAK ON ename ON job I

* To section out rows at break values

|SQL> BREAK ON ename SKIP 4 ON job SKIP 2 I

8-23 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

The BREAK Command

Use the BREAK command to section out rows and suppress duplicate values. To ensure that the
BREAK command works effectively, use the ORDER BY clause to order the columns that you are
breaking on.

Syntax
BREAK on column|[|alias|row] [skip n|duplpage] on .. [on report]

where: page throws a new page when the break value changes
skip n skips » number of lines when the break value changes

Breaks can be active on:
— Column
— Row
— Page
— Report
duplicate displays duplicate values
Clear all BREAK settings by using the CLEAR command:

CLEAR BREAK

Introduction to Oracle: SQL and PL/SQL 8-23

Using the TTITLE and BTITLE
Commands

* Display headers and footers.

| TTI[TLE] [text|OFF|ON] I

e Set the report header.

|SQL> TTITLE 'Salary|Report’ I

e Set the report footer.

| SQL> BTITLE 'Confidential’ I

8-24 Copyright © Oracle Corporation, 1999. All rights reserved. (ORACLE”

The TTITLE and BTITLE Commands

Use the TTITLE command to format page headers and the BTITLE command for footers. Footers
appear at the bottom of the page according to the PAGESIZE value.

The syntax for BTITLE and TTITLE is identical. Only the syntax for TTITLE is shown. You can use
the vertical bar (]) to split the text of the title across several lines.

In the syntax:
text represents the title text (Enter single quotes if the text is more than one word.)

The TTITLE example on the slide sets the report header to display Salary centered on one line and
Report centered below it. The BTITLE example sets the report footer to display Confidential. TTITLE
automatically puts date and page number on the report.

Note: The slide gives an abridged syntax for TTITLE and BTITLE. Various options for TTITLE and
BTITLE are covered in another SQL course.

Introduction to Oracle: SQL and PL/SQL 8-24

Creating a Script File
to Run a Report

1. Create the SQL SELECT statement.

2. Save the SELECT statement to a script
file.

3. Load the script file into an editor.

4. Add formatting commands before the
SELECT statement.

5. Verify that the termination character
follows the SELECT statement.

8-25 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Creating a Script File to Run a Report

You can either enter each of the SQL*Plus commands at the SQL prompt or put all the commands,
including the SELECT statement, in a command (or script) file. A typical script consists of at least
one SELECT statement and several SQL*Plus commands.

How to Create a Script File

1. Create the SQL SELECT statement at the SQL prompt. Ensure that the data required for the
report is accurate before you save the statement to a file and apply formatting commands.
Ensure that the relevant ORDER BY clause is included if you intend to use breaks.

2. Save the SELECT statement to a script file.
3. [Edit the script file to enter the SQL*Plus commands.

4. Add the required formatting commands before the SELECT statement. Be certain not to place
SQL*Plus commands within the SELECT statement.

5. Verify that the SELECT statement is followed by a run character, either a semicolon (;) or a
slash (/).

Introduction to Oracle: SQL and PL/SQL 8-25

Creating a Script File
to Run a Report

6. Clear formatting commands after the
SELECT statement.

7. Save the script file.

8. Enter “START filename” to run the
script.

8-26 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

How to Create a Script File (continued)

6. Add the format-clearing SQL*Plus commands after the run character. As an alternative, you
can call a reset file that contains all the format-clearing commands.

7. Save the script file with your changes.

8. In SQL*Plus, run the script file by entering START filename or @ filename. This command is
required to read and execute the script file.

Guidelines
* You can include blank lines between SQL*Plus commands in a script.
* You can abbreviate SQL*Plus commands.
» Include reset commands at the end of the file to restore the original SQL*Plus environment.

REM represents a remark or comment in SQL*Plus.

Introduction to Oracle: SQL and PL/SQL 8-26

Sample Report

Fri Oct 24 page 1
Employee
Report
Job
Category Employee Salary
CLERK ADAMS $1,100.00
JAMES $950.00
MILLER $1,300.00
SMITH $800.00
MANAGER BLAKE $2,850.00
CLARK $2,450.00
JONES $2,975.00
SALESMAN ALLEN $1,600.00
MARTIN $1,250.00
TURNER $1,500.00
WARD $1,250.00
Confidential

8-27 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Example

Create a script file to create a report that displays the job title, name, and salary for every employee
whose salary is less than $3000. Add a centered, two-lined header that reads Employee Report and a
centered footer that reads Confidential. Rename the job title column to read Job Category split over
two lines. Rename the employee name column to read Employee. Rename the salary column to read
Salary and format it as $2,500.00.

SET PAGESIZE 37

SET LINESIZE 60

SET FEEDBACK OFF

TTITLE 'Employee|Report'

BTITLE 'Confidential'’

BREAK ON job

COLUMN job HEADING 'Job|Category' FORMAT Al5
COLUMN ename HEADING 'Employee' FORMAT Al5
COLUMN sal HEADING 'Salary' FORMAT $99,999.99
REM ** Insert SELECT statement

SELECT job, ename, sal
FROM emp

WHERE sal < 3000
ORDER BY job, ename

/

SET FEEDBACK ON

REM clear all formatting commands

Introduction to Oracle: SQL and PL/SQL 8-27

Summary

* Use SQL*Plus substitution variables to
temporarily store values.

e Use SET commands to control current
SQL*Plus environment.

e Use the COLUMN command to control
the display of a column.

* Use the BREAK command to suppress
duplicates and section rows.

* Use TTITLE and BTITLE to display
headers and footers.

8-28 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Summary
Substitution variables are useful for running reports. They allow flexibility to replace values in a
WHERE clause, column names, and expressions. You can customize reports by writing script files
with:
Single ampersand substitution variables
The ACCEPT command
The DEFINE command
The UNDEFINE command
Substitution variables in the command line
You can create a more readable report by using the following commands:
COLUMN
TTITLE
BTITLE
BREAK

Introduction to Oracle: SQL and PL/SQL 8-28

Practice Overview

» Creating a query to display values using
substitution variables

» Starting a command file containing
variables

* Using the ACCEPT command

8-29 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Practice Overview

This practice gives you the opportunity to create files that can be run interactively by using
substitution variables to create runtime selection criteria.

Introduction to Oracle: SQL and PL/SQL 8-29

Practice 8

Determine whether the following statements are true or false:

1. A single ampersand substitution variable prompts at most once.
True/False

2. The ACCEPT command is a SQL command.
True/False

3. Write a script file to display the employee name, job, and hire date for all employees who
started between a given range. Concatenate the name and job together, separated by a space
and comma, and label the column Employees. Prompt the user for the two ranges using the
ACCEPT command. Use the format MM/DD/YYYY. Save the script file as p8g3.sgl.

Please enter the low date range ('MM/DD/YYYY'): 01/01/1981
Please enter the high date range ('MM/DD/YYYY'): 01/01/1982
EMPLOYEES HIREDATE
KING, PRESIDENT 17-NOVvV-81
BLAKE, MANAGER 01-MAY-81
CLARK, MANAGER 09-JUN-81
JONES, MANAGER 02-APR-81
MARTIN, SALESMAN 28-SEP-81
ALLEN, SALESMAN 20-FEB-81
TURNER, SALESMAN (08-SEP-81
JAMES, CLERK 03-DEC-81
WARD, SALESMAN 22-FEB-81
FORD, ANALYST 03-DEC-81

10 rows selected.

4. Write a script to display the employee name, job, and department name for a given location.
The search condition should allow for case-insensitive searches of the department location.
Save the script file as p8g4 .sqgl.

Please enter the location name: Dallas

EMPLOYEE NAME JOB DEPARTMENT NAME

JONES MANAGER RESEARCH
FORD ANALYST RESEARCH
SMITH CLERK RESEARCH
SCOTT ANALYST RESEARCH
ADAMS CLERK RESEARCH

Introduction to Oracle: SQL and PL/SQL 8-30

Practice 8 (continued)

5. Modify p8g4 . sqgl to create a report containing the department name, employee name, hire
date, salary, and each employee’s annual salary for all employees in a given location. Prompt
the user for the location. Label the columns DEPARTMENT NAME, EMPLOYEE NAME,
START DATE, SALARY, and ANNUAL SALARY, placing the labels on multiple lines.
Resave the scriptas p8g5.sqgl.

Please enter the location name: Chicago

DEPARTMENT EMPLOYEE START ANNUAL
NAME NAME DATE SALARY SALARY
SALES BLAKE 01-MAY-81 $2,850.00 $34,200.00
MARTIN 28-SEP-81 $1,250.00 $15,000.00
ALLEN 20-FEB-81 $1,600.00 $19,200.00
TURNER 08-SEP-81 $1,500.00 $18,000.00
JAMES 03-DEC-81 $950.00 $11,400.00
WARD 22-FEB-81 $1,250.00 $15,000.00

Introduction to Oracle: SQL and PL/SQL 8-31

Introduction to Oracle: SQL and PL/SQL 8-32

0

Manipulating Data

Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Objectives

After completing this lesson, you should
be able to do the following:

* Describe each DML statement
* Insert rows into a table

e Update rows in a table

* Delete rows from a table

e Control transactions

9-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG °

Lesson Aim

In this lesson, you will learn how to insert rows into a table, update existing rows in a table, and
delete existing rows from a table. You will also learn how to control transactions with the
COMMIT, SAVEPOINT, and ROLLBACK statements.

Introduction to Oracle: SQL and PL/SQL 9-2

Data Manipulation Language

A DML statement is executed when you:
— Add new rows to a table
- Modify existing rows in a table
- Remove existing rows from a table

* A transaction consists of a collection of
DML statements that form a logical unit
of work.

9-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Data Manipulation Language

Data manipulation language (DML) is a core part of SQL. When you want to add, update, or delete
data in the database, you execute a DML statement. A collection of DML statements that form a
logical unit of work is called a fransaction.

Consider a banking database. When a bank customer transfers money from a savings account to a
checking account, the transaction might consist of three separate operations: decrease the savings
account, increase the checking account, and record the transaction in the transaction journal. The
Oracle Server must guarantee that all three SQL statements are performed to maintain the accounts in
proper balance. When something prevents one of the statements in the transaction from executing, the
other statements of the transaction must be undone.

Introduction to Oracle: SQL and PL/SQL 9-3

Adding a New Row to a Table

| 50 | DEVELOPMENj DETROIT I

New row -
DEPT ...Insert a new row
into DEPT table...”
DEPTNO | DNAME LOC
10 | ACCOUNTING|NEW YORK
20 |RESEARCH |DALLAS DEPT
30| SALES CHICAGO DEPTNO | DNAME LOC
40 | OPERATIONS |BOSTON
10 | ACCOUNTING|NEW YORK
20 |RESEARCH |DALLAS
30| saALES CHICAGO
40 | OPERATIONS |BOSTON
50 | DEVELOPMENT] DETROIT

9-4

Copyright © Oracle Corporation, 1999. All rights reserved.

ORACLE"

Adding a New Row to a Table

The slide graphic adds a new department to the DEPT table.

Introduction to Oracle: SQL and PL/SQL 9-4

The INSERT Statement

* Add new rows to a table by using the
INSERT statement.

INSERT INTO table [(column [, column...])]
VALUES (value [, value...]);,

* Only one row is inserted at a time with
this syntax.

9-5 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Adding a New Row to a Table (continued)
You can add new rows to a table by issuing the INSERT statement.

In the syntax:

table is the name of the table
column is the name of the column in the table to populate
value is the corresponding value for the column

Note: This statement with the VALUES clause adds only one row at a time to a table.

Introduction to Oracle: SQL and PL/SQL 9-5

Inserting New Rows

* Insert a new row containing values for
each column.

e List values in the default order of the
columns in the table.

* Optionally list the columns in the
INSERT clause.

SQL> INSERT INTO dept (deptno, dname, loc)

2 VALUES (50, 'DEVELOPMENT', 'DETROIT');
1 row created.

* Enclose character and date values
within single quotation marks.

9-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Adding a New Row to a Table (continued)

Because you can insert a new row that contains values for each column, the column list is not
required in the INSERT clause. However, if you do not use the column list, the values must be listed
according to the default order of the columns in the table.

SQL> DESCRIBE dept

Name Null? Type

DEPTNO NOT NULL NUMBER(2)
DNAME VARCHAR2 (14)
LOC VARCHAR2 (13)

For clarity, use the column list in the INSERT clause.
Enclose character and date values within single quotation marks; do not enclose numeric values
within single quotation marks.

Introduction to Oracle: SQL and PL/SQL 9-6

Inserting Rows with Null Values

e Implicit method: Omit the column from
the column list.

SQL> INSERT INTO dept (deptno, dname)

2 VALUES (60, '™MIS');
1 row created.

» Explicit method: Specify the NULL
keyword.

SQL> INSERT INTO dept
2 VALUES (70, 'FINANCE', NULL);

1 row created.

9-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Methods for Inserting Null Values

Method Description

Implicit Omit the column from the column list.

Explicit Specify the NULL keyword in the VALUES list
Specify the empty string (' ') in the VALUES list; for character strings and
dates only.

Be sure that the targeted column allows null values by verifying the Null? status from the SQL*Plus
DESCRIBE command.

The Oracle Server automatically enforces all datatypes, data ranges, and data integrity constraints.
Any column that is not listed explicitly obtains a null value in the new row.

Introduction to Oracle: SQL and PL/SQL 9-7

Inserting Special Values

The SYSDATE function records the
current date and time.

SQL> INSERT INTO emp (empno, ename, Jjob,
2 mgr, hiredate, sal, comm,
3 deptno)
4 VALUES (7196, 'GREEN', 'SALESMAN',
5 7782, SYSDATE, 2000, NULL,
6 10);

1 row created.

9-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Inserting Special Values by Using SQL Functions
You can use pseudocolumns to enter special values in your table.

The slide example records information for employee Green in the EMP table. It supplies the current
date and time in the HIREDATE column. It uses the SYSDATE function for current date and time.

You can also use the USER function when inserting rows in a table. The USER function records the
current username.

Confirming Additions to the Table
SQL> SELECT empno, ename, job, hiredate, comm

2 FROM emp
3 WHERE empno = 7196;

EMPNO ENAME JOB HIREDATE COMM

7196 GREEN SALESMAN 01-DEC-97

Introduction to Oracle: SQL and PL/SQL 9-8

Inserting Specific Date Values

 Add a new employee.
SQL> INSERT INTO emp

2 VALUES (2296, "AROMANO' , 'SALESMAN' , 7782,
3 TO DATE ('FEB 3, 1997', 'MON DD, YYYY')
4 1300, NULL, 10);

1 row created.

* Verify your addition.

HTIREDATE SAL. COMM DEPTNO

2296 AROMANO SALESMAN 7782 03-FEB-97 1300

9-9 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLG °

Inserting Specific Date and Time Values

The format DD-MON-YY is usually used to insert a date value. With this format, recall that the
century defaults to the current century. Because the date also contains time information, the
default time is midnight (00:00:00).

If a date must be entered in a format other than the default format—for example, another century
and/or a specific time—you must use the TO _DATE function.

The example on the slide records information for employee Aromano in the EMP table. It sets the
HIREDATE column to be February 3, 1997.

If the RR format is set, the century may not be the current one.

Introduction to Oracle: SQL and PL/SQL 9-9

Inserting Values by Using
Substitution Variables

Create an interactive script by using
SQL*Plus substitution parameters.

SQL> INSERT INTO dept (deptno, dname, loc)
2 VALUES (&department id,
3 '&department name', '&location');

Enter value for department id: 80
Enter value for department name: EDUCATION
Enter value for location: ATLANTA

1 row created.

9-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Inserting Values by Using Substitution Variables

You can produce an INSERT statement that allows the user to add values interactively by using
SQL*Plus substitution variables.

The slide example records information for a department in the DEPT table. It prompts the user for the
department number, department name, and location.

For date and character values, the ampersand and the variable name are enclosed in single quotation
marks.

Introduction to Oracle: SQL and PL/SQL 9-10

Creating a Script
with Customized Prompts

e ACCEPT stores the value in a variable.
* PROMPT displays your customized text.

ACCEPT department id PROMPT 'Please enter the -
department number:'

ACCEPT department name PROMPT 'Please enter -
the department name:’

ACCEPT location PROMPT 'Please enter the -
location:'’

INSERT INTO dept (deptno, dname, loc)

VALUES (&department id, '&department name’',

'&location’') ;

9-11 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Creating a Script to Manipulate Data

You can save your command with substitution variables to a file and execute the file. Each time you

execute the command, it will prompt you for new values. Customize the prompts by using the SQL*Plus
ACCEPT command.

The example on the slide records information for a department in the DEPT table. It prompts the user for

the department number, department name, and location by using customized prompt messages.

Please enter the department number: 90
Please enter the department name: PAYROLL
Please enter the location: HOUSTON

1 row created.

Do not prefix the SQL*Plus substitution parameter with the ampersand (&) when referencing it in the
ACCEPT command. Use a dash (-) to continue a SQL*Plus command on the next line.

Introduction to Oracle: SQL and PL/SQL 9-11

Copying Rows
from Another Table

* Write your INSERT statement with a
subquery.

SQL> INSERT INTO managers(id, name, salary, hiredate)

2 SELECT empno, ename, sal, hiredate
3 FROM emp
4 WHERE job = 'MANAGER';

3 rows created.

* Do not use the VALUES clause.

e Match the number of columns in the
INSERT clause to those in the subquery.

9-12 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Copying Rows from Another Table

You can use the INSERT statement to add rows to a table where the values are derived from existing
tables. In place of the VALUES clause, you use a subquery.

Syntax
INSERT INTO table [column (, column)]
subquery;
where: fable is the table name
column is the name of the column in the table to populate
subquery is the subquery that returns rows into the table

For more information, see Oracle Server SOL Reference, Release 8, “SELECT,” Subqueries section.

The number of columns and their datatypes in the column list of the INSERT clause must match the
number of values and their datatypes in the subquery.

Introduction to Oracle: SQL and PL/SQL 9-12

Changing Data in a Table

EMP
EMPNO| ENAME | JOB ... | pEpTNO
7839| KING | PRESIDENT 10 “"'uPdate arow
H L)
7698| BLAKE | MANAGER s0 [in EMP table...
7782| cLARK| MANAGER
7566| JONES | MANAGER 20

EMP
EMPNO| ENAME | JoB ... | pEpTNO
7839| KING | PRESIDENT 10
7698| BLAKE | MANAGER 30
7782| cLARK| MANAGER
7566| JONES | MANAGER 20

9-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Changing Data in a Table
The slide graphic changes the department number for Clark from 10 to 20.

Introduction to Oracle: SQL and PL/SQL 9-13

The UPDATE Statement

* Modify existing rows with the UPDATE
statement.

UPDATE table
SET column = value [, column = value,

[WHERE condition];

9-

* Update more than one row at a time, if
required.

14 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Updating

Rows

You can modify existing rows by using the UPDATE statement.

In the above syntax:

table is the name of the table

column is the name of the column in the table to populate

value is the corresponding value or subquery for the column

condition identifies the rows to be updated and is composed of column names

expressions, constants, subqueries, and comparison operators

Confirm the update operation by querying the table to display the updated rows.

For more

information, see Oracle Server SQL Reference, Release 8, “UPDATE.”

Note: In general, use the primary key to identify a single row. Using other columns may
unexpectedly cause several rows to be updated. For example, identifying a single row in the EMP
table by name is dangerous because more than one employee may have the same name.

Introduction to Oracle: SQL and PL/SQL 9-14

Updating Rows in a Table

» Specific row or rows are modified when
you specify the WHERE clause.

SQL> UPDATE emp
2 SET deptno = 20

3 WHERE empno = 7782;
1 row updated.

 All rows in the table are modified if you
omit the WHERE clause.

SQL> UPDATE employee
2 SET deptno = 20;

14 rows updated.

9-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Updating Rows (continued)

The UPDATE statement modifies specific rows, if the WHERE clause is specified. The slide
example transfers employee 7782 (Clark) to department 20.

If you omit the WHERE clause, all the rows in the table are modified.

SQL> SELECT ename, deptno

2 FROM employee;
ENAME DEPTNO
KING 20
BLAKE 20
CLARK 20
JONES 20
MARTIN 20
ATLEN 20
TURNER 20

14 rows selected.

Note: The EMPLOY EE table has the same data as the EMP table.

Introduction to Oracle: SQL and PL/SQL 9-15

Updating with
Multiple-Column Subquery

Update employee 7698’s job and department
to match that of employee 7499.

SQL> UPDATE emp
2 SET (job, deptno) =

3 (SELECT job, deptno
4 FROM emp
5 WHERE empno = 7499)

6 WHERE empno = 7698;
1 row updated.

9-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Updating Rows with a Multiple-Column Subquery

Multiple-column subqueries can be implemented in the SET clause of an UPDATE statement.

Syntax
UPDATE table
SET (column, column, ...) =

(SELECT column, column,
FROM table
WHERE condition)
WHERE condition;

Introduction to Oracle: SQL and PL/SQL 9-16

Updating Rows Based
on Another Table
Use subqueries in UPDATE statements to

update rows in a table based on values
from another table.

SQL> UPDATE employee

2 SET deptno = (SELECT deptno

3 FROM emp

4 WHERE empno = 7788)
5 WHERE job = (SELECT job

6 FROM emp

7 WHERE empno = 7788) ;

2 rows updated.

9-17 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Updating Rows Based on Another Table

You can use subqueries in UPDATE statements to update rows in a table. The example on the slide
updates the EMPLOYEE table based on the values from the EMP table. It changes the department
number of all employees with employee 7788’s job title to employee 7788’s current department
number.

Introduction to Oracle: SQL and PL/SQL 9-17

Updating Rows:
Integrity Constraint Error

SQL> UPDATE emp
2 SET deptno =

3 WHERE deptno =

UPDATE emp ,b(\

* OQQ
ERROR at line 1:
ORA-02291: integrity constraint (USR.EMP_DEPTNO_ FK)
violated - parent key not found

9-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Integrity Constraint Error

If you attempt to update a record with a value that is tied to an integrity constraint, you will
experience an error.

In the example on the dide, department number 55 does not exist in the parent table, DEPT, and so
you receive the parent key violation ORA-02291.

Note: Integrity constraints ensure that the data adheres to a predefined set of rules. A subsequent
lesson will cover integrity constraints in greater depth.

Introduction to Oracle: SQL and PL/SQL 9-18

Removing a Row from a Table

DEPT

DEPTNO | DNAME LOoC
10| ACCOUNTING|NEW YORK
20| RESEARCH DALLAS
30| SALES CHICAGO
40| OPERATIONS | BOSTON
50 | DEVELOPMENT| DETROIT
60|MIS

Copyright © Oracle Corporation, 1999. All rights reserved.

“...delete a row
from DEPT table...”

—

DEPT

DEPTNO | DNAME LOoC
10| ACCOUNTING|NEW YORK
20 | RESEARCH DALLAS
30| SALES CHICAGO
40 | OPERATIONS | BOSTON
60 |MIS

ORACLE"

Removing a Row from a Table

The slide graphic removes the DEVELOPMENT department from the DEPT table (assuming that

there are no constraints defined on the DEPT table).

Introduction to Oracle: SQL and PL/SQL 9-19

The DELETE Statement

You can remove existing rows from a
table by using the DELETE statement.

DELETE [FROM] table

[WHERE condition];

9-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Deleting Rows
You can remove existing rows by using the DELETE statement.
In the syntax:

table is the table name
condition identifies the rows to be deleted and is composed of column names,
expressions, constants, subqueries, and comparison operators

For more information, see Oracle Server SOL Reference, Release 8, “DELETE.”

Introduction to Oracle: SQL and PL/SQL 9-20

Deleting Rows from a Table

» Specific rows are deleted when you
specify the WHERE clause.

SQL> DELETE FROM department
2 WHERE dname = 'DEVELOPMENT' ;

1 row deleted.

 All rows in the table are deleted if you
omit the WHERE clause.

SQL> DELETE FROM department;
4 rows deleted.

9-21 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Deleting Rows (continued)

You can delete specific rows by specifying the WHERE clause in the DELETE statement. The slide
example deletes the DEVELOPMENT department from the DEPARTMENT table. You can confirm
the delete operation by displaying the deleted rows using the SELECT statement.

SQL> SELECT *

2 FROM department

3 WHERE dname = 'DEVELOPMENT' ;
no rows selected.

Example
Remove all employees who started after January 1, 1997,

SQL> DELETE FROM emp
2 WHERE hiredate > TO_DATE('01.01.1997', 'DD.MM.YYYY') ;
1 row deleted.

If you omit the WHERE clause, all rows in the table are deleted. The second example on the dlide
deletes al the rows from the DEPARTMENT table because no WHERE clause has been specified.

Note: The DEPARTMENT table has the same data as the DEPT table.

Introduction to Oracle: SQL and PL/SQL 9-21

Deleting Rows Based
on Another Table
Use subqueries in DELETE statements to

remove rows from a table based on values
from another table.

SQL> DELETE FROM employee

2 WHERE deptno =

3 (SELECT deptno

4 FROM dept

5 WHERE dname ='SALES')

6 rows deleted.

9-22 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Deleting Rows Based on Another Table

You can use subqueries to delete rows from a table based on values from another table. The example
on the slide deletes all the employees who are in department 30. The subquery searches the DEPT
table to find the department number for the SALES department. The subquery then feeds the
department number to the main query, which deletes rows of data from the EMPLOY EE table based

on this department number.

Introduction to Oracle: SQL and PL/SQL 9-22

Deleting Rows:
Integrity Constraint Error

SQL> DELETE FROM dept

al
e\e'®
2 WHERE deptno = 10;

ot o (0o’

; o(\"a 2

DELETE FROM dept s - s “seo ,‘\\e‘
* «\a“ w2 no

ERROR at line 1:

ORA-02292: integrity constraint (USR.EMP_DEPTNO_ FK)

violated - child record found

9-23 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Integrity Constraint Error

If you attempt to delete a record with a value that is tied to an integrity constraint, you will experience
an error.

The example on the slide tries to delete department number 10 from the DEPT table, but it results in
an error because department number is used as a foreign key in the EMP table. If the parent record
that you attempt to delete has child records, then you receive the child record found violation ORA-
02292.

Introduction to Oracle: SQL and PL/SQL 9-23

Database Transactions

Consist of one of the following
statements:

DML statements that make up one
consistent change to the data

* One DDL statement
e One DCL statement

9-24 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Database Transactions

The Oracle Server ensures data consistency based on transactions. Transactions give you more
flexibility and control when changing data, and they ensure data consistency in the event of user
process failure or system failure.

Transactions consist of DML statements that make up one consistent change to the data. For example,
a transfer of funds between two accounts should include the debit to one account and the credit to
another account in the same amount. Both actions should either fail or succeed together. The credit
should not be committed without the debit.

Transaction Types

Type Description

Data manipulation Consists of any number of DML statements that the Oracle Server
language (DML) treats as a single entity or a logical unit of work

Data definition language Consists of only one DDL statement

(DDL)

Data control language Consists of only one DCL statement

(DCL)

Introduction to Oracle: SQL and PL/SQL 9-24

Database Transactions

* Begin when the first executable SQL
statement is executed

* End with one of the following events:
— COMMIT or ROLLBACK is issued

- DDL or DCL statement executes
(automatic commit)

— User exits
- System crashes

9-25 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

When Does a Transaction Start and End?

A transaction begins when the first executable SQL statement is encountered and terminates when
ong of the following occurs:

A COMMIT or ROLLBACK statement is issued
A DDL statement, such as CREATE, is issued
A DCL statement is issued

The user exits SQL*Plus

A machine fails or the system crashes

After one transaction ends, the next executable SQL statement automatically starts the next
transaction.

A DDL statement or a DCL statement is automatically committed and therefore implicitly ends a
transaction.

Introduction to Oracle: SQL and PL/SQL 9-25

Advantages of COMMIT
and ROLLBACK Statements

* Ensure data consistency

* Preview data changes before making
changes permanent

* Group logically related operations

9-26 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Introduction to Oracle: SQL and PL/SQL 9-26

Controlling Transactions

- Transaction >
‘ INSERT ‘ UPDATE H INSERT ‘ DELETE ‘
COMMIT Savepoint A Savepoint B

g |

ROLLBACK to Savepoint B

< |
ROLLBACK to Savepoint A
C |
ROLLBACK
9-27 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Explicit Transaction Control Statements

You can control the logic of transactions by using the COMMIT, SAVEPOINT, and ROLLBACK
statements.

Statement Description

COMMIT Ends the current transaction by making all pending data changes
permanent

SAVEPOINT name Marks a savepoint within the current transaction

ROLLBACK [TO ROLLBACK ends the current transaction by discarding all pending

SAVEPOINT name) data changes; ROLLBACK TO SAVEPOINT rolls back the
current transaction to the specified savepoint, thereby discarding
the savepoint and any subsequent changes. If you omit this clause,
the ROLLBACK statement rolls back the entire transaction.

Note: SAVEPOINT is not ANSI standard SQL.

Introduction to Oracle: SQL and PL/SQL 9-27

Implicit Transaction Processing

e An automatic commit occurs under the
following circumstances:

- DDL statement is issued
- DCL statement is issued

- Normal exit from SQL*Plus, without
explicitly issuing COMMIT or
ROLLBACK

* An automatic rollback occurs under an
abnormal termination of SQL*Plus or a
system failure.

9-28 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Implicit Transaction Processing

Status Circumstances

Automatic commit DDL statement or DCL statement is issued
Normal exit from SQL*Plus, without explicitly issuing COMMIT
or ROLLBACK

Automatic rollback Abnormal termination of SQL*Plus or system failure

Note: A third command is available in SQL*Plus. The AUTOCOMMIT command can be toggled
ON or OFF. If set to ON, each individual DML statement is committed as soon as it is executed. You
cannot roll back the changes. If set to OFF, COMMIT can be issued explicitly. Also, COMMIT is
issued when a DDL statement is issued or when you exit from SQL*Plus.

System Failures

When a transaction is interrupted by a system failure, the entire transaction is automatically rolled
back. This prevents the error from causing unwanted changes to the data and returns the tables to their
state at the time of the last commit. In this way, the Oracle Server protects the integrity of the tables.

Introduction to Oracle: SQL and PL/SQL 9-28

State of the Data Before
COMMIT or ROLLBACK

* The previous state of the data can be
recovered.

* The current user can review the results of
the DML operations by using the SELECT
statement.

e Other users cannot view the results of the
DML statements by the current user.

* The affected rows are locked; other users
cannot change the data within the affected
rows.

9-29 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Committing Changes
Every data change made during the transaction is temporary until the transaction is committed.
State of the data before COMMIT or ROLLBACK is issued:

Data manipulation operations primarily affect the database buffer; therefore, the previous state
of the data can be recovered.

The current user can review the results of the data manipulation operations by querying the
tables.

Other users cannot view the results of the data manipulation operations made by the current
user. The Oracle Server institutes read consistency to ensure that each user sees data as it
existed at the last commit.

The affected rows are locked; other users cannot change the data in the affected rows.

Introduction to Oracle: SQL and PL/SQL 9-29

State of the Data After COMMIT

» Data changes are made permanent in the
database.

* The previous state of the data is
permanently lost.

e All users can view the results.

e Locks on the affected rows are released,;
those rows are available for other users to
manipulate.

e All savepoints are erased.

9-30 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Committing Changes (continued)
Make all pending changes permanent by using the COMMIT statement. Following a COMMIT:
State of the data after a COMMIT is issued:
Data changes are written to the database.
The previous state of the data is permanently lost.
All users can view the results of the transaction.

The locks on the affected rows are released; the rows are now available for other users to
perform new data changes.

All savepoints are erased.

Introduction to Oracle: SQL and PL/SQL 9-30

Committing Data

 Make the changes.

SQL> UPDATE emp
2 SET deptno = 10

3 WHERE empno = 7782;
1 row updated.

e Commit the changes.

SQL> COMMIT;

Commit complete.

9-31 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Committing Changes (continued)
The slide example updates the EMP table and sets the department number for employee 7782 (Clark)
to 10. It then makes the change permanent by issuing the COMMIT statement.

Example

Create a new ADVERTISING department with at least one employee. Make the data change permanent.

SQL> INSERT INTO department (deptno, dname, loc)
2 VALUES (50, 'ADVERTISING', 'MIAMI') ;
1 row created.

SQL> UPDATE employee
2 SET deptno = 50
3 WHERE empno = 7876;
1 row updated.

SQL> COMMIT;
Commit complete.

Introduction to Oracle: SQL and PL/SQL 9-31

State of the Data After ROLLBACK

Discard all pending changes by using the
ROLLBACK statement.

» Data changes are undone.
* Previous state of the data is restored.
e Locks on the affected rows are released.

SQL> DELETE FROM employee;
14 rows deleted.

SQL> ROLLBACK;
Rollback complete.

9-32 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Rolling Back Changes
Discard all pending changes by using the ROLLBACK statement. Following a ROLLBACK:
» Data changes are undone.
» The previous state of the data is restored.
» The locks on the affected rows are released.
Example

While attempting to remove a record from the TEST table, you can accidentally empty the table. You
can correct the mistake, reissue the proper statement, and make the data change permanent.

SQL> DELETE FROM test;
25,000 rows deleted.
SQL> ROLLBACK;
Rollback complete.
SQL> DELETE FROM test
2 WHERE id = 100;
1 row deleted.
SQL> SELECT *
2 FROM test
3 WHERE id = 100;
No rows selected.
SQL> COMMIT;
Commit complete.

Introduction to Oracle: SQL and PL/SQL 9-32

Rolling Back Changes
to a Marker

e Create a marker in a current transaction
by using the SAVEPOINT statement.

* Roll back to that marker by using the
ROLLBACK TO SAVEPOINT statement.

SQL> UPDATE. ..
SQL> SAVEPOINT update done;
Savepoint created.

SQL> INSERT. ..

SQL> ROLLBACK TO update done;
Rollback complete.

9-33 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Rolling Back Changes to a Savepoint

You can create a marker in the current transaction by using the SAVEPOINT statement. The
transaction therefore can be divided into smaller sections. You can then discard pending changes up
to that marker by using the ROLLBACK TO SAVEPOINT statement.

If you create a second savepoint with the same name as an earlier savepoint, the earlier savepoint is
deleted.

Introduction to Oracle: SQL and PL/SQL 9-33

Statement-Level Rollback

* If a single DML statement fails during
execution, only that statement is rolled
back.

* The Oracle Server implements an
implicit savepoint.

 All other changes are retained.

* The user should terminate transactions
explicitly by executing a COMMIT or
ROLLBACK statement.

9-34 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Statement-Level Rollback

Part of a transaction can be discarded by an implicit rollback if a statement execution error is
detected. If a single DML statement fails during execution of a transaction, its effect is undone by a
statement-level rollback, but the changes made by the previous DML statements in the transaction
will not be discarded. They can be committed or rolled back explicitly by the user.

Oracle issues an implicit COMMIT before and after any data definition language (DDL) statement.
So, even if your DDL statement does not execute successfully, you cannot roll back the previous
statement because the server issued a commit.

Terminate your transactions explicitly by executing a COMMIT or ROLLBACK statement.

Introduction to Oracle: SQL and PL/SQL 9-34

Read Consistency

* Read consistency guarantees a
consistent view of the data at all times.

 Changes made by one user do not
conflict with changes made by another
user.

* Read consistency ensures that on the
same data:

- Readers do not wait for writers
- Writers do not wait for readers

9-35 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Read Consistency

Database users make two types of access to the database:
Read operations (SELECT statement)
Write operations (INSERT, UPDATE, DELETE statements)

You need read consistency so that the following occur:
The database reader and writer are ensured a consistent view of the data.
Readers do not view data that is in the process of being changed.
Writers are ensured that the changes to the database are done in a consistent way.

Changes made by one writer do not disrupt or conflict with changes another writer
is making.

The purpose of read consistency is to ensure that each user sees data as it existed at the
last commit, before a DML operation started.

Introduction to Oracle: SQL and PL/SQL 9-35

Implementation of Read
Consistency

\\ UPDATE emp Data
l,\@/l',”’ SET sal = 2000 > FRAN blocks

WHERE ename =
\'/ 'SCOTT! H
User A

Rollback
segments

changed
and
unchanged
data

FROM emp; Read

N consistent
image before
N change

User B “old” data

l, \\k /I'.IL SELECT * __g

9-36 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Implementation of Read Consistency

Read consistency is an automatic implementation. It keeps a partial copy of the database in rollback
segments.

When an insert, update, or delete operation is made to the database, the Oracle Server takes a copy of
the data before it is changed and writes it to a rollback segment.

All readers, except the one who issued the change, still see the database as it existed before the
changes started; they view the rollback segments” “snapshot” of the data.

Before changes are committed to the database, only the user who is modifying the data sees the
database with the alterations; everyone else sees the snapshot in the rollback segment. This
guarantees that readers of the data read consistent data that is not currently undergoing change.

When a DML statement is committed, the change made to the database becomes visible to anyone
executing a SELECT statement. The space occupied by the “old” data in the rollback segment file is
freed for reuse.

If the transaction is rolled back, the changes are undone.
» The original, older version, of the data in the rollback segment is written back to the table.

» All users see the database as it existed before the transaction began.

Introduction to Oracle: SQL and PL/SQL 9-36

Locking

Oracle locks:

* Prevent destructive interaction between
concurrent transactions

* Require no user action

e Automatically use the lowest level of
restrictiveness

e Are held for the duration of the
transaction

e Have two basic modes:
— Exclusive
— Share

9-37 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

What Are Locks?

Locks are mechanisms that prevent destructive interaction between transactions accessing the same
resource, ¢ither a user object (such as tables or rows) or system objects not visible to users (such as
shared data structures and data dictionary rows).

How Oracle Locks Data

Locking in an Oracle database is fully automatic and requires no user action. Implicit locking occurs
for all SQL statements except SELECT. The Oracle default locking mechanism automatically uses
the lowest applicable level of restrictiveness, thus providing the highest degree of concurrency and
maximum data integrity. Oracle also allows the user to lock data manually.

Locking Modes

Oracle uses two modes of locking in a multiuser database:

Lock Mode | Description

exclusive Prevents a resource from being shared.
The first transaction to lock a resource exclusively, is the only transaction that
can alter the resource until the exclusive lock is released.

share lock Allows the resource to be shared.

Multiple users reading data can share the data, holding share locks to prevent
concurrent access by a writer (who needs an exclusive lock).

Several transactions can acquire share locks on the same resource.

Introduction to Oracle: SQL and PL/SQL 9-37

Summary

Statement Description

INSERT Adds a new row to the table

UPDATE Modifies existing rows in the table

DELETE Removes existing rows from the table

COMMIT Makes all pending changes permanent

SAVEPOINT Allows a rollback to the savepoint marker

ROLLBACK Discards all pending data changes

9-38 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Summary

Manipulate data in the Oracle database by using the INSERT, UPDATE, and DELETE statements.
Control data changes by using the COMMIT, SAVEPOINT, and ROLLBACK statements.

The Oracle Server guarantees a consistent view of data at all times.

Locking can be implicit or explicit.

Introduction to Oracle: SQL and PL/SQL 9-38

Practice Overview

* Inserting rows into the tables
» Updating and deleting rows in the table
e Controlling transactions

9-39 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Practice Overview

In this practice, you will add rows to the MY EMPLOYEE table, update and delete data from the
table, and control your transactions.

Introduction to Oracle: SQL and PL/SQL 9-39

Practice 9

Insert data into the MY EMPLOYEE table.
1. Runthe 1ab9 1.sqgl scriptto build the MY_EMPLOYEE table that will be used for the lab.

2. Describe the structure of the MY EMPLOYEE table to identify the column names.

Name Null®? Type

1D NOT NULL NUMBER (4)
LAST NAME VARCHAR2 (25)
FIRST NAME VARCHAR2 (25)
USERID VARCHAR2 (8)
SALARY NUMBER (9, 2)

3. Add the first row of data to the MY EMPLOYEE table from the following sample data. Do not
list the columns in the INSERT clause.

ID | LAST NAME FIRST_NAME USERID SALARY
1 Patel Ralph rpatel 795

2 Dancs Betty bdancs 860

3 Biri Ben bbiri 1100

4 | Newman Chad cnewman 750

5 Ropeburn Audry aropebur 1550

4. Populate the MY EMPLOYEE table with the second row of sample data from the preceding list.
This time, list the columns explicitly in the INSERT clause.

5. Confirm your addition to the table.

ID LAST NAME FIRST NAME USERID SALARY
1 Patel Ralph rpatel 795
2 Dancs Betty bdancs 860

Introduction to Oracle: SQL and PL/SQL 9-40

Practice 9 (continued)

6. Create a script named 1oademp . sgl to load rows into the MY EMPLOYEE table
interactively. Prompt the user for the employee’s id, first name, last name, and salary.
Concatenate the first letter of the first name and the first seven characters of the last name to
produce the userid.

7. Populate the table with the next two rows of sample data by running the script that you created.

Confirm your additions to the table.

ID LAST NAME FIRST NAME USERID SALARY

1 Patel Ralph rpatel 795
2 Dancs Betty bdancs 860
3 Biri Ben bbiri 1100
4 Newman Chad cnewman 750

9. Make the data additions permanent.
Update and delete data in the MY EMPLOYEE table.
10. Change the last name of employee 3 to Drexler.
11. Change the salary to 1000 for all employees with a salary less than 900.
12. Verify your changes to the table.

LAST NAME SALARY

Patel 1000
Dancs 1000
Drexler 1100
Newman 1000

13. Delete Betty Dancs from the MY EMPLOYEE table.
14. Confirm your changes to the table.

ID LAST NAME FIRST NAME USERID SALARY

1 Patel Ralph rpatel 1000
3 Drexler Ben bbiri 1100
4 Newman Chad cnewman 1000

Introduction to Oracle: SQL and PL/SQL 9-41

Practice 9 (continued)

15. Commit all pending changes.
Control data transaction to the MY EMPLOYEE table.

16. Populate the table with the last row of sample data by running the script that you created in
step 6.

17. Confirm your addition to the table.

ID LAST NAME FIRST NAME USERID SALARY

1 Patel Ralph rpatel 1000
3 Drexler Ben bbiri 1100
4 Newman Chad cnewman 1000
5 Ropeburn Audry aropebur 1550

18. Mark an intermediate point in the processing of the transaction.

19. Empty the entire table.

20. Confirm that the table is empty.

21. Discard the most recent DELETE operation without discarding the earlier INSERT operation.

22. Confirm that the new row is still intact.

ID LAST NAME FIRST NAME USERID SALARY

1 Patel Ralph rpatel 1000
3 Drexler Ben bbiri 1100
4 Newman Chad cnewman 1000
5 Ropeburn Audry aropebur 1550

23. Make the data addition permanent.

Introduction to Oracle: SQL and PL/SQL 9-42

10

Creating and Managing
Tables

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE ¢

Objectives

After completing this lesson, you should
be able to do the following:

* Describe the main database objects
* Create tables

* Describe the datatypes that can be used
when specifying column definition

e Alter table definitions
* Drop, rename, and truncate tables

10-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Lesson Aim

In this lesson, you will learn about main database objects and their relationships to each other. You
will also learn how to create, alter, and drop tables.

Introduction to Oracle: SQL and PL/SQL 10-2

Database Objects

Object Description

Table Basic unit of storage; composed of rows

and columns

View Logically represents subsets of data from

one or more tables

Sequence Generates primary key values

Index Improves the performance of some queries

Synonym Gives alternative names to objects

10-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Database Objects

An Oracle database can contain multiple data structures. Each structure should be outlined in the database
design so that it can be created during the build stage of database development.

» Table: Stores data
* View: Subset of data from one or more tables
» Sequence: Generates primary key values
» Index: Improves the performance of some queries
» Synonym: Gives alternative names to objects
Oracle8 Table Structures
» Tables can be created at any time, even while users are using the database.

* You do not need to specify the size of any table. The size is ultimately defined by the amount of
space allocated to the database as a whole. It is important, however, to estimate how much space a
table will use over time.

» Table structure can be modified online.

Note: More database objects are available but are not covered in this course.

Introduction to Oracle: SQL and PL/SQL 10-3

Naming Conventions

* Must begin with a letter
e Can be 1-30 characters long

e Must contain only A-Z, a-z, 0-9, _, $,
and #

e Must not duplicate the name of another
object owned by the same user

e Must not be an Oracle Server reserved
word

10-4 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Naming Rules

Name database tables and columns according to the standard rules for naming any Oracle database
object:

» Table names and column names must begin with a letter and can be 1-30 characters long.

» Names must contain only the characters A-Z, a—z, 0-9, (underscore), $, and # (legal
characters, but their use is discouraged).

+ Names must not duplicate the name of another object owned by the same Oracle Server user.
» Names must not be an Oracle Server reserved word.

Naming Guidelines
» Use descriptive names for tables and other database objects.

+ Name the same entity consistently in different tables. For example, the department number
column is called DEPTNO in both the EMP table and the DEPT table.

Note: Names are case insensitive. For example, EMP is treated as the same name as eMP or eMp.

]

For more information, see Oracle Server SOL Reference, Release 8, “Object Names and Qualifiers.”

Introduction to Oracle: SQL and PL/SQL 10-4

The CREATE TABLE Statement

* You must have :
— CREATE TABLE privilege
- A storage area

CREATE [GLOBAL TEMPORARY] TABLE [schema.] table
(column datatype [DEFAULT exprl([, ...1):

* You specify:
- Table name

— Column name, column datatype, and
column size

10-5 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

The CREATE TABLE Statement

Create tables to store data by executing the SQL CREATE TABLE statement. This statement is one
of the data definition language (DDL) statements, which are covered in subsequent lessons. DDL
statements are a subset of SQL statements used to create, modify, or remove Oracle8 database
structures. These statements have an immediate effect on the database, and they also record
information in the data dictionary.

To create a table, a user must have the CREATE TABLE privilege and a storage area in which to
create objects. The database administrator uses data control language (DCL) statements, which are
covered in a later lesson, to grant privileges to users.

In the syntax:

GLOBAL TEMPORARY specifies that the table is temporary and that its definition is
visible to all sessions. The data in a temporary table is visible
only to the session that inserts the data into the table.

schema is the same as the owner’s name

table is the name of the table

DEFAULT expr specifies a default value if a value is omitted in the
INSERT statement

column is the name of the column

datatype is the column’s datatype and length

Introduction to Oracle: SQL and PL/SQL 10-5

Referencing Another User’s
Tables

» Tables belonging to other users are not
in the user’s schema.

* You should use the owner’s name as a
prefix to the table.

10-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Referencing Another User’s Tables

A schema is a collection of objects. Schema objects are the logical structures that directly refer to the
data in a database. Schema objects include tables, views, synonyms, sequences, stored procedures,
idexes, clusters, and database links.

If a table does not belong to the user, the owner’s name must be prefixed to the table.

Introduction to Oracle: SQL and PL/SQL 10-6

The DEFAULT Option

» Specify a default value for a column during
an insert.

‘ .. hiredate DATE DEFAULT SYSDATE, .. I

* Legal values are literal value, expression,
or SQL function.

* lllegal values are another column’s name or
pseudocolumn.

* The default datatype must match the
column datatype.

10-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

The DEFAULT Option
A column can be given a default value by using the DEFAULT option. This option prevents null
values from entering the columns if a row is inserted without a value for the column. The default
value can be a literal, an expression, or a SQL function, such as SYSDATE and USER, but the value
cannot be the name of another column or a pseudocolumn, such as NEXTVAL or CURRVAL. The
default expression must match the datatype of the column.

Introduction to Oracle: SQL and PL/SQL 10-7

Creating Tables
e Create the table.

SQL> CREATE TABLE dept

2 (deptno NUMBER(2) ,
3 dname VARCHARZ2 (14),
4 loc VARCHAR2(13)) ;

Table created.

e Confirm table creation.

SQL> DESCRIBE dept I

Name Null®? Type

DEPTNO NUMBER (2)
DNAME VARCHAR2(14)
LOC VARCHAR2 (13)

10-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Creating Tables

The example on the slide creates the DEPT table, with three columns—namely, DEPTNO, DNAME,
and LOC. It further confirms the creation of the table by issuing the DESCRIBE command.

Since creating a table is a DDL statement, an automatic commit takes place when this statement is
executed.

Introduction to Oracle: SQL and PL/SQL 10-8

Tables in the Oracle Database

e User Tables

-~ Collection of tables created and
maintained by the user

-~ Contain user information
e Data Dictionary

- Collection of tables created and
maintained by the Oracle server

- Contain database information

109 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Tables in the Oracle Database

User tables are tables created by the user, such as EMP. There is another collection of tables and
views in the Oracle database known as the data dictionary. This collection is created and maintained
by the Oracle Server and contains information about the database.

All data dictionary tables are owned by the SY'S user. The base tables are rarely accessed by the user
because the information in them is not easy to understand. Therefore, users typically access data
dictionary views because the information is presented in a format that is easier to understand.
Information stored in the data dictionary include names of the Oracle Server users, privileges granted
to users, database object names, table constraints, and auditing information.

There are four categorics of data dictionary views; each category has a distinct prefix which reflects
their intended use.

Prefix Description

USER_ | These views contain information about objects owned by the user

ALL These views contain information about all of the tables (object tables
and relational tables) accessible to the user.

DBA These views are restricted views. These views can be accessed only
by people who have been assigned the role DBA.

V$ These views contain information about dynamic performance views,
database server performance and locking.

Introduction to Oracle: SQL and PL/SQL 10-9

Querying the Data Dictionary

* Describe tables owned by the user.

SQL> SELECT *
2 FROM user tables;

* View distinct object types owned by the

user.
SQL> SELECT DISTINCT object type
2 FROM user objects;

* View tables, views, synonyms, and
sequences owned by the user.

SQL> SELECT *
2 FROM user catalog;

10-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Querying the Data Dictionary

You can query the data dictionary tables to view various database objects owned by you. The data
dictionary tables frequently used are these:

+ USER TABLES
+ USER OBIJECTS
+ USER CATALOG
Note: USER_ CATALOG has a synonym called CAT. You can use this synonym instead of
USER_CATALOG in SQL statements.
SQL> SELECT *
2 FROM CAT;

Introduction to Oracle: SQL and PL/SQL 10-10

Datatypes

Datatype Description
VARCHARZ2(size) Variable-length character data
CHAR(size) Fixed-length character data
NUMBER(p,s) Variable-length numeric data
DATE Date and time values
LONG Variable-length character data

up to 2 gigabytes
CLOB Single-byte character data up to 4

gigabytes

RAW and LONG RAW | Raw binary data

BLOB Binary data up to 4 gigabytes
BFILE Binary data stored in an external
file; up to 4 gigabytes
10-11 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °
Datatypes
Data type Description
VARCHAR2(size) Variable-length character data (A maximum size must be specified.
Default and minimum size is 1; maximum size is 4000.)
CHAR(size) Fixed-length character data of length size bytes (Default and
minimum size is 1; maximum size is 2000.)
NUMBER(p,s) Number having precision p and scale s (The precision is the total

number of decimal digits, and the scale is the number of digits to the
right of the decimal point. The precision can range from 1 to 38 and
the scale can range from -84 to 127.)

DATE Date and time values between January 1, 4712 B.C. and December
31,9999 AD.

LONG Variable-length character data up to 2 gigabytes

CLOB Single-byte character data up to 4 gigabytes

Introduction to Oracle: SQL and PL/SQL 10-11

Datatypes

Datatype Description
VARCHARZ2(size) Variable-length character data
CHAR(size) Fixed-length character data
NUMBER(p,s) Variable-length numeric data
DATE Date and time values
LONG Variable-length character data

up to 2 gigabytes
CLOB Single-byte character data up to 4

gigabytes

RAW and LONG RAW

Raw binary data

BLOB Binary data up to 4 gigabytes
BFILE Binary data stored in an external
file; up to 4 gigabytes
10-12 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Datatypes (continued)

Data type Description

RAW(size) Raw binary data of length size (A maximum size must be specified.
Maximum size is 2000.)

LONG RAW Raw binary data of variable length up to 2 gigabytes
BLOB Binary data up to 4 gigabytes
BFILE Binary data stored in an external file; up to 4 gigabytes

Introduction to Oracle: SQL and PL/SQL 10-12

Creating a Table
by Using a Subquery
» Create a table and insert rows by

combining the CREATE TABLE statement
and AS subquery option.

CREATE TABLE table

[(column, column...)]
AS subquery;

e Match the number of specified columns
to the number of subquery columns.

e Define columns with column names and
default values.

10-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Creating a Table from Rows in Another Table

A second method to create a table is to apply the AS subquery clause to both create the table and
insert rows returned from the subquery.

In the syntax:

table is the name of the table.
column is the name of the column, default value, and integrity constraint.
subquery is the SELECT statement that defines the set of rows to be inserted into

the new table.
Guidelines

» The table will be created with the specified column names, and the rows retrieved by the
SELECT statement will be inserted into the table.

» The column definition can contain only the column name and default value.

+ If column specifications are given, the number of columns must equal the number of columns
in the subquery SELECT list.

* Ifno column specifications are given, the column names of the table are the same as the column
names in the subquery.

Introduction to Oracle: SQL and PL/SQL 10-13

Creating a Table
by Using a Subquery

SQL> CREATE TABLE dept30

2 AS

3 SELECT empno, ename, sal*12 ANNSAL, hiredate
4 FROM emp

5 WHERE deptno = 30;

Table created.

EMPNO NOT NULL NUMBER (4)
ENAME VARCHARZ2 (10)
ANNSAT NUMBER
HIREDATE DATE

10-14 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Creating a Table from Rows in Another Table (continued)

The slide example creates a table, DEPT30, that contains details of all the employees working in
department 30. Notice that the data for the DEPT30 table is coming from the EMP table.

You can verify the existence of a database table and check column definitions by using the SQL*Plus
DESCRIBE command.

Give a column alias when selecting an expression.

Introduction to Oracle: SQL and PL/SQL 10-14

The ALTER TABLE Statement

Use the ALTER TABLE statement to:

 Add a new column

* Modify an existing column

* Define a default value for the new column

ALTER TABLE table
ADD (column datatype [DEFAULT expr]
[, column datatypel]...);

ALTER TABLE table
MODIFY (column datatype [DEFAULT expr]
[, column datatypel]...);

10-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

ALTER TABLE Statement

After you create your tables, you may need to change the table structures because you omitted a
column or your column definition needs to be changed. You can do this by using the ALTER TABLE
statement.

You can add columns to a table by using the ALTER TABLE statement with the ADD clause.
In the syntax:

table 1s the name of the table
column 1s the name of the new column
datatype is the datatype and length of the new column

DEFAULT expr specifies the default value for a new column

You can modify existing columns in a table by using the ALTER TABLE statement with the
MODIFY clause.

Note: The slide gives the abridged syntax for ALTER TABLE. More about ALTER TABLE is
covered in a subsequent lesson.

Introduction to Oracle: SQL and PL/SQL 10-15

Adding a Column

(11
...add a
DEPT30 New column
new
EMPNO| ENAME annsar | HIREDATE Il 508 | column
7698| BLAKE 34200 | 01-MAY-81 into
7654 | MARTIN 15000 | 28-SEP-81 DEPT30
7499| ALLEN 19200 | 20-FEB-81 table...”
7844 | TURNER 18000 | 08-SEP-81
DEPT30
EMPNO| ENAME ANNSAL | HIREDATE | JOB
7698| BLAKE 34200 | 01-MAY-81
7654 | MARTIN 15000 | 28-SEP-81
7499 ALLEN 19200 | 20-FEB-81
7844 | TURNER 18000 | 08-SEP-81

10-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Adding a Column

The graphic adds the JOB column to DEPT30 table. Notice that the new column becomes the last
column in the table.

Introduction to Oracle: SQL and PL/SQL 10-16

Adding a Column

* You use the ADD clause to add columns.

SQL> ALTER TABLE dept30
2 ADD (Job VARCHAR2 (9)) ;

Table altered.

* The new column becomes the last column.

EMPNO ENAME ANNSAL HIREDATE JOB
7698 BLAKE 34200 01-MAY-81
7654 MARTIN 15000 28-SEP-81
7499 ALLEN 19200 20-FER-81
7844 TURNER 18000 08-SEP-81
6 rows selected.

10-17 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Guidelines for Adding a Column
* You can add or modify columns, but you cannot drop them from a table.
* You cannot specify where the column is to appear. The new column becomes the last column.

The example on the slide adds a column named JOB to the DEPT30 table. The JOB column becomes
the last column in the table.

Note: If atable aready contains rows when a column is added, then the new column isinitialy null
for al the rows.

Introduction to Oracle: SQL and PL/SQL 10-17

Modifying a Column

* You can change a column’s datatype,
size, and default value.

SQL> ALTER TABLE dept30
2 MODIFY (ename VARCHAR2 (15)) ;

Table altered.

* A change to the default value affects
only subsequent insertions to the table.

10-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Modifying a Column

You can modify a column definition by using the ALTER TABLE statement with the MODIFY
clause. Column modification can include changes to a column’s datatype, size, and default value.

Guidelines
» Increase the width or precision of a numeric column.

» Decrease the width of a column if the column contains only null values and if the table has no
TOWS.

* Change the datatype if the column contains null values.

» Convert a CHAR column to the VARCHAR? datatype or convert a VARCHAR?2 column to the
CHAR datatype if the column contains null values or if you do not change the size.

» A change to the default value of a column affects only subsequent insertions to the table.

Introduction to Oracle: SQL and PL/SQL 10-18

Dropping a Column

You use the DROP COLUMN clause drop
columns you no longer need from the
table.

SQL> ALTER TABLE dept30
2 DROP COLUMN job ;

Table altered.

10-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Dropping a Column

You can drop a column from a table by using the ALTER TABLE statement with the DROP
COLUMN clause. This 1s a feature available from Oracle87 onward.

Guidelines

The column may or may not contain data.
Only one column can be dropped at a time.
The table must have at least one column remaining in it after it is altered.

Once a column is dropped, it cannot be recovered.

Introduction to Oracle: SQL and PL/SQL 10-19

SET UNUSED Option

* You use the SET UNUSED option to
mark one or more columns as unused.

* You use the DROP UNUSED COLUMNS
option to remove the columns that are
marked as UNUSED.

AL TER TABLE table
S (column) ;

OR
AT.TER TABLE table

COLUMN column;

ALTER TABLE table
DROP UNUSED COLUMNS;

10-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

SET UNUSED Option

The SET UNUSED option marks one or more columns as unused so that they can be dropped when
the demand on system resources is less. This is a feature available in Oracle8i. Specifying this clause
does not actually remove the target columns from each row in the table (that is, it does not restore the
disk space used by these columns). Therefore, the response time is faster than it would be if you
executed the DROP clause. Unused columns are treated as if they were dropped, even though their
column data remains in the table’s rows. After a column has been marked as unused, you have no
access to that column. A “SELECT *” query will not retrieve data from unused columns. In addition,
the names and types of columns marked unused will not be displayed during a DESCRIBE, and you
can add to the table a new column with the same name as an unused column.

DROP UNUSED COLUMNS Option

DROP UNUSED COLUMNS removes from the table all columns currently marked as unused. You
can use this statement when you want to reclaim the extra disk space from unused columns in the
table. If the table contains no unused columns, the statement returns with no errors.

SQL> ALTER TABLE dept30
2 SET UNUSED (ename) ;
Table altered.

SQL> ALTER TABLE dept30
2 DROP UNUSED COLUMNS;
Table altered.

Introduction to Oracle: SQL and PL/SQL 10-20

Dropping a Table

e All data and structure in the table is
deleted.

* Any pending transactions are
committed.

 All indexes are dropped.
* You cannot roll back this statement.

SQL> DROP TABLE dept30;

Table dropped.

10-21 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Dropping a Table

The DROP TABLE statement removes the definition of an Oracle8 table. When you drop a table, the
database loses all the data in the table and all the indexes associated with it.

Syntax
DROP TABLE table;,
where: table is the name of the table
Guidelines
* All data is deleted from the table.
* Any views and synonyms will remain but are invalid.
* Any pending transactions are committed.

* Only the creator of the table or a user with the DROP ANY TABLE privilege can remove a
table.
The DROP TABLE statement, once executed, is irreversible. The Oracle Server does not question the
action when you issue the DROP TABLE statement. If you own that table or have a high-level
privilege, then the table is immediately removed. All DDL statements issue a commit, therefore
making the transaction permanent.

Introduction to Oracle: SQL and PL/SQL 10-21

Changing the Name of an Object

* To change the name of a table, view,
sequence, or synonym, you execute the
RENAME statement.

SQL> RENAME dept TO department;
Table renamed.

* You must be the owner of the object.

10-22 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Renaming a Table

Additional DDL statements include the RENAME statement, which is used to rename a table, view,
sequence, or a synonym,

Syntax
RENAME old name TO new name;
where: old name is the old name of the table, view, sequence, or synonym

new name is the new name of the table, view, sequence, or synonym

You must be the owner of the object that you rename.

Introduction to Oracle: SQL and PL/SQL 10-22

Truncating a Table

e The TRUNCATE TABLE statement:
- Removes all rows from a table

- Releases the storage space used by
that table

SQL> TRUNCATE TABLE department;
Table truncated.

* You cannot roll back row removal when
using TRUNCATE.

* Alternatively, you can remove rows by
using the DELETE statement.

10-23 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Truncating a Table

Another DDL statement is the TRUNCATE TABLE statement, which is used to remove all rows
from a table and to release the storage space used by that table. When using the TRUNCATE TABLE
statement, you cannot rollback row removal.

Syntax
TRUNCATE TABLE table;
where: table is the name of the table
You must be the owner of the table or have DELETE TABLE system privileges to truncate a table.

The DELETE statement can also remove all rows from a table, but it does not release storage space.

Introduction to Oracle: SQL and PL/SQL 10-23

Adding Comments to a Table

* You can add comments to a table or
column by using the COMMENT
statement.

SQL> COMMENT ON TABLE emp
2 IS 'Employee Information';

Comment created.

e Comments can be viewed through the
data dictionary views.

— ALL_COL_COMMENTS
— USER_COL_COMMENTS
— ALL_TAB_COMMENTS
— USER_TAB_COMMENTS

10-24 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Adding a Comment to a Table

You can add a comment of up to 2,000 bytes about a column, table, view, or snapshot by using the
COMMENT statement. The comment is stored in the data dictionary and can be viewed in one of the
following data dictionary views in the COMMENTS column:

+ ALL COL COMMENTS

+ USER COL _COMMENTS

+ ALL TAB COMMENTS

+ USER TAB COMMENTS
Syntax

COMMENT ON TABLE table | COLUMN table.column

IS 'text!';
where: table 1s the name of the table
column 1s the name of the column in a table
text 1s the text of the comment

You can drop a comment from the database by setting it to empty string (' 7).

SQL> COMMENT ON TABLE emp IS ' ';

Introduction to Oracle: SQL and PL/SQL 10-24

Summary

Statement Description

CREATE TABLE Creates a table

ALTER TABLE Modifies table structures

DROP TABLE Removes the rows and table structure

RENAME Changes the name of a table, view,
sequence, or synonym

TRUNCATE Removes all rows from a table and
releases the storage space

COMMENT Adds comments to a table or view

10-25 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °
CREATE TABLE

+ Create atable.
» Create a table based on another table by using a subquery.
ALTER TABLE
* Modify table structures.
» Change column widths, change column datatypes, and add columns.
DROP TABLE
» Remove rows and a table structure.
» Once executed, this statement cannot be rolled back.
RENAME
» Rename atable, view, sequence, or synonym.
TRUNCATE
+ Remove all rows from a table and release the storage space used by the table.
» The DELETE statement removes only rows.
COMMENT
* Add a comment to a table or a column.

* Query the data dictionary to view the comment.

Introduction to Oracle: SQL and PL/SQL 10-25

Practice Overview

e Creating new tables

* Creating a new table by using the
CREATE TABLE AS syntax

* Modifying column definitions
 Verifying that the tables exist
 Adding comments to tables

* Dropping tables

* Altering tables

10-26 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE °

Practice Overview

Create new tables by using the CREATE TABLE statement. Confirm that the new table was added
to the database. Create the syntax in the command file, and then execute the command file to create
the table.

Introduction to Oracle: SQL and PL/SQL 10-26

Practice 10

1. Create the DEPARTMENT table based on the following table instance chart. Enter the
syntax in a script called p10gl. sql, then execute the script to create the table. Confirm that
the table is created.

Column Name Id Name

Key Type
Nulls/Unique
FK Table
FK Column
Datatype Number Varchar2
Length 7 25

ID NUMBER (7)
NAME VARCHARZ (25)

2. Populate the DEPARTMENT table with data from the DEPT table. Include only columns that
you need.

3. Create the EMPLOYEE table based on the following table instance chart. Enter the syntax in
a script called p10g3. sql, and then execute the script to create the table. Confirm that the table

is created.
Column Name | ID LAST NAME | FIRST NAME DEPT ID
Key Type
Nulls/Unique
FK Table
FK Column
Datatype Number Varchar2 Varchar2 Number
Length 7 25 25 7
Name Null? Type
1D NUMBER (7)
LAST NAME VARCHAR?2 (25)
FIRST NAME VARCHAR2 (25)
DEPT ID NUMBER (7)

Introduction to Oracle: SQL and PL/SQL 10-27

Practice 10 (continued)

4.

10.

1.

12.

Modify the EMPLOYEE table to allow for longer employee last names. Confirm your
modification.

Name Null? Type

1D NUMBER (7)
LAST NAME VARCHAR?2 (50)
FIRST NAME VARCHAR2 (25)
DEPT ID NUMBER (7)

Confirm that both the DEPARTMENT and EMPLOYEE tables are stored 1n the data
dictionary. (Hint: USER_TABLES)

TABLE NAME

DEPARTMENT
EMPLOYEE

Create the EMPLOYEE? table based on the structure of the EMP table. Include only the
EMPNO, ENAME, and DEPTNO columns. Name the columns in your new table ID,
LAST NAME, and DEPT ID, respectively.

Drop the EMPLOYEE table.
Rename the EMPLOYEE?2 table to EMPLOYEE.

Add a comment to the DEPARTMENT and EMPLOYEE table definitions describing the
tables. Confirm your additions in the data dictionary.

Drop the LAST NAME column from the EMPLOYEE table. Confirm your modification by
checking the description of the table.

Create the EMPLOY EE2 table based on the structure of the EMP table. Include only the
EMPNO, ENAME, and DEPTNO columns. Name the columns in your new table ID,

LAST NAME, and DEPT _ID, respectively. Mark the DEPT ID column in the EMPLOYEE2
table as UNUSED. Confirm your modification by checking the description of the table.

Drop all the UNUSED columns from the EMPLOY EE2 table. Confirm your modification by
checking the description of the table.

Introduction to Oracle: SQL and PL/SQL 10-28

1

Including Constraints

Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Objectives

After completing this lesson, you should
be able to do the following:

e Describe constraints
* Create and maintain constraints

11-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Lesson Aim

In this lesson, you will learn how to implement business rules by including integrity constraints.

Introduction to Oracle: SQL and PL/SQL 11-2

What Are Constraints?

e Constraints enforce rules at the table level.

* Constraints prevent the deletion of a table
if there are dependencies.

* The following constraint types are valid in
Oracle:

- NOT NULL

- UNIQUE

- PRIMARY KEY
— FOREIGN KEY
- CHECK

11-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Constraints
The Oracle Server uses constraints to prevent invalid data entry into tables.
You can use constraints to do the following:

» Enforce rules at the table level whenever a row is inserted, updated, or deleted from that table.
The constraint must be satisfied for the operation to succeed.

» Prevent the deletion of a table if there are dependencies from other tables.
» Provide rules for Oracle tools, such as Oracle Developer.
Data Integrity Constraints

Constraint Description
NOT NULL Specifies that this column may not contain a null value
UNIQUE Specifies a column or combination of columns whose values must be

unique for all rows in the table

PRIMARY KEY Uniquely identifies each row of the table

FOREIGN KEY Establishes and enforces a foreign key relationship between the
column and a column of the referenced table

CHECK Specifies a condition that must be true

For more information, see Oracle Server SQL Reference, Release 8, “CONSTRAINT Clause.”

Introduction to Oracle: SQL and PL/SQL 11-3

Constraint Guidelines

e Name a constraint or the Oracle Server will
generate a name by using the SYS_Cn
format.

e Create a constraint:
- At the same time as the table is created
- After the table has been created

e Define a constraint at the column or table
level.

* View a constraint in the data dictionary.

11-4 Copyright © Oracle Corporation, 1999. All rights reserved. (OIRACLE”

Constraint Guidelines

All constraints are stored in the data dictionary. Constraints are easy to reference if you give them a
meaningful name. Constraint names must follow the standard object-naming rules. If you do not
name your constraint, Oracle generates a name with the format SYS Cr, where # is an integer to
create a unique constraint name.

Constraints can be defined at the time of table creation or after the table has been created.

You can view the constraints defined for a specific table by looking at the USER_ CONSTRAINTS
data dictionary table.

Introduction to Oracle: SQL and PL/SQL 11-4

Defining Constraints

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr]
[column constraint],

[table constraint][,...]);

CREATE TABLE emp (
empno NUMBER(4),
ename VARCHARZ2 (10),

deptno NUMBER(2) NOT NULL,
CONSTRAINT emp_ empno_pk
PRIMARY KEY (EMPNO)) ;

115 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Defining Constraints

The slide gives the syntax for defining constraints while creating a table.

In the syntax:

schema 1s the same as the owner’s name

table 1s the name of the table

DEFAULT expr specifies a default value if a value is omitted in the INSERT statement

column 1s the name of the column

datatype is the column’s datatype and length
column_constraint is an integrity constraint as part of the column definition

table constraint s an integrity constraint as part of the table definition

For more information, see Oracle Server SQL Reference, Release 8, “CREATE TABLE.”

Introduction to Oracle: SQL and PL/SQL 11-5

Defining Constraints

e Column constraint level

| column [CONSTRAINT constraint name] constraint type, I

e Table constraint level

column, ...
[CONSTRAINT constraint name] constraint type

(column, ...),

11-6 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Defining Constraints (continued)

Constraints are usually created at the same time as the table. Constraints can be added to a table after
its creation and also temporarily disabled.

Constraints can be defined at one of two levels.

Constraint | Description

Level

Column References a single column and is defined within a specification for the
owning column; can define any type of integrity constraint

Table References one or more columns and is defined separately from the definitions
of the columns in the table; can define any constraints except NOT NULL

In the syntax:
constraint_name is the name of the constraint

constraint_type is the type of the constraint

Introduction to Oracle: SQL and PL/SQL 11-6

The NOT NULL Constraint

Ensures that null values are not permitted
for the column

EMP
EMPNO| ENAME | JOB ...| COMM | DEPTNO
7839| KING PRESIDENT 10
7698| BLAKE | MANAGER 30
7782| CLARK| MANAGER 10
7566| JONES | MANAGER 20

NOT NULL constraint Absence of NOT NULL NOT NULL constraint
(no row can contain constraint
a null value for (any row can contain
this column) null for this column)
11-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE

The NOT NULL Constraint

The NOT NULL constraint ensures that null values are not allowed in the column. Columns without
the NOT NULL constraint can contain null values by default.

Introduction to Oracle: SQL and PL/SQL 11-7

The NOT NULL Constraint

Defined at the column level

2

O 0O Joy U1 x W

SQL> CREATE TABLE emp (

empno NUMBER (4) ,

ename VARCHAR2 (10) NOT NULL,
job VARCHARZ2 (9) ,

mgr NUMBER (4) ,

hiredate DATE,

sal NUMBER (7,2) ,

comm NUMBER(7,2) ,

deptno NUMBER(7,2) NOT NULL) ;

Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

The NOT NULL Constraint (continued)
The NOT NULL constraint can be specified only at the column level, not at the table level.

The slide example applies the NOT NULL constraint to the ENAME and DEPTNO columns of the
EMP table. Because these constraints are unnamed, the Oracle Server will create names for them.

You can specify the name of the constraint while specifying the constraint.

. deptno NUMBER(7,2)

CONSTRAINT emp deptno nn NOT NULL...

Note: All the constraint examples described in this lesson may not be present in the sample tables

provided with the

course. If desired, these constraints can be added to the tables.

Introduction to Oracle: SQL and PL/SQL 11-8

The UNIQUE KEY Constraint

UNIQUE key constraint
DEPT r

DEPTNO | DNAME LOoC

10| ACCOUNTING|NEW YORK
20 | RESEARCH DALLAS
30| SALES CHICAGO

40 | OPERATIONS | BOSTON

}Insert into Not allowed

50 [SALES DETROIT (DNAME-SALES
already exists)

Allowed

BOSTON

119 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

The UNIQUE Key Constraint

A UNIQUE key integrity constraint requires that every value in a column or set of columns (key) be
unique—that is, no two rows of a table have duplicate values in a specified column or set of columns.
The column (or set of columns) included in the definition of the UNIQUE key constraint is called the
unique key. If the UNIQUE key comprises more than one column, that group of columns is said to be
a composite unique key.

UNIQUE key constraints allow the input of nulls unless you also define NOT NULL constraints for
the same columns. In fact, any number of rows can include nulls for columns without NOT NULL
constraints because nulls are not considered equal to anything. A null in a column (or in all columns
of a composite UNIQUE key) always satisfics a UNIQUE key constraint.

Note: Because of the search mechanism for UNIQUE constraints on more than one column, you
cannot have identical values in the non-null columns of a partially null composite UNIQUE key
constraint.

Introduction to Oracle: SQL and PL/SQL 11-9

The UNIQUE KEY Constraint

Defined at either the table level or the column

level
SQL> CREATE TABLE dept (
2 deptno NUMBER (2) ,
3 dname VARCHAR2 (14) ,
4 loc VARCHAR2 (13),
5 CONSTRAINT dept dname uk UNIQUE (dname)) ;

11-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

The UNIQUE Key Constraint (continued)

UNIQUE key constraints can be defined at the column or table level. A composite unique key is
created by using the table level definition.

The example on the slide applies UNIQUE key constraint to the DNAME column of the DEPT table.
The name of the constraint is DEPT DNAME UK.

Note: The Oracle Server enforces the UNIQUE key constraint by implicitly creating a unique index
on the unique key.

Introduction to Oracle: SQL and PL/SQL 11-10

The PRIMARY KEY Constraint

PRIMARY KEY
DEPT r

DEPTNO | DNAME LOoC

10| ACCOUNTING|NEW YORK
20 | RESEARCH DALLAS
30| SALES CHICAGO

40 | OPERATIONS | BOSTON

[insert into Not allowed (DEPTNO
20 |MARKETING |DALLAS 20 already exists)

Not allowed
(DEPTNO is null)

NEW YORK

FINANCE

11-11 Copyright © Oracle Corporation, 1999. All rights reserved. (OIRACLE”

The PRIMARY KEY Constraint

A PRIMARY KEY constraint creates a primary key for the table. Only one primary key can be
created for a each table. The PRIMARY KEY constraint is a column or set of columns that uniquely
identifies each row in a table. This constraint enforces uniqueness of the column or column
combination and ensures that no column that is part of the primary key can contain a null value.

Introduction to Oracle: SQL and PL/SQL 11-11

The PRIMARY KEY Constraint

Defined at either the table level or the column

level
SQL> CREATE TABLE dept (
2 deptno NUMBER (2) ,
3 dname VARCHAR2 (14) ,
4 loc VARCHAR2 (13) ,
5 CONSTRAINT dept dname uk UNIQUE (dname),
6 CONSTRAINT dept deptno pk PRIMARY KEY (deptno)) ;

11-12 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

The PRIMARY KEY Constraint (continued)

PRIMARY KEY constraints can be defined at the column level or table level. A composite
PRIMARY KEY is created by using the table level definition.

The example on the slide defines a PRIMARY KEY constraint on the DEPTNO column of the DEPT
table. The name of the constraint is DEPT DEPTNO PK.

Note: A UNIQUE index is automatically created for a PRIMARY KEY column.

Introduction to Oracle: SQL and PL/SQL 11-12

The FOREIGN KEY Constraint

DEPT
PRIMARY === | DEPTNO | DNAME LOC
KEY
10 | ACCOUNTING|NEW YORK
20 | RESEARCH DALLAS
EMP
EMPNO |ENAME | JOB ... | comm DEP*NO FOREIGN
KEY
7839 |KING | PRESIDENT 10
7698 |BLAKE | MANAGER 30
Not allowed
| tint (DEPTNO 9
- r nsert into does not exist
in the DEPT
7571 |FORD | MANAGER ... | 200 9 table)
7571 |FORD | MANAGER ... | 200 20 Allowed
11-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

The FOREIGN KEY Constraint

The FOREIGN KEY, or referential integrity constraint, designates a column or combination of
columns as a foreign key and establishes a relationship between a primary key or a unique key in the
same table or a different table. In the example on the slide, DEPTNO has been defined as the foreign
key in the EMP table (dependent or child table); it references the DEPTNO column of the DEPT
table (referenced or parent table).

A foreign key value must match an existing value in the parent table or be NULL.

Foreign keys are based on data values and are purely logical, not physical, pointers.

Introduction to Oracle: SQL and PL/SQL 11-13

The FOREIGN KEY Constraint

Defined at either the table level or the
column level

SQL> CREATE TABLE emp (

2 empno NUMBER (4) ,

3 ename VARCHAR2 (10) NOT NULL,

4 job VARCHARZ2 (9) ,

5 mgr NUMBER (4) ,

6 hiredate DATE,

7 sal NUMBER (7,2) ,

8 comm NUMBER(7,2) ,

9 deptno NUMBER (7,2) NOT NULL,
10 CONSTRAINT emp_deptno_fk FOREIGN KEY (deptno)
11 REFERENCES dept (deptno));

11-14 Copyright © Oracle Corporation, 1999. All rights reserved. (OIRACLE”

The FOREIGN KEY Constraint (continued)

FOREIGN KEY constraints can be defined at the column or table constraint level. A composite
foreign key must be created by using the table-level definition.

The example on the slide defines a FOREIGN KEY constraint on the DEPTNO column of the EMP
table, using table level syntax. The name of the constraint is EMP_DEPTNO_FK.

The foreign key can also be defined at the column level, provided the constraint is based on a single
column. The syntax differs in that the keywords FOREIGN KEY do not appear. For example:

SQL> CREATE TABLE emp

(..
deptno NUMBER (2) CONSTRAINT emp_deptno fk REFERENCES

dept (deptno) ,

Introduction to Oracle: SQL and PL/SQL 11-14

FOREIGN KEY Constraint
Keywords

* FOREIGN KEY: Defines the column in
the child table at the table constraint
level

« REFERENCES: Identifies the table and
column in the parent table

* ON DELETE CASCADE: Allows deletion
in the parent table and deletion of the
dependent rows in the child table

11-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

The FOREIGN KEY Constraint (continued)

The foreign key is defined in the child table, and the table containing the referenced column is the
parent table. The foreign key is defined using a combination of the following keywords:

FOREIGN KEY is used to define the column in the child table at the table constraint level.
REFERENCES identifies the table and column in the parent table.

ON DELETE CASCADE indicates that when the row in the parent table is deleted, the
dependent rows in the child table will also be deleted.

Without the ON DELETE CASCADE option, the row in the parent table cannot be deleted if it is
referenced in the child table.

Introduction to Oracle: SQL and PL/SQL 11-15

The CHECK Constraint

* Defines a condition that each row must
satisfy

» Expressions that are not allowed:
- References to CURRVAL, NEXTVAL,
LEVEL, and ROWNUM pseudocolumns
— Calls to SYSDATE, UID, USER, and
USERENYV functions

— Queries that refer to other values in other
rows
., deptno NUMBER(2),

CONSTRAINT emp deptno ck
CHECK (DEPTNO BETWEEN 10 AND 99),...

11-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

The CHECK Constraint

The CHECK constraint defines a condition that each row must satisfy. The condition can use the
same constructs as query conditions, with the following exceptions:

References to the CURRVAL, NEXTVAL, LEVEL, and ROWNUM pseudocolumns
Calls to SYSDATE, UID, USER, and USERENYV functions
Queries that refer to other values in other rows

A single column can have multiple CHECK constraints that reference the column in its definition.
There is no limit to the number of CHECK constraints that you can define on a column.

CHECK constraints can be defined at the column level or table level.

Introduction to Oracle: SQL and PL/SQL 11-16

Adding a Constraint

ALTER TABLE table
ADD [CONSTRAINT constraint] type (column)

e Add or drop, but not modify, a
constraint
e Enable or disable constraints

 Add a NOT NULL constraint by using
the MODIFY clause

1117 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Adding a Constraint

You can add a constraint for existing tables by using the ALTER TABLE statement with the ADD
clause.

In the syntax:

table is the name of the table

constraint is the name of the constraint

fype is the constraint type

column is the name of the column affected by the constraint

The constraint name syntax is optional, although recommended. If you do not name your constraints,
the system will generate constraint names.

Guidelines
* You can add, drop, enable, or disable a constraint, but you cannot modify its structure.

* You can add a NOT NULL constraint to an existing column by using the MODIFY clause of
the ALTER TABLE statement.

Note: You can defineaNOT NULL column only if the table contains no rows, because data cannot
be specified for existing rows at the same time that the column is added.

Introduction to Oracle: SQL and PL/SQL 11-17

Adding a Constraint

Add a FOREIGN KEY constraint to the
EMP table indicating that a manager must

already exist as a valid employee in the
EMP table.

SQL> ALTER TABLE emp
2 ADD CONSTRAINT emp mgr fk

3 FOREIGN KEY (mgr) REFERENCES emp (empno) ;
Table altered.

11-18

Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLE"

Adding a Constraint (continued)

The example on the slide creates a FOREIGN KEY constraint on the EMP table. The constraint
ensures that a manager exists as a valid employee in the EMP table.

Introduction to Oracle: SQL and PL/SQL 11-18

Dropping a Constraint

* Remove the manager constraint from
the EMP table.

SQL> ALTER TABLE emp
2 DROP CONSTRAINT emp mgr fk;
Table altered.

* Remove the PRIMARY KEY constraint

on the DEPT table and drop the
associated FOREIGN KEY constraint on
the EMP.DEPTNO column.

SQL> ALTER TABLE dept
2 DROP PRIMARY KEY CASCADE;
Table altered.

11-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Dropping a Constraint
To drop a constraint, you can identify the constraint name from the USER_ CONSTRAINTS and

USER _CONS COLUMNS data dictionary views. Then use the ALTER TABLE statement with the
DROP clause. The CASCADE option of the DROP clause causes any dependent constraints also to

be dropped.
Syntax
ALTER TABLE table

DROP PRIMARY KEY | UNIQUE (column) |
CONSTRAINT constraint [CASCADE];

where: table 1s the name of the table
column is the name of the column affected by the constraint
constraint 1s the name of the constraint

When you drop an integrity constraint, that constraint is no longer enforced by the Oracle Server and

is no longer available in the data dictionary.

Introduction to Oracle: SQL and PL/SQL 11-19

Disabling Constraints

 Execute the DISABLE clause of the
ALTER TABLE statement to deactivate
an integrity constraint.

* Apply the CASCADE option to disable
dependent integrity constraints.

SQL> ALTER TABLE emp
2 DISABLE CONSTRAINT emp empno_pk CASCADE;

Table altered.

11-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Disabling a Constraint

You can disable a constraint without dropping it or re-creating it by using the ALTER TABLE
statement with the DISABLE clause.

Syntax

ALTER TABLE table
DISABLE CONSTRAINT constraint [CASCADE];

where: table is the name of the table
constraint is the name of the constraint
Guidelines
* You can use the DISABLE clause in both the CREATE TABLE statement and the ALTER
TABLE statement.

» The CASCADE clause disables dependent integrity constraints.

Introduction to Oracle: SQL and PL/SQL 11-20

Enabling Constraints

» Activate an integrity constraint currently
disabled in the table definition by using
the ENABLE clause.

SQL> ALTER TABLE emp
2 ENABLE CONSTRAINT emp empno_pk;
Table altered.

* A UNIQUE or PRIMARY KEY index is
automatically created if you enable a
UNIQUE key or PRIMARY KEY
constraint.

11-21 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Enabling a Constraint

You can enable a constraint without dropping it or re-creating it by using the ALTER TABLE
statement with the ENABLE clause.

Syntax

ALTER TABLE table
ENABLE CONSTRAINT constraint;

where: table 1s the name of the table
constraint 1s the name of the constraint
Guidelines

» If you enable a constraint, that constraint applies to all the data in the table. All the data in the
table must fit the constraint.

+ If you enable a UNIQUE key or PRIMARY KEY constraint, a UNIQUE or PRIMARY KEY
index is automatically created.

* You can use the ENABLE clause in both the CREATE TABLE statement and the ALTER
TABLE statement.

Introduction to Oracle: SQL and PL/SQL 11-21

Cascading Constraints

e The CASCADE CONSTRAINTS clause is
used along with the DROP COLUMN
clause.

e The CASCADE CONSTRAINTS clause
drops all referential integrity constraints
that refer to the primary and unique
keys defined on the dropped columns.

11-22 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Cascading CONSTRAINTS

This statement illustrates the usage of the CASCADE CONSTRAINTS clause. Assume table test] is
created as follows:

SQL> CREATE TABLE testl (
2 pk NUMBER PRIMARY KEY,
fk NUMBER,
coll NUMBER,
col2 NUMBER,
CONSTRAINT fk constraint FOREIGN KEY (fk) REFERENCES testl,
CONSTRAINT ckl CHECK (pk > 0 and coll > 0),
CONSTRAINT ck2 CHECK (col2 > 0)):

0 g o0 0 ke W

An error will be returned for the following statements:
SQL> ALTER TABLE testl DROP (pk) ; -- pkis aparent key
SQL> ALTER TABLE testl DROP (coll); --clisreferenced by multicolumn constraint ck1

Introduction to Oracle: SQL and PL/SQL 11-22

Cascading Constraints

The CASCADE CONSTRAINTS clause also
drops all multicolumn constraints defined

on the dropped columns.

11-23 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Cascading CONSTRAINTS (continued)

Submitting the following statement drops column pk, the primary key constraint, the foreign key
constraint, fk _constraint, and the check constraint, ck1:

SQL> ALTER TABLE testl DROP (pk) CASCADE CONSTRAINTS;

If all columns referenced by the constraints defined on the dropped columns are also dropped, then
CASCADE CONSTRAINTS is not required. For example, assuming that no other referential
constraints from other tables refer to column PK, then it is valid to submit the following statement

without the CASCADE CONSTRAINTS clause:

SQL> ALTER TABLE testl DROP (pk, fk, coll):;

Introduction to Oracle: SQL and PL/SQL 11-23

Viewing Constraints

Query the USER_CONSTRAINTS table to
view all constraint definitions and names.

SQL> SELECT constraint name, constraint type,

2 search condition
3 FROM user constraints
4 WHERE table_name = 'EMP';

CONSTRAINT NAME C SEARCH CONDITION
SYS_C00674 C EMPNO IS NOT NULL
SYS_C00675 C DEPTNO IS NOT NULL
EMP_EMPNO PK P

11-24 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Viewing Constraints

After creating a table, you can confirm its existence by issuing a DESCRIBE command. The only
constraint that you can verify is the NOT NULL constraint. To view all constraints on your table,
query the USER_ CONSTRAINTS table.

The example on the slide displays all the constraints on the EMP table.

Note: Constraints that are not named by the table owner receive the system-assigned constraint name.
In constraint type, C stands for CHECK, P for PRIMARY KEY, R for referential integrity, and U for
UNIQUE key. Notice that the NOT NULL constraint is really a CHECK constraint.

Introduction to Oracle: SQL and PL/SQL 11-24

Viewing the Columns
Associated with Constraints
View the columns associated with the

constraint names in the
USER_CONS_COLUMNS view.

SQL> SELECT constraint name, column name
2 FROM user_cons_columns
3 WHERE table name = 'EMP';

CONSTRAINT NAME COLUMN_NAME
EMP_DEPTNO FK DEPTNO
EMP_EMPNO PK EMPNO
EMP_MGR FK MGR
SYS_C00674 EMPNO

SYS C00675 DEPTNO

11-25 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Viewing Constraints (continued)

You can view the names of the columns involved in constraints by querying the
USER _CONS COLUMNS data dictionary view. This view is especially useful for constraints that
use the system-assigned name.

Introduction to Oracle: SQL and PL/SQL 11-25

Summary

 Create the following types of constraints:
- NOT NULL
- UNIQUE
- PRIMARY KEY
- FOREIGN KEY
- CHECK

* Query the USER_CONSTRAINTS table to
view all constraint definitions and names.

11-26 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Summary

The Oracle Server uses constraints to prevent invalid data entry into tables.

The following constraint types are valid:
NOT NULL
UNIQUE
PRIMARY KEY
FOREIGN KEY
CHECK

You can query the USER_ CONSTRAINTS table to view all constraint definitions and names.

Introduction to Oracle: SQL and PL/SQL 11-26

Practice Overview

* Adding constraints to existing tables
 Adding more columns to a table

e Displaying information in data
dictionary views

11-27 Copyright © Oracle Corporation, 1999. All rights reserved. ORALCLES

Practice Overview

In this practice, you will add constraints and more columns to a table using the statements covered
in this lesson.

Note: It is recommended that you to name the constraints that you will be defining during the
practices.

Introduction to Oracle: SQL and PL/SQL 11-27

Practice 11

1. Add atable-level PRIMARY KEY constraint to the EMPLOYEE table using the ID column.
The constraint should be named at creation.

Hint: The constraint is enabled as soon as the ALTER TABLE command executes successfully.

2. Create a PRIMARY KEY constraint on the DEPARTMENT table using the ID column. The
constraint should be named at creation.

Hint: The constraint is enabled as soon as the ALTER TABLE command executes successfully.

3. Add a foreign key reference on the EMPLOYEE table that will ensure that the employee is
not assigned to a nonexistent department.

4. Confirm that the constraints were added by querying USER_ CONSTRAINTS. Note the types
and names of the constraints. Save your statement text in a file called p11g4.sgl.

CONSTRAINT NAME C
DEPARTMENT ID PK P
EMPLOYEE ID PK P
EMPLOYEE DEPT ID FK R

5. Display the object names and types from the USER_OBJECTS data dictionary view for
EMPLOYEE and DEPARTMENT tables. You may want to format the columns for
readability. Notice that the new tables and a new index were created.

OBJECT NAME OBJECT TYPE
DEPARTMENT TABLE
DEPARTMENT ID PK INDEX
EMPLOYEE TABLE

EMPLOYEE TID PK INDEX

If you have time, complete the following exercise:
6. Modify the EMPLOYEE table. Add a SALARY column of NUMBER datatype, precision 7.

Introduction to Oracle: SQL and PL/SQL 11-28

aJ ,

—l

Creating Views

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Objectives

After completing this lesson, you should
be able to do the following:

e Describe a view

e Create a view

* Retrieve data through a view
* Alter the definition of a view

* Insert, update, and delete data through
aview

* Drop a view

12-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Lesson Aim

In this lesson, you will learn to create and use views. You will also learn to query the relevant data
dictionary object to retrieve information about views.

Introduction to Oracle: SQL and PL/SQL 12-2

Objectives

After completing this lesson, you should
be able to do the following:

* Describe an inline view
e Perform “Top-N” Analysis

12-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Lesson Aim

In this lesson, you will also learn to create and use inline views, and perform Top-N analysis using
inline-views.

Introduction to Oracle: SQL and PL/SQL 12-3

Database Objects

Object Description

Table Basic unit of storage; composed of rows
and columns

View Logically represents subsets of data from
one or more tables

Sequence Generates primary key values

Index Improves the performance of some queries

Synonym Alternative name for an object

12-4

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Introduction to Oracle: SQL and PL/SQL 12-4

What Is a View?

EMP Table
EMPNO ENAME JOB MGR HIREDATE SAL, COMM DEPTNO
EMPVU10 View 20
_EMPNO ENAME __ JOB________ 20
7839 KING PRESIDENT -
7782 CLARK MANAGER 400 30
7934 MILLER CLERK 300 30
0 0 30
7900 JAMES CLERK 7698 03-DEC-81 950 30
7521 WARD SATESMAN 7698 22-FEB-81 1250 500 30

125 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

What Is a View?

You can present logical subsets or combinations of data by creating views of tables. A view isa
logical table based on atable or another view. A view contains no data of itsown but islike a
window through which data from tables can be viewed or changed. The tables on which aview is
based are called base tables. The view is stored as a SELECT statement in the data dictionary.

Introduction to Oracle: SQL and PL/SQL 12-5

Why Use Views?

* To restrict data access
 To make complex queries easy
* To allow data independence

* To present different views of the same
data

126 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Advantages of Views
» Views restrict access to the data because the view can display selective columns from the table.

* Views allow users to make simple queries to retrieve the results from complicated queries. For
example, views allow users to query information from multiple tables without knowing how to
write a join statement.

» Views provide data independence for ad hoc users and application programs. One view can be
used to retrieve data from several tables.

» Views provide groups of users access to data according to their particular criteria.
For more information, see Oracle Server SOL Reference, Release 8, “CREATE VIEW.”

Introduction to Oracle: SQL and PL/SQL 12-6

Simple Views
and Complex Views

Feature Simple Views | Complex Views
Number of tables One One or more
Contain functions No Yes

Contain groups of data | No Yes

DML through view Yes Not always

12-7 Copyright @ Oracle Corporation, 1999. Al rights reserved. (D[R ACLE”®

Simple Views Versus Complex Views

There are two classifications for views: simple and complex. The basic difference is related to the
DML (insert, update, and delete) operations.

* A simple view is one that:
— Derives data from only one table
— Contains no functions or groups of data
— Can perform DML through the view
* A complex view is one that:
— Derives data from many tables
— Contains functions or groups of data

— Does not always allow DML through the view

Introduction to Oracle: SQL and PL/SQL 12-7

Creating a View

* You embed a subquery within the

CREATE VIEW statement.
CREATE [OR REPLACE] [FORCE |NOFORCE] VIEW view
[(alias[, alias]...)]

AS subquery
[WITH CHECK OPTION [CONSTRAINT constraint]]
[WITH READ ONLY];

* The subquery can contain complex
SELECT syntax.

* The subquery cannot contain an ORDER
BY clause.

12-8 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Creating a View
You can create a view by embedding a subquery within the CREATE VIEW statement.
In the syntax:

OR REPLACE re-creates the view if it already exists

FORCE creates the view regardless of whether or not the base tables exist
NOFORCE creates the view only if the base tables exist (This is the default.)
view is the name of the view

alias specifies names for the expressions selected by the view’s query

(The number of aliases must match the number of expressions
selected by the view.)

subquery is a complete SELECT statement (You can use aliases for the
columns in the SELECT list.)

WITH CHECK OPTION specifies that only rows accessible to the view can be inserted or
updated

constraint is the name assigned to the CHECK OPTION constraint
WITH READ ONLY ensures that no DML operations can be performed on this view

Introduction to Oracle: SQL and PL/SQL 12-8

Creating a View

e Create a view, EMPVU10, that contains
details of employees in department 10.

SQL> CREATE VIEW empvulO
2 AS SELECT empno, ename, Jjob
3 FROM emp
4 WHERE deptno = 10;
View created.

* Describe the structure of the view by
using the SQL*Plus DESCRIBE

command.
| SQL> DESCRIBE empvulO I
12-9 Copyright © Oracle Corporation, 1999. All rights reserved. (OIRACLE”

Creating a View (continued)
The example on the slide creates a view that contains the employee number, name, and job title for
all the employees in department 10.
You can display the structure of the view by using the SQL*Plus DESCRIBE command.

Name Null? Type

EMPNO NOT NULL NUMBER (4)
ENAME VARCHAR?2 (10)
JOB VARCHAR?2 (9)

Guidelines for creating a view:
» The subquery that defines a view can contain complex SELECT syntax, including joins,
groups, and subqueries.
» The subquery that defines the view cannot contain an ORDER BY clause. The ORDER BY
clause is specified when you retrieve data from the view.
+ If you do not specify a constraint name for a view created with the CHECK OPTION, the
system will assign a default name in the format SYS Cn.

* You can use the OR REPLACE option to change the definition of the view without dropping
and re-creating it or regranting object privileges previously granted on it.

Introduction to Oracle: SQL and PL/SQL 12-9

Creating a View

» Create a view by using column aliases
in the subquery.

SQL> CREATE VIEW salvu30
2 AS SELECT empno EMPLOYEE NUMBER, ename NAME,
3 sal SALARY
4 FROM emp
5 WHERE deptno = 30;
View created.

 Select the columns from this view by
the given alias names.

12-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Creating a View (continued)
You can control the column names by including column aliases within the subquery.

The example on the slide creates aview containing the employee number (empno) with the alias
EMPLOYEE_NUMBER, name (ename) with the dias NAME, and salary (sal) with the dias
SALARY for department 30.

Alternatively, you can control the column names by including column diasesin the CREATE VIEW
clause.

Introduction to Oracle: SQL and PL/SQL 12-10

Retrieving Data from a View

SQL> SELECT *
2 FROM salvu30;

EMPLOYEE NUMBER NAME SALARY
7698 BLAKE 2850
7654 MARTIN 1250
7499 ALLEN 1600
7844 TURNER 1500
7900 JAMES 950
7521 WARD 1250

6 rows selected.

12-11 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Retrieving Data from a View

You can retrieve data from a view as you would from any table. You can either display the contents
of the entire view or just view specific rows and columns.

Introduction to Oracle: SQL and PL/SQL 12-11

Querying a View

7~ SQL*Plus)

SELECT - USER_VIEWS
. ' ot EMPVU10
FROM empvu10; SELECT empno, ename, job
FROM emp
WHERE deptno = 10;
7839 KING PRESIDENT v
7782 CLARK MANAGER EMP
\7934 MILLER CLERK

12-12 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Views in the Data Dictionary

Once your view has been created, you can query the data dictionary table called USER_VIEWS to
see the name of the view and the view definition. The text of the SELECT statement that constitutes
your view is stored in a LONG column.

Data Access Using Views
When vou access data, using a view, the Oracle Server performs the following operations:
1. Retrieves the view definition from the data dictionary table USER VIEWS.
2. Checks access privileges for the view base table.

3. Converts the view query into an equivalent operation on the underlying base table or tables. In
other words, data is retrieved from, or an update made to, the base table(s).

Introduction to Oracle: SQL and PL/SQL 12-12

Modifying a View

* Modify the EMPVU10 view by using
CREATE OR REPLACE VIEW clause. Add
an alias for each column name.

SQL> CREATE OR REPLACE VIEW empvulO

2 (employee number, employee name, Jjob title)
3 AS SELECT empno, ename, Jjob

4 FROM emp

5 WHERE deptno = 10;

View created.

e Column aliases in the CREATE VIEW
clause are listed in the same order as the
columns in the subquery.

12-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Modifying a View
The OR REPLACE option allows a view to be created even if one exists with this name already, thus
replacing the old version of the view for its owner. This means that the view can be altered without
dropping, re-creating, and regranting object privileges.
Note: When assigning column aliases in the CREATE VIEW clause, remember that the aliases are
listed in the same order as the columns in the subquery.

Introduction to Oracle: SQL and PL/SQL 12-13

Creating a Complex View

Create a complex view that contains group
functions to display values from two tables.

SQL> CREATE VIEW dept_sum_ vu
2 (name, minsal, maxsal, avgsal)
3 AS SELECT d.dname, MIN(e.sal), MAX(e.sal),
4 AVG (e.sal)
5 FROM emp e, dept d
6 WHERE e.deptno = d.deptno
7 GROUP BY d.dname;
View created.

12-14 Copyright © Oracle Corporation, 1999. Al rights reserved. (ORACLE”

Creating a Complex View

The example on the slide creates a complex view of the department names, minimum salary,
maximum salary, and average salary by the department. Note that alternative names have been
specified for the view. This is a requirement if any column of the view is derived from a function or
an expression.

You can view the structure of the view by using the SQL*Plus DESCRIBE command. Display the
contents of the view by issuing a SELECT statement.

SQL> SELECT *

2 FROM dept sum wvu;
NAME MINSAL MAXSAL AVGSAL
ACCOUNTING 1300 5000 2916.6667
RESEARCH 800 3000 2175
SALES 950 2850 1566.60667

Introduction to Oracle: SQL and PL/SQL 12-14

Rules for Performing
DML Operations on a View

* You can perform DML operations on simple
views.

e You cannot remove a row if the view
contains the following:

— Group functions

- A GROUP BY clause

— The DISTINCT keyword

— The pseudocolumn ROWNUM keyword

12-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Performing DML Operations on a View
You can perform DML operations on data through a view if those operations follow certain rules.
You can remove a row from a view unless it contains any of the following:
Group functions
A GROUP BY clause
The pseudocolumn ROWNUM keyword

Introduction to Oracle: SQL and PL/SQL 12-15

Rules for Performing
DML Operations on a View

- Any of the conditions mentioned in the
previous slide

— Columns defined by expressions
— The ROWNUM pseudocolumn
* You cannot add data if:

- The view contains any of the conditions
mentioned above or in the previous slide

— There are NOT NULL columns in the base
tables that are not selected by the view

12-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

* You cannot modify data in a view if it contains:

Performing DML Operations on a View (continued)

You can modify data in a view unless it contains any of the conditions mentioned in the previous slide

and any of the following:

Columns defined by expressions—for example, SAL * 12
The ROWNUM pseudocolumn

You can add data through a view unless it contains any of the above and there are NOT NULL

columns, without a default value, in the base table that are not selected by the view. All required
values must be present in the view. Remember that you are adding values directly into the underlying

table through the view.
For more information, see Oracle8 Server SQL Reference, Release 8, “CREATE VIEW.”

Introduction to Oracle: SQL and PL/SQL 12-16

Using the WITH CHECK OPTION

Clause
* You can ensure that DML on the view stays
within the domain of the view by using the
WITH CHECK OPTION clause.

SQL> CREATE OR REPLACE VIEW empvu20

2 AS SELECT *
3 FROM emp
4 WHERE deptno = 20

5 WITH CHECK OPTION CONSTRAINT empvu20_ck;
View created.

* Any attempt to change the department
number for any row in the view will fail
because it violates the WITH CHECK OPTION

constraint.

12-17 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Using the WITH CHECK OPTION Clause

It is possible to perform referential integrity checks through views. You can also enforce constraints
at the database level. The view can be used to protect data integrity, but the use is very limited.

The WITH CHECK OPTION clause specifies that INSERTS and UPDATES performed through the
view are not allowed to create rows that the view cannot select, and therefore it allows integrity
constraints and data validation checks to be enforced on data being inserted or updated.

If there is an attempt to perform DML operations on rows that the view has not selected, an error is
displayed, with the constraint name if that has been specified.

SQL> UPDATE empvu20
2 SET deptno = 10
3 WHERE empno = 7788;

update empvu20
*

FRROR at line 1:
ORA-01402: view WITH CHECK OPTION where-clause violation

Note: No rows are updated because if the department number were to change to 10, the view would
no longer be able to see that employee. Therefore, with the WITH CHECK OPTION clause, the view
can see only department 20 employees and does not allow the department number for those
employees to be changed through the view.

Introduction to Oracle: SQL and PL/SQL 12-17

Denying DML Operations

* You can ensure that no DML operations
occur by adding the WITH READ ONLY
option to your view definition.

SQL> CREATE OR REPLACE VIEW empvulO

2 (employee number, employee name, Jjob title)
3 AS SELECT empno, ename, Jjob

4 FROM emp

5 WHERE deptno = 10

6 WITH READ ONLY;
View created.

* Any attempt to perform a DML on any
row in the view will result in Oracle
Server error.

12-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Denying DML Operations

You can ensure that no DML operations occur on your view by creating it with the WITH READ
ONLY option. The example on the slide modifies the EMPVUI10 view to prevent any DML operations
on the view.

Any attempts to remove a row from the view will result in an error.

SQL> DELETE FROM empvulO
2 WHERE employee number = 7782;
DELETE FROM empvulO
*
ERROR at line 1:
ORA-01752:Cannot delete from view without exactly one key-preserved
table

Any attempts to insert a row or modify a row using the view will result in Oracle Server error -
01733: wvirtual column not allowed here.

Introduction to Oracle: SQL and PL/SQL 12-18

Removing a View

Remove a view without losing data
because a view is based on underlying
tables in the database.

DROP VIEW view; I

SQL> DROP VIEW empvulO;
View dropped.

12-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Removing a View
You use the DROP VIEW statement to remove a view. The statement removes the view definition
from the database. Dropping views has no effect on the tables on which the view was based. Views or
other applications based on deleted views become invalid. Only the creator or a user with the DROP
ANY VIEW privilege can remove a view.
In the syntax:

view 1s the name of the view

Introduction to Oracle: SQL and PL/SQL 12-19

12-20

* An inline view is a subquery with an
alias (correlation name) that you can
use within a SQL statement.

e An inline view is similar to using a
named subquery in the FROM clause of
the main query.

e An inline view is not a schema object.

Inline Views

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Inline Views

An inline view in the FROM clause of a SELECT statement defines a data source for the SELECT
statement. In the example below the inline view b returns the details of all department numbers and the
maximum salary for each department from the EMP table. The WHERE a.deptno = b.deptno AND a.sal
< b.maxsal clause of the main query displays employee names, salaries, department numbers, and
maximum salaries for all the employees who earn less than the maximum salary in their department .

SQL> SELECT

2 FROM

[o2J €2 B~ ¥V
=
3]
o
=

CLARK
MILLER
TURNER
JAMES

a.ename, a.sal, a.deptno, b.maxsal

emp a, (SELECT deptno, max(sal) maxsal
FROM emp
GROUP BY deptno) b

a.deptno = b.deptno

a.sal < b.maxsal;

SAL DEPTNO MAXSAL
2450 10 5000
1300 10 5000
1500 30 2850

950 30 2850

10 rows selected.

Introduction to Oracle: SQL and PL/SQL 12-20

“Top-N"’ Analysis

* Top-N queries ask for the n largest or
smallest values of a column.

— What are the ten best selling
products?

— What are the ten worst selling
products ?

* Both largest values and smallest values
sets are considered Top-N queries.

12-21 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

“Top-N” Analysis

Top-N queries are useful in scenarios where the need is to display only the n top-most or the n
bottom-most records from a table based on a condition. This result set can be used for further
analysis. For example using Top-N analysis you can perform the following types of queries:

The top three earners in the company
The four most recent recruits in the company
The top two sales representatives who have sold the maximum number of products

The top three products that have had the maximum sales in the last six months

Introduction to Oracle: SQL and PL/SQL 12-21

Performing “Top-N” Analysis

The high-level structure of a Top-N
analysis query is:

SQL> SELECT [colu.m.n_list] , ROWNUM
2 FROM (SELECT [column list] FROM table

3 ORDER BY Top-N_column)
4 WHERE ROWNUM <= N

12-22 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Performing “Top-N” Analysis
Top-N queries use a consistent nested query structure with the elements described below:

» Subquery or an inline view to generate the sorted list of data. The subquery or the inline-view
includes the ORDER BY clause to ensure that the ranking is in the desired order. For results
retrieving the largest values, a DESC parameter is needed.

* Quter query to limit the number of rows in the final result set. The outer query includes the
following components:

— The ROWNUM pseudo-column, which assigns a sequential value starting with 1 to
each of the rows returned from the subquery.

— WHERE clause, which specifies the n rows to be returned. The outer WHERE clause
must use a < or <= operator.

Introduction to Oracle: SQL and PL/SQL 12-22

Example of “Top-N” Analysis

To display the top three earners names
and salaries from the EMP table.

SQL> SELECT
2 FROM (SELECT ename,sal FROM emp
3 ORDER BY sal DESC)

4 WHERE ROWNUM <= 3;

12-23 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Example of “Top-N” Analysis

The example on the slide describes how to display the names and salaries of the top three earners
from the EMP table. The subquery returns the details of all employee names and salaries from the
EMP table, sorted in the descending order of the salaries. The WHERE ROWNUM < 3 clause of the
main query ensures that only the first three records from this result set is displayed.

Here is another example of Top-N analysis that uses an inline view. The example below uses the
inline view E to display the four most senior employees in the company.

SQL> SELECT ROWNUM as SENIOR,E.ename, E.hiredate
2 FROM (SELECT ename,hiredate FROM emp
3 ORDER BY hiredate)E
4 WHERE rownum <= 4;

SENIOR ENAME HIREDATE
1 SMITH 17-DEC-80
2 ALLEN 20-FEB-81
3 WARD 22-FEB-81
4 JONES 02-APR-81

Introduction to Oracle: SQL and PL/SQL 12-23

Summary
* A view is derived from data in other
tables or other views.

» A view provides the following
advantages:

- Restricts database access

- Simplifies queries

- Provides data independence

— Allows multiple views of the same data

— Can be dropped without removing the
underlying data

12-24 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

What Is a View?

A view is based on a table or another view and acts as a window through which data on tables can be
viewed or changed. A view does not contain data. The definition of the view is stored in the data
dictionary. You can see the definition of the view in the USER VIEWS data dictionary table.

Advantages of Views

* Restrict database access

+ Simplify queries

» Provide data independence

+ Allow multiple views of the same data

» Can be removed without affecting the underlying data
View Options

» Can be a simple view based on one table

* Can be a complex view based on more than one table or can contain groups of functions

+ Can be replaced if one of the same name exists

* Can Contain a check constraint

+ Can be read-only

Introduction to Oracle: SQL and PL/SQL 12-24

Summary

* An inline view is a subquery with an alias
name.

* “Top-N” analysis can be done using:
- Subquery
— Outer query

12-25 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE’

Introduction to Oracle: SQL and PL/SQL 12-25

Practice Overview

* Creating a simple view

e Creating a complex view

e Creating a view with a check constraint
» Attempting to modify data in the view

* Displaying view definitions

* Removing views

12-26 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Practice Overview

In this practice, you will create simple and complex views and attempt to perform DML statements
on the views.

Introduction to Oracle: SQL and PL/SQL 12-26

Practice 12

1. Create a view called EMP_VU based on the employee number, employee name, and
department number from the EMP table. Change the heading for the employee name to
EMPLOYEE.

2. Display the contents of the EMP_VU view.

EMPNO EMPLOYEE DEPTNO

7839 KING 10
7698 BLAKE 30
7782 CLARK 10
7566 JONES 20
7654 MARTIN 30
7499 ALLEN 30
7844 TURNER 30
7900 JAMES 30
7521 WARD 30
7902 FORD 20
7369 SMITH 20
7788 SCOTT 20
7876 ADAMS 20
7934 MILLER 10

14 rows selected.

3. Select the view name and text from the data dictionary USER_VIEWS.

EMP VU SELECT empno, ename employee, deptno
FROM emp

4. Using your view EMP_VU, enter a query to display all employee names and department numbers.

EMPLOYEE DEPTNO
KING 10
BLAKE 30
CLARK 10
JONES 20
MARTIN 30

14 rows selected.

Introduction to Oracle: SQL and PL/SQL 12-27

Practice 12 (continued)

5. Create a view named DEPT20 that contains the employee number, employee name, and
department number for all employees in department 20. Label the view column
EMPLOYEE ID, EMPLOYEE, and DEPARTMENT ID. Do not allow an employee to be

reassigned to another department through the view.

6. Display the structure and contents of the DEPT20 view.

Name Null®? Type
EMPLOYEE ID NOT NULL NUMBER (4)
EMPLOYEE VARCHAR2 (10)

DEPARTMENT ID NOT NULL NUMBER (2)

EMPLOYEE TID EMPLOYEE DEPARTMENT ID

7566 JONES 20
7902 FORD 20
7369 SMITH 20
7788 SCOTT 20
7876 ADAMS 20

7. Attempt to reassign Smith to department 30.
If you have time, complete the following exercise:

8. Create a view called SALARY VU based on the employee name, department name, salary,
and salary grade for all employees. Label the columns Employee, Department, Salary, and
Grade, respectively.

Introduction to Oracle: SQL and PL/SQL 12-28

13

Other Database Objects

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Objectives

After completing this lesson, you should
be able to do the following:

* Describe some database objects and
their uses

* Create, maintain, and use sequences
e Create and maintain indexes
 Create private and public synonyms

13-2 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Lesson Aim

In this lesson, you will learn how to create and maintain some of the other commonly used database
objects. These objects include sequences, indexes, and synonyms.

Introduction to Oracle: SQL and PL/SQL 13-2

Database Objects

Object Description

Table Basic unit of storage; composed of rows
and columns

View Logically represents subsets of data from
one or more tables

Sequence Generates primary key values
Index Improves the performance of some queries
Synonym Alternative name for an object

13-3 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Database Objects

Many applications require the use of unique numbers as primary key values. You can either build
code into the application to handle this requirement or use a sequence to generate unique numbers.

If you want to improve the performance of some queries, you should consider creating an index. You
can also use indexes to enforce uniqueness on a column or a collection of columns.

You can provide alternative names for objects by using synonyms.

Introduction to Oracle: SQL and PL/SQL 13-3

What Is a Sequence?

* Automatically generates unique numbers
* Is a sharable object

* |s typically used to create a primary key
value

* Replaces application code

» Speeds up the efficiency of accessing
sequence values when cached in memory

13-4 Copyright © Oracle Corporation, 1999. Al rights reserved. (ORACLE”

What Is a Sequence?

A sequence is a database object created by a user, and can be shared by multiple users to genecrate
unique integers. You can use the sequences to automatically generate primary key values.

A typical usage for sequences is to create a primary key value, which must be unique for each row.
The sequence is generated and incremented (or decremented) by an interal Oracle8 routine. This can
be a time-saving object because it can reduce the amount of application code needed to write a
sequence-generating routing.

Sequence numbers are stored and generated independently of tables. Therefore, the same sequence
can be used for multiple tables.

Introduction to Oracle: SQL and PL/SQL 13-4

The CREATE SEQUENCE
Statement

Define a sequence to generate sequential
numbers automatically.

CREATE SEQUENCE sequence
[INCREMENT BY n]

13-5 Copyright

[START WITH n]
[{MAXVALUE n
[{MINVALUE n
[{CYCLE
[{CACHE

| NOMAXVALUE}]
| NOMINVALUE}]
NOCYCLE }]

| NOCACHE}];

n

ORACLE"

© Oracle Corporation, 1999. All rights reserved.

Creating a Sequence

Automatically generate sequential numbers by using the CREATE SEQUENCE statement.

In the syntax:
sequence
INCREMENT BY #

START WITH »

MAXVALUE n
NOMAXVALUE

MINVALUE n
NOMINVALUE

CYCLE | NOCYCLE

CACHE n | NOCACHE

is the name of the sequence generator

specifies the interval between sequence numbers where # is an
integer (If this clause is omitted, the sequence will increment by 1.)

specifies the first sequence number to be generated (If this clause is
omitted, the sequence will start with 1.)

specifies the maximum value the sequence can generate

specifies a maximum value of 10727 for an ascending sequence and
—1 for a descending sequence (This is the default option.)

specifies the minimum sequence value

specifies a minimum value of 1 for an ascending sequence and —
(10726) for a descending sequence (This is the default option.)

specifies that the sequence continues to generate values after
reaching either its maximum or minimum value or does not generate
additional values (NOCY CLE is the default option.)

specifies how many values the Oracle Server will preallocate and
keep in memory (By default, the Oracle Server will cache 20 values.)

Introduction to Oracle: SQL and PL/SQL 13-5

Creating a Sequence

* Create a sequence named DEPT_DEPTNO
to be used for the primary key of the
DEPT table.

* Do not use the CYCLE option.

SQL> CREATE SEQUENCE dept deptno
2 INCREMENT BY 1
3 START WITH 91
4 MAXVALUE 100
5 NOCACHE
6 NOCYCLE ;
Sequence created.

136 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Creating a Sequence (continued)

The example on the slide creates a sequence named DEPT DEPTNO to be used for the DEPTNO
column of the DEPT table. The sequence starts at 91, does not allow caching, and does not allow the
sequence to cycle.

Do not use the CYCLE option if the sequence is used to generate primary key values unless you have
a reliable mechanism that purges old rows faster than the sequence cycles.

For more information, see Oracle Server SOL Reference, Release 8, “CREATE SEQUENCE.”

Introduction to Oracle: SQL and PL/SQL 13-6

Confirming Sequences

* Verify your sequence values in the
USER_SEQUENCES data dictionary
table.

SQL> SELECT sequence name, min value, max value,
2 increment by, last number

3 FROM user_sequences;

* The LAST_NUMBER column displays
the next available sequence number.

13-7 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Confirming Sequences
Once you have created your sequence, it is documented in the data dictionary. Since a sequence is a
database object, you can identify it in the USER_OBJECTS data dictionary table.

You can also confirm the settings of the sequence by selecting from the data dictionary
USER_SEQUENCES table.

SEQUENCE NAME MIN VALUE MAX VALUE INCREMENT BY LAST NUMBER
CUSTID 1 1.000E+27 1 109
DEPT DEPTNO 1 100 1 91
ORDID 1 1.000E+27 1 622
PRODID 1 1.000E+27 1 200381

Introduction to Oracle: SQL and PL/SQL 13-7

NEXTVAL and CURRVAL
Pseudocolumns

e NEXTVAL returns the next available
sequence value.

It returns a unique value every time it is
referenced, even for different users.

« CURRVAL obtains the current sequence
value.

NEXTVAL must be issued for that
sequence before CURRVAL contains a

value.

138 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Using a Sequence

Once you create your sequence, you can use the sequence to generate sequential numbers for use in
your tables. Reference the sequence values by using the NEXTVAL and CURRVAL pseudocolumns.

NEXTVAL and CURRVAL Pseudocolumns

The NEXTVAL pseudocolumn is used to extract successive sequence numbers from a specified
sequence. You must qualify NEXTVAL with the sequence name. When you reference

sequence NEXTVAL, a new sequence number is generated and the current sequence number is
placed in CURRVAL.

The CURRVAL pseudocolumn is used to refer to a sequence number that the current user has just
generated. NEXTVAL must be used to generate a sequence number in the current user’s session
before CURRVAL can be referenced. You must qualify CURRVAL with the sequence name. When
sequence. CURRVAL is referenced, the last value returned to that user’s process is displayed.

Introduction to Oracle: SQL and PL/SQL 13-8

NEXTVAL and CURRVAL
Pseudocolumns

e NEXTVAL returns the next available
sequence value.

It returns a unique value every time it is
referenced, even for different users.

« CURRVAL obtains the current sequence
value.

NEXTVAL must be issued for that
sequence before CURRVAL contains a
value.

139 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Rules for Using NEXTVAL and CURRVAL

You can usc NEXTVAL and CURRVAL in the following;:
The SELECT list of a SELECT statement that is not part of a subquery
The SELECT list of a subquery in an INSERT statement
The VALUES clause of an INSERT statement
The SET clause of an UPDATE statement

You cannot use NEXTVAL and CURRVAL in the following:
A SELECT list of a view
A SELECT statement with the DISTINCT keyword
A SELECT statement with the GROUP BY, HAVING, or ORDER BY clauses
A subquery in a SELECT, DELETE, or UPDATE statement
A DEFAULT expression in a CREATE TABLE or ALTER TABLE statement

For more information, see Oracle Server SOL Reference, Release 8, “Pseudocolumns”™ section and
“CREATE SEQUENCE.”

Introduction to Oracle: SQL and PL/SQL 13-9

Using a Sequence

* Insert a new department named
“MARKETING” in San Diego.

SQL> INSERT INTO dept (deptno, dname, loc)
2 VALUES (dept_deptno.NEXTVAL,

3 'MARKETING', 'SAN DIEGO') ;
1l row created.

* View the current value for the
DEPT_DEPTNO sequence.

SQL> SELECT dept deptno.CURRVAL
2 FROM dual;

13-10 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Using a Sequence

The example on the slide inserts a new department in the DEPT table. It uses the DEPT DEPTNO
sequence for generating a new department number.

You can view the current value of the sequence:

SQL> SELECT dept deptno.CURRVAL

2 FROM dual;
CURRVAL
91

Suppose now you want to hire employees to staff the new department. The INSERT statement that
can be executed repeatedly for all the new employees can include the following code:

SQL> INSERT INTO emp
2 VALUES (emp empno.NEXTVAL, dept deptno.CURRVAL, ...);

Note: The above example assumes that a sequence EMP_EMPNO has already been created for
generating a new employee number.

Introduction to Oracle: SQL and PL/SQL 13-10

Using a Sequence

e Caching sequence values in memory
allows faster access to those values.

* Gaps in sequence values can occur when:
— A rollback occurs
— The system crashes
- A sequence is used in another table

* View the next available sequence, if it was
created with NOCACHE, by querying the
USER_SEQUENCES table.

13-11 Copyright © Oracle Corporation, 1999. Al rights reserved. (ORACLE”

Caching Sequence Values

Cache sequences in the memory to allow faster access to those sequence values. The cache is populated
at the first reference to the sequence. Each request for the next sequence value is retrieved from the
cached sequence. After the last sequence is used, the next request for the sequence pulls another cache

of sequences into memory.
Beware of Gaps in Your Sequence

Although sequence generators issue sequential numbers without gaps, this action occurs independent of
a commit or rollback. Therefore, if you roll back a statement containing a sequence, the number is lost.

Another event that can cause gaps in the sequence is a system crash. If the sequence caches values in the

memory, then those values are lost if the system crashes.

Because sequences are not tied directly to tables, the same sequence can be used for multiple tables. If

this occurs, each table can contain gaps in the sequential numbers.
Viewing the Next Available Sequence Value Without Incrementing It

If the sequence was created with NOCACHE, it is possible to view the next available sequence value

without incrementing it by querying the USER_SEQUENCES table.

Introduction to Oracle: SQL and PL/SQL 13-11

Modifying a Sequence

Change the increment value, maximum

value, minimum value, cycle option, or
cache option.

13-12

SQL> ALTER SEQUENCE dept deptno

2 INCREMENT BY 1
3 MAXVALUE 999999
4 NOCACHE

5 NOCYCLE;

Sequence altered.

Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Altering a Sequence

If you reach the MAXVALUE limit for your sequence, no additional values from the sequence will
be allocated and you will receive an error indicating that the sequence exceeds the MAXVALUE. To
continue to use the sequence, you can modify it by using the ALTER SEQUENCE statement.

Syntax

ALTER

where:

SEQUENCE sequence
[INCREMENT BY n]

[{MAXVALUE n | NOMAXVALUE}]
[{MINVALUE n | NOMINVALUE}]
[{CYCLE | NOCYCLE}]

[{CACHE n | NOCACHE}]:;

sequence is the name of the sequence generator

For more information, see Oracle Server SQL Reference, Release 8, “ALTER SEQUENCE.”

Introduction to Oracle: SQL and PL/SQL 13-12

Guidelines for Modifying
a Sequence

* You must be the owner or have the
ALTER privilege for the sequence.

e Only future sequence numbers are
affected.

* The sequence must be dropped and
re-created to restart the sequence at a
different number.

 Some validation is performed.

13-13 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Guidelines

You must be the owner have the ALTER privilege for the sequence in order to modify it.
Only future sequence numbers are affected by the ALTER SEQUENCE statement.

The START WITH option cannot be changed using ALTER SEQUENCE. The sequence must
be dropped and re-created in order to restart the sequence at a different number.

Some validation is performed. For example, a new MAXVALUE cannot be imposed that is
less than the current sequence number.

SQL> ALTER SEQUENCE dept_ deptno

2 INCREMENT BY 1
3 MAXVALUE 90

4 NOCACHE

5 NOCYCLE;

ALTER SEQUENCE dept deptno
*

FERROR at line 1:

ORA-04009: MAXVALUE cannot be made to be less than the current
value

Introduction to Oracle: SQL and PL/SQL 13-13

Removing a Sequence

* Remove a sequence from the data
dictionary by using the DROP
SEQUENCE statement.

* Once removed, the sequence can no
longer be referenced.

SQL> DROP SEQUENCE dept deptno;
Sequence dropped.

13-14 Copyright © Oracle Corporation, 1999. Al rights reserved. (ORACLE”

Removing a Sequence

To remove a sequence from the data dictionary, use the DROP SEQUENCE statement. Y ou must be
the owner of the sequence or have the DROP ANY SEQUENCE privilege to remove it.

Syntax
DROP SEQUENCE sequence;

where: sequence is the name of the sequence generator
For more information, see Oracle Server SQIL Reference, Release 8, “DROP SEQUENCE.”

Introduction to Oracle: SQL and PL/SQL 13-14

What Is an Index?

* |s a schema object

* |Is used by the Oracle Server to speed
up the retrieval of rows by using a
pointer

e Can reduce disk I/0 by using rapid path
access method to locate the data
quickly

* Is independent of the table it indexes

* |Is used and maintained automatically by
the Oracle Server

13-15 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

What Is an Index?

An Oracle Server index is a schema object that can speed up the retrieval of rows by using a pointer.
Indexes can be created explicitly or automatically. If you do not have an index on the column, then a
full table scan will occur.

An index provides direct and fast access to rows in a table. Its purpose is to reduce the necessity of
disk I/0 by using an indexed path to locate data quickly. The index is used and maintained
automatically by the Oracle Server. Once an index is created, no direct activity is required by the
user.

Indexes are logically and physically independent of the table they index. This means that they can be
created or dropped at any time and have no effect on the base tables or other indexes.

Note: When you drop a table, corresponding indexes are also dropped.

For more information, see Oracle Server Concepts Manual, Release 8, “Schema Objects™ section,
“Indexes” topic.

Introduction to Oracle: SQL and PL/SQL 13-15

How Are Indexes Created?

* Automatically: A unique index is created
automatically when you define a

PRIMARY KEY or UNIQUE constraint in
a table definition.

* Manually: Users can create nonunique
indexes on columns to speed up access
time to the rows.

13-16 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

How Are Indexes Created?

Two types of indexes can be created. One type is a unique index. The Oracle Server automatically
creates this index when you define a column in a table to have a PRIMARY KEY or a UNIQUE key
constraint. The name of the index is the name given to the constraint.

The other type of index that a user can create is a nonunique index. For example, you can create a
FOREIGN KEY column index for a join in a query to improve retrieval speed.

Introduction to Oracle: SQL and PL/SQL 13-16

Creating an Index

* Create an index on one or more columns.

CREATE INDEX index
ON table (column[, column]...);

* Improve the speed of query access on
the ENAME column in the EMP table.

SQL> CREATE INDEX emp ename idx
2 ON emp (ename) ;
Index created.

1317 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Creating an Index
Create an index on one or more columns by issuing the CREATE INDEX statement.

In the syntax:

index 1s the name of the index
table 1s the name of the table
column 1s the name of the column in the table to be indexed

For more information, see Oracle Server SOL Reference, Release 8, “CREATE INDEX.”

Introduction to Oracle: SQL and PL/SQL 13-17

When to Create an Index

* The column is used frequently in the WHERE
clause or in a join condition.

e The column contains a wide range of values.

e The column contains a large number of null
values.

 Two or more columns are frequently used
together in a WHERE clause or a join
condition.

* The table is large and most queries are
expected to retrieve less than 2—4% of the
rows.

13-18 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

More Is Not Always Better

More indexes on a table does not mean it will speed up queries. Each DML operation that is
committed on a table with indexes means that the indexes must be updated. The more indexes you
have associated with a table, the more effort the Oracle Server must make to update all the indexes
aftera DML.

When to Create an Index
The column is used frequently in the WHERE clause or in a join condition.
The column contains a wide range of values.
The column contains a large number of null values.
Two or more columns are frequently used together in a WHERE clause or join condition.
The table is large and most querics are expected to retrieve less than 2—-4% of the rows.

Remember that if you want to enforce uniqueness, you should define a unique constraint in the table
definition. Then a unique index is created automatically.

Introduction to Oracle: SQL and PL/SQL 13-18

When Not to Create an Index

* The table is small.

* The columns are not often used as a
condition in the query.

* Most queries are expected to retrieve
more than 2—4% of the rows.

* The table is updated frequently.

13-19 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

When Not to Create an Index
The table is small.
The columns are not often used as a condition in the query.
Most queries are expected to retrieve more than 2—-4% of the rows.

The table is updated frequently. If you have one or more indexes on a table, the DML
statements that access the table take more time.

Introduction to Oracle: SQL and PL/SQL 13-19

Confirming Indexes

* The USER_INDEXES data dictionary view
contains the name of the index and its

uniqueness.

e The USER_IND_COLUMNS view contains
the index name, the table name, and the
column name.

SQL> SELECT ic.index name, ic.column_ name,

2 ic.column position col pos,ix.uniqueness
3 FROM user indexes ix, user ind columns ic

4 WHERE ic.index name = ix.index name

5 AND ic.table name = 'EMP';

13-20 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Confirming Indexes

Confirm the existence of indexes from the USER INDEXES data dictionary view. You can also
check the columns involved in an index by querying the USER_IND COLUMNS view.

The example on the slide displays all the previously created indexes, affected column names, and
uniqueness on the EMP table.

INDEX NAME COLUMN NAME COL_ POS UNIQUENESS
EMP EMPNO PK EMPNO 1 UNIQUE
EMP ENAME TIDX ENAME 1 NONUNIQUE

Note: The output has been formatted.

Introduction to Oracle: SQL and PL/SQL 13-20

Function-Based Indexes

e A function-based index is an index based
on expressions.

* The index expression is built from table
columns, constants, SQL functions, and
user-defined functions.

SQL> CREATE TABLE test (coll NUMBER) ;

SQL> SELECT coll+10 FROM test;

13-21 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Function-Based Index

Function-based indexes defined with the UPPER(column_name) or LOWER(column_name)
keywords allow case-insensitive searches. For example, the following index:

SQL>CREATE INDEX uppercase_idx ON emp (UPPER(ename)) ;
Facilitates processing queries such as:
SQL> SELECT * FROM emp WHERE UPPER (ename) = 'KING';

To ensure that Oracle will use the index rather than performing a full table scan, be sure that the
value of the function is not null in subsequent queries. For example, the statement below is
guaranteed to use the index, but without the where clause Oracle may perform a full table scan.

SQL> SELECT * FROM emp
2 WHERE UPPER (ename) IS NOT NULL
3 ORDER BY UPPER (ename) ;

Oracle treats indexes with columns marked DESC as function-based indexes. The columns marked
DESC are sorted in descending order.

Introduction to Oracle: SQL and PL/SQL 13-21

Removing an Index

 Remove an index from the data dictionary.

| SQL> DROP INDEX index; I

* Remove the EMP_ENAME_IDX index from
the data dictionary.

SQL> DROP INDEX emp ename idx;
Index dropped.

* To drop an index, you must be the owner
of the index or have the DROP ANY INDEX
privilege.

13-22 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Removing an Index

You cannot modify indexes. To change an index, you must drop it and then re-create it. Remove an
index definition from the data dictionary by issuing the DROP INDEX statement. To drop an index,
you must be the owner of the index or have the DROP ANY INDEX privilege.

In the syntax:

index 1s the name of the index

Introduction to Oracle: SQL and PL/SQL 13-22

Synonyms

Simplify access to objects by creating a
synonym (another name for an object).

» Refer to a table owned by another user.
» Shorten lengthy object names.

CREATE [PUBLIC] SYNONYM synonym
FOR object;

13-23 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Creating a Synonym for an Object

To refer to a table owned by another user, you need to prefix the table name with the name of the user
who created it followed by a period. Creating a synonym eliminates the need to qualify the object
name with the schema and provides you with an alternative name for a table, view, sequence,
procedure, or other objects. This method can be especially useful with lengthy object names, such as
VIEWS.

In the syntax:

PUBLIC creates a synonym accessible to all users

synonym is the name of the synonym to be created

object identifies the object for which the synonym is created
Guidelines

» The object cannot be contained in a package.
* A private synonym name must be distinct from all other objects owned by the same user.
For more information, see Oracle Server SOL Reference, Release 8, “CREATE SYNONYM.”

Introduction to Oracle: SQL and PL/SQL 13-23

Creating and Removing Synonyms

e Create a shortened name for the
DEPT_SUM VU view.

SQL> CREATE SYNONYM d sum
2 FOR dept sum vu;

Synonym Created.

* Drop a synonym.
SQL> DROP SYNONYM d_ sum;
Synonym dropped.

13-24 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Creating a Synonym for an Object (continued)
The slide example creates a synonym for the DEPT_SUM_VU view for quicker reference.

The DBA can create a public synonym accessible to all users. The following example creates a public
synonym named DEPT for Alice’s DEPT table:

SQL> CREATE PUBLIC SYNONYM dept
2 FOR alice.dept;
Synonym created.
Removing a Synonym
To drop a synonym, use the DROP SYNONYM statement. Only the DBA can drop a public synonym.
SQL> DROP SYNONYM dept;
Synonym dropped.

For more information, see Oracle Server SQL Reference, Release 8, “DROP SYNONYM.”

Introduction to Oracle: SQL and PL/SQL 13-24

Summary

* Automatically generate sequence
numbers by using a sequence generator.

* View sequence information in the
USER_SEQUENCES data dictionary table.

* Create indexes to improve query retrieval
speed.

* View index information in the
USER_INDEXES dictionary table.

* Use synonyms to provide alternative
names for objects.

13-25 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLES

Sequences

The sequence generator can be used to automatically generate sequence numbers for rows in tables.
This can be time saving and can reduce the amount of application code needed.

A sequence is a database object that can be shared with other users. Information about the sequence
can be found in the USER _SEQUENCES table of the data dictionary.

To use a sequence, reference it with either the NEXTVAL or the CURRVAL pseudocolumns.
» Retrieve the next number in the sequence by referencing sequence NEXTVAL.
* Return the current available number by referencing sequence. CURRVAL.
Indexes
Indexes are used to improve the query retrieval speed.
Users can view the definitions of the indexes in the USER_INDEXES data dictionary view.

An index can be dropped by the creator or a user with the DROP ANY INDEX privilege by using the
DROP INDEX statement.

Synonyms

DBAs can create public synonyms and users can create private synonyms for convenience by using
the CREATE SYNONYM statement. Synonyms permit short names or alternative names for objects.
Remove synonyms by using the DROP SYNONY M statement.

Introduction to Oracle: SQL and PL/SQL 13-25

Practice Overview

» Creating sequences
* Using sequences
e Creating nonunique indexes

* Displaying data dictionary information
about sequences and indexes

* Dropping indexes

13-26 Copyright © Oracle Corporation, 1999. All rights reserved. ORACLE"

Practice Overview

In this practice, you will create a sequence to be used when populating your DEPARTMENT table.
You will also create implicit and explicit indexes.

Introduction to Oracle: SQL and PL/SQL 13-26

Practice 13

1. Create a sequence to be used with the primary key column of the DEPARTMENT table. The
sequence should start at 60 and have a maximum value of 200. Have your sequence increment
by ten numbers. Name the sequence DEPT ID SEQ.

2. Write a script to display the following information about your sequences: sequence name,

maximum value, increment size, and last number. Name the script p13g2 . sql. Execute your
script.

SEQUENCE NAME MAX VALUE INCREMENT BY LAST NUMBER

CUSTID 1.000E+27 1 109
DEPT ID SEQ 200 10 60
ORDID 1.000E+27 1 622
PRODID 1.000E+27 1 200381

3. Write an interactive script to insert a row into the DEPARTMENT table. Name your script
p13g3.sqgl. Be sure to use the sequence that you created for the ID column. Create a
customized prompt to enter the department name. Execute your script. Add two departments
named Education and Administration. Confirm your additions.

4. Create a non-unique index on the foreign key column (dept_id) in the EMPLOYEE table.

Display the indexes and uniqueness that exist in the data dictionary for the EMPLOYEE table.
Save the statement into a script named p13g5.sgl.

INDEX NAME TABLE NAME UNIQUENESS
EMPLOYEE DEPT ID IDX EMPLOYEE NONUNIQUE
EMPLOYEE TID PK EMPLOYEE UNIQUE

Introduction to Oracle: SQL and PL/SQL 13-27

Introduction to Oracle: SQL and PL/SQL 13-28

