THE PARSER

In what follows, we'll be starting over again with a bare cradle,

and as we've done twice before now, we'll build things up one at

a time. We'll also be retaining the concept of single-character

tokens that has served us so well to date. This means that the

"code" will look a little funny, with 'i' for IF, 'w' for WHILE,

etc. But it helps us get the concepts down pat without fussing

over lexical scanning. Fear not ... eventually we'll see

something looking like "real" code.

I also don't want to have us get bogged down in dealing with

statements other than branches, such as the assignment statements

we've been working on. We've already demonstrated that we can

handle them, so there's no point carrying them around as excess

baggage during this exercise. So what I'll do instead is to use

an anonymous statement, "other", to take the place of the non-

control statements and serve as a place-holder for them. We have

to generate some kind of object code for them (we're back into

compiling, not interpretation), so for want of anything else I'll

just echo the character input.

OK, then, starting with yet another copy of the cradle, let's

define the procedure(up till now,we've always just inserted the Emits that generate output code in

line with the parsing routines. A little unstructured, perhaps,but it seemed the most straightforward approach, and made it easyto see what kind of code would be emitted for each construct):

{--}

{ Recognize and Translate an "Other" }

procedure Other;

begin

 EmitLn(GetName);

end;

{--}

Now include a call to it in the main program, thus:

{--}

{ Main Program }

begin

 Init;

 Other;

end.

{--}

Run the program and see what you get. Not very exciting, is it?

But hang in there, it's a start, and things will get better.

The first thing we need is the ability to deal with more than one

statement, since a single-line branch is pretty limited. We did

that in the last session on interpreting, but this time let's get

a little more formal. Consider the following BNF:
 <program> ::= <block> END

 <block> ::= [<statement>]*
This says that, for our purposes here, a program is defined as a

block, followed by an END statement. A block, in turn, consists

of zero or more statements. We only have one kind of statement,

so far.

What signals the end of a block? It's simply any construct that

isn't an "other" statement. For now, that means only the END

statement.

Armed with these ideas, we can proceed to build up our parser.
The code for a program (we have to call it DoProgram, or Pascal

will complain, is:

{--}

{ Parse and Translate a Program }

procedure DoProgram;

begin

 Block;

 if Look <> 'e' then Expected('End');

 EmitLn('END')

end;

{--}
Notice that I've arranged to emit an "END" command to the

assembler, which sort of punctuates the output code, and makes

sense considering that we're parsing a complete program here.
The code for Block is:

{--}

{ Recognize and Translate a Statement Block }

procedure Block;

begin

 while not(Look in ['e']) do begin

 Other;

 end;

end;

{--}

(From the form of the procedure, you just KNOW we're going to be

adding to it in a bit!)

OK, enter these routines into your program. Replace the call to

Block in the main program, by a call to DoProgram. Now try it

and see how it works. Well, it's still not much, but we're

getting closer.

SOME GROUNDWORK

Before we begin to define the various control constructs, we need

to lay a bit more groundwork. First, a word of warning: I won't

be using the same syntax for these constructs as you're familiar

with from Pascal or C. For example, the Pascal syntax for an IF

is:
 IF <condition> THEN <statement>
(where the statement, of course, may be compound).
The C version is similar:

 IF (<condition>) <statement>
Instead, I'll be using something that looks more like Ada:
 IF <condition> <block> ENDIF
In other words, the IF construct has a specific termination

symbol. This avoids the dangling-else of Pascal and C and also

precludes the need for the brackets {} or begin-end. The syntax

I'm showing you here, in fact, is that of the language KISS that

I'll be detailing in later installments. The other constructs

will also be slightly different. That shouldn't be a real

problem for you. Once you see how it's done, you'll realize that

it really doesn't matter so much which specific syntax is

involved. Once the syntax is defined, turning it into code is

straightforward.

Now, all of the constructs we'll be dealing with here involve

transfer of control, which at the assembler-language level means

conditional and/or unconditional branches.
 For example, the simple IF statement
 IF <condition> A ENDIF B
must get translated into
 Branch if NOT condition to L
 A
 L: B

 ...

It's clear, then, that we're going to need some more procedures

to help us deal with these branches. I've defined two of them

below. Procedure NewLabel generates unique labels. This is done

via the simple expedient of calling every label 'Lnn', where nn

is a label number starting from zero. Procedure PostLabel just

outputs the labels at the proper place.
Here are the two routines:

{--}

{ Generate a Unique Label }

function NewLabel: string;

var S: string;

begin

 Str(LCount, S);

 NewLabel := 'L' + S;

 Inc(LCount);

end;

{--}

{ Post a Label To Output }

procedure PostLabel(L: string);

begin

 WriteLn(L, ':');

end;

{--}

Notice that we've added a new global variable, LCount, so you

need to change the VAR declarations at the top of the program to

look like this:

var Look : char; { Lookahead Character }

 Lcount: integer; { Label Counter }

Also, add the following extra initialization to Init:

 LCount := 0;

(DON'T forget that, or your labels can look really strange!)

At this point I'd also like to show you a new kind of notation.

If you compare the form of the IF statement above with the as-

sembler code that must be produced, you can see that there are

certain actions associated with each of the keywords in the

statement:

 IF: First, get the condition and issue the code for it.

 Then, create a unique label and emit a branch if false.

 ENDIF: Emit the label.

These actions can be shown very concisely if we write the syntax

this way:

 IF

 <condition> { Condition;

 L = NewLabel;

 Emit(Branch False to L); }

 <block>

 ENDIF { PostLabel(L) }

This is an example of syntax-directed translation. We've been

doing it all along ... we've just never written it down this way

before. The stuff in curly brackets represents the ACTIONS to be

taken. The nice part about this representation is that it not

only shows what we have to recognize, but also the actions we

have to perform, and in which order. Once we have this syntax,

the code almost writes itself.

About the only thing left to do is to be a bit more specific

about what we mean by "Branch if false."

I'm assuming that there will be code executed for <condition>

that will perform Boolean algebra and compute some result. It

should also set the condition flags corresponding to that result.

Now, the usual convention for a Boolean variable is to let 0000

represent "false," and anything else (some use FFFF, some 0001)

represent "true."

On the 68000 the condition flags are set whenever any data is

moved or calculated. If the data is a 0000 (corresponding to a

false condition, remember), the zero flag will be set. The code

for "Branch on zero" is BEQ. So for our purposes here,

 BEQ <=> Branch if false

 BNE <=> Branch if true

It's the nature of the beast that most of the branches we see

will be BEQ's ... we'll be branching AROUND the code that's

supposed to be executed when the condition is true.

THE IF STATEMENT

With that bit of explanation out of the way, we're finally ready

to begin coding the IF-statement parser. In fact, we've almost

already done it! As usual, I'll be using our single-character

approach, with the character 'i' for IF, and 'e' for ENDIF (as

well as END ... that dual nature causes no confusion). I'll

also, for now, skip completely the character for the branch con-

dition, which we still have to define.

The code for DoIf is:

{--}

{ Recognize and Translate an IF Construct }

procedure Block; Forward;

procedure DoIf;

var L: string;

begin

 Match('i');

 L := NewLabel;

 Condition;

 EmitLn('BEQ ' + L);

 Block;

 Match('e');

 PostLabel(L);

end;

{--}

Add this routine to your program, and change Block to reference

it as follows:

{--}

{ Recognize and Translate a Statement Block }

procedure Block;

begin

 while not(Look in ['e']) do begin

 case Look of

 'i': DoIf;

 'o': Other;

 end;

 end;

end;

{--}

Notice the reference to procedure Condition. Eventually, we'll

write a routine that can parse and translate any Boolean con-

dition we care to give it. But that's a whole installment by

itself (the next one, in fact). For now, let's just make it a

dummy that emits some text. Write the following routine:

{--}

{ Parse and Translate a Boolean Condition }

{ This version is a dummy }

Procedure Condition;

begin

 EmitLn('<condition>');

end;

{--}

Insert this procedure in your program just before DoIf. Now run

the program. Try a string like

 aibece

As you can see, the parser seems to recognize the construct and

inserts the object code at the right places. Now try a set of

nested IF's, like

 aibicedefe

It's starting to look real, eh?

Now that we have the general idea (and the tools such as the

notation and the procedures NewLabel and PostLabel), it's a piece

of cake to extend the parser to include other constructs. The

first (and also one of the trickiest) is to add the ELSE clause

to IF. The BNF is

 IF <condition> <block> [ELSE <block>] ENDIF

The tricky part arises simply because there is an optional part,

which doesn't occur in the other constructs.

The corresponding output code should be

 <condition>

 BEQ L1

 <block>

 BRA L2

 L1: <block>

 L2: ...

This leads us to the following syntax-directed translation:

 IF

 <condition> { L1 = NewLabel;

 L2 = NewLabel;

 Emit(BEQ L1) }

 <block>

 ELSE { Emit(BRA L2);

 PostLabel(L1) }

 <block>

 ENDIF { PostLabel(L2) }

Comparing this with the case for an ELSE-less IF gives us a clue

as to how to handle both situations. The code below does it.

(Note that I use an 'l' for the ELSE, since 'e' is otherwise

occupied):

{--}

{ Recognize and Translate an IF Construct }

procedure DoIf;

var L1, L2: string;

begin

 Match('i');

 Condition;

 L1 := NewLabel;

 L2 := L1;

 EmitLn('BEQ ' + L1);

 Block;

 if Look = 'l' then begin

 Match('l');

 L2 := NewLabel;

 EmitLn('BRA ' + L2);

 PostLabel(L1);

 Block;

 end;

 Match('e');

 PostLabel(L2);

end;

{--}

There you have it. A complete IF parser/translator, in 19 lines

of code.

Give it a try now. Try something like

 aiblcede

Did it work? Now, just to be sure we haven't broken the ELSE-

less case, try

 aibece

Now try some nested IF's. Try anything you like, including some

badly formed statements. Just remember that 'e' is not a legal

"other" statement.

THE WHILE STATEMENT

The next type of statement should be easy, since we already have

the process down pat. The syntax I've chosen for the WHILE

statement is

 WHILE <condition> <block> ENDWHILE

I know, I know, we don't REALLY need separate kinds of ter-

minators for each construct ... you can see that by the fact that

in our one-character version, 'e' is used for all of them. But I

also remember MANY debugging sessions in Pascal, trying to track

down a wayward END that the compiler obviously thought I meant to

put somewhere else. It's been my experience that specific and

unique keywords, although they add to the vocabulary of the

language, give a bit of error-checking that is worth the extra

work for the compiler writer.

Now, consider what the WHILE should be translated into. It

should be:

 L1: <condition>

 BEQ L2

 <block>

 BRA L1

 L2:

As before, comparing the two representations gives us the actions

needed at each point.

 WHILE { L1 = NewLabel;

 PostLabel(L1) }

 <condition> { Emit(BEQ L2) }

 <block>

 ENDWHILE { Emit(BRA L1);

 PostLabel(L2) }

The code follows immediately from the syntax:

{--}

{ Parse and Translate a WHILE Statement }

procedure DoWhile;

var L1, L2: string;

begin

 Match('w');

 L1 := NewLabel;

 L2 := NewLabel;

 PostLabel(L1);

 Condition;

 EmitLn('BEQ ' + L2);

 Block;

 Match('e');

 EmitLn('BRA ' + L1);

 PostLabel(L2);

end;

{--}

Since we've got a new statement, we have to add a call to it

within procedure Block:

{--}

{ Recognize and Translate a Statement Block }

procedure Block;

begin

 while not(Look in ['e', 'l']) do begin

 case Look of

 'i': DoIf;

 'w': DoWhile;

 else Other;

 end;

 end;

end;

{--}

No other changes are necessary.

OK, try the new program. Note that this time, the <condition>

code is INSIDE the upper label, which is just where we wanted it.

Try some nested loops. Try some loops within IF's, and some IF's

within loops. If you get a bit confused as to what you should

type, don't be discouraged: you write bugs in other languages,

too, don't you? It'll look a lot more meaningful when we get

full keywords.

I hope by now that you're beginning to get the idea that this

really IS easy. All we have to do to accomodate a new construct

is to work out the syntax-directed translation of it. The code

almost falls out from there, and it doesn't affect any of the

other routines. Once you've gotten the feel of the thing, you'll

see that you can add new constructs about as fast as you can

dream them up.

THE LOOP STATEMENT

We could stop right here, and have a language that works. It's

been shown many times that a high-order language with only two

constructs, the IF and the WHILE, is sufficient to write struc-

tured code. But we're on a roll now, so let's richen up the

repertoire a bit.

This construct is even easier, since it has no condition test at

all ... it's an infinite loop. What's the point of such a loop?

Not much, by itself, but later on we're going to add a BREAK

command, that will give us a way out. This makes the language

considerably richer than Pascal, which has no break, and also

avoids the funny WHILE(1) or WHILE TRUE of C and Pascal.

The syntax is simply

 LOOP <block> ENDLOOP

and the syntax-directed translation is:

 LOOP { L = NewLabel;

 PostLabel(L) }

 <block>

 ENDLOOP { Emit(BRA L }

The corresponding code is shown below. Since I've already used

'l' for the ELSE, I've used the last letter, 'p', as the

"keyword" this time.

{--}

{ Parse and Translate a LOOP Statement }

procedure DoLoop;

var L: string;

begin

 Match('p');

 L := NewLabel;

 PostLabel(L);

 Block;

 Match('e');

 EmitLn('BRA ' + L);

end;

{--}

When you insert this routine, don't forget to add a line in Block

to call it.

REPEAT-UNTIL

Here's one construct that I lifted right from Pascal. The syntax

is

 REPEAT <block> UNTIL <condition> ,

and the syntax-directed translation is:

 REPEAT { L = NewLabel;

 PostLabel(L) }

 <block>

 UNTIL

 <condition> { Emit(BEQ L) }

As usual, the code falls out pretty easily:

{--}

{ Parse and Translate a REPEAT Statement }

procedure DoRepeat;

var L: string;

begin

 Match('r');

 L := NewLabel;

 PostLabel(L);

 Block;

 Match('u');

 Condition;

 EmitLn('BEQ ' + L);

end;

{--}

As before, we have to add the call to DoRepeat within Block.

This time, there's a difference, though. I decided to use 'r'

for REPEAT (naturally), but I also decided to use 'u' for UNTIL.

This means that the 'u' must be added to the set of characters in

the while-test. These are the characters that signal an exit

from the current block ... the "follow" characters, in compiler

jargon.

{--}

{ Recognize and Translate a Statement Block }

procedure Block;

begin

 while not(Look in ['e', 'l', 'u']) do begin

 case Look of

 'i': DoIf;

 'w': DoWhile;

 'p': DoLoop;

 'r': DoRepeat;

 else Other;

 end;

 end;

end;

{--}

THE FOR LOOP

The FOR loop is a very handy one to have around, but it's a bear

to translate. That's not so much because the construct itself is

hard ... it's only a loop after all ... but simply because it's

hard to implement in assembler language. Once the code is

figured out, the translation is straightforward enough.

C fans love the FOR-loop of that language (and, in fact, it's

easier to code), but I've chosen instead a syntax very much like

the one from good ol' BASIC:

 FOR <ident> = <expr1> TO <expr2> <block> ENDFOR

The translation of a FOR loop can be just about as difficult as

you choose to make it, depending upon the way you decide to

define the rules as to how to handle the limits. Does expr2 get

evaluated every time through the loop, for example, or is it

treated as a constant limit? Do you always go through the loop

at least once, as in FORTRAN, or not? It gets simpler if you

adopt the point of view that the construct is equivalent to:

 <ident> = <expr1>

 TEMP = <expr2>

 WHILE <ident> <= TEMP

 <block>

 ENDWHILE

Notice that with this definition of the loop, <block> will not be

executed at all if <expr1> is initially larger than <expr2>.

The 68000 code needed to do this is trickier than anything we've

done so far. I had a couple of tries at it, putting both the

counter and the upper limit on the stack, both in registers,

etc. I finally arrived at a hybrid arrangement, in which the

loop counter is in memory (so that it can be accessed within the

loop), and the upper limit is on the stack. The translated code

came out like this:

 <ident> get name of loop counter

 <expr1> get initial value

 LEA <ident>(PC),A0 address the loop counter

 SUBQ #1,D0 predecrement it

 MOVE D0,(A0) save it

 <expr1> get upper limit

 MOVE D0,-(SP) save it on stack

 L1: LEA <ident>(PC),A0 address loop counter

 MOVE (A0),D0 fetch it to D0

 ADDQ #1,D0 bump the counter

 MOVE D0,(A0) save new value

 CMP (SP),D0 check for range

 BLE L2 skip out if D0 > (SP)

 <block>

 BRA L1 loop for next pass

 L2: ADDQ #2,SP clean up the stack

Wow! That seems like a lot of code ... the line containing

<block> seems to almost get lost. But that's the best I could do

with it. I guess it helps to keep in mind that it's really only

sixteen words, after all. If anyone else can optimize this

better, please let me know.

Still, the parser routine is pretty easy now that we have the

code:

{--}

{ Parse and Translate a FOR Statement }

procedure DoFor;

var L1, L2: string;

 Name: char;

begin

 Match('f');

 L1 := NewLabel;

 L2 := NewLabel;

 Name := GetName;

 Match('=');

 Expression;

 EmitLn('SUBQ #1,D0');

 EmitLn('LEA ' + Name + '(PC),A0');

 EmitLn('MOVE D0,(A0)');

 Expression;

 EmitLn('MOVE D0,-(SP)');

 PostLabel(L1);

 EmitLn('LEA ' + Name + '(PC),A0');

 EmitLn('MOVE (A0),D0');

 EmitLn('ADDQ #1,D0');

 EmitLn('MOVE D0,(A0)');

 EmitLn('CMP (SP),D0');

 EmitLn('BGT ' + L2);

 Block;

 Match('e');

 EmitLn('BRA ' + L1);

 PostLabel(L2);

 EmitLn('ADDQ #2,SP');

end;

{--}

Since we don't have expressions in this parser, I used the same

trick as for Condition, and wrote the routine

{--}

{ Parse and Translate an Expression }

{ This version is a dummy }

Procedure Expression;

begin

 EmitLn('<expr>');

end;

{--}

Give it a try. Once again, don't forget to add the call in

Block. Since we don't have any input for the dummy version of

Expression, a typical input line would look something like

 afi=bece

Well, it DOES generate a lot of code, doesn't it? But at least

it's the RIGHT code.

THE DO STATEMENT

All this made me wish for a simpler version of the FOR loop. The

reason for all the code above is the need to have the loop

counter accessible as a variable within the loop. If all we need

is a counting loop to make us go through something a specified

number of times, but don't need access to the counter itself,

there is a much easier solution. The 68000 has a "decrement and

branch nonzero" instruction built in which is ideal for counting.

For good measure, let's add this construct, too. This will be

the last of our loop structures.

The syntax and its translation is:

 DO

 <expr> { Emit(SUBQ #1,D0);

 L = NewLabel;

 PostLabel(L);

 Emit(MOVE D0,-(SP) }

 <block>

 ENDDO { Emit(MOVE (SP)+,D0;

 Emit(DBRA D0,L) }

That's quite a bit simpler! The loop will execute <expr> times.

Here's the code:

{--}

{ Parse and Translate a DO Statement }

procedure Dodo;

var L: string;

begin

 Match('d');

 L := NewLabel;

 Expression;

 EmitLn('SUBQ #1,D0');

 PostLabel(L);

 EmitLn('MOVE D0,-(SP)');

 Block;

 EmitLn('MOVE (SP)+,D0');

 EmitLn('DBRA D0,' + L);

end;

{--}

I think you'll have to agree, that's a whole lot simpler than the

classical FOR. Still, each construct has its place.

THE BREAK STATEMENT

Earlier I promised you a BREAK statement to accompany LOOP. This

is one I'm sort of proud of. On the face of it a BREAK seems

really tricky. My first approach was to just use it as an extra

terminator to Block, and split all the loops into two parts, just

as I did with the ELSE half of an IF. That turns out not to

work, though, because the BREAK statement is almost certainly not

going to show up at the same level as the loop itself. The most

likely place for a BREAK is right after an IF, which would cause

it to exit to the IF construct, not the enclosing loop. WRONG.

The BREAK has to exit the inner LOOP, even if it's nested down

into several levels of IFs.

My next thought was that I would just store away, in some global

variable, the ending label of the innermost loop. That doesn't

work either, because there may be a break from an inner loop

followed by a break from an outer one. Storing the label for the

inner loop would clobber the label for the outer one. So the

global variable turned into a stack. Things were starting to get

messy.

Then I decided to take my own advice. Remember in the last

session when I pointed out how well the implicit stack of a

recursive descent parser was serving our needs? I said that if

you begin to see the need for an external stack you might be

doing something wrong. Well, I was. It is indeed possible to

let the recursion built into our parser take care of everything,

and the solution is so simple that it's surprising.

The secret is to note that every BREAK statement has to occur

within a block ... there's no place else for it to be. So all we

have to do is to pass into Block the exit address of the

innermost loop. Then it can pass the address to the routine that

translates the break instruction. Since an IF statement doesn't

change the loop level, procedure DoIf doesn't need to do anything

except pass the label into ITS blocks (both of them). Since

loops DO change the level, each loop construct simply ignores

whatever label is above it and passes its own exit label along.

All this is easier to show you than it is to describe. I'll

demonstrate with the easiest loop, which is LOOP:

{--}

{ Parse and Translate a LOOP Statement }

procedure DoLoop;

var L1, L2: string;

begin

 Match('p');

 L1 := NewLabel;

 L2 := NewLabel;

 PostLabel(L1);

 Block(L2);

 Match('e');

 EmitLn('BRA ' + L1);

 PostLabel(L2);

end;

{--}

Notice that DoLoop now has TWO labels, not just one. The second

is to give the BREAK instruction a target to jump to. If there

is no BREAK within the loop, we've wasted a label and cluttered

up things a bit, but there's no harm done.

Note also that Block now has a parameter, which for loops will

always be the exit address. The new version of Block is:

{--}

{ Recognize and Translate a Statement Block }

procedure Block(L: string);

begin

 while not(Look in ['e', 'l', 'u']) do begin

 case Look of

 'i': DoIf(L);

 'w': DoWhile;

 'p': DoLoop;

 'r': DoRepeat;

 'f': DoFor;

 'd': DoDo;

 'b': DoBreak(L);

 else Other;

 end;

 end;

end;

{--}

Again, notice that all Block does with the label is to pass it

into DoIf and DoBreak. The loop constructs don't need it,

because they are going to pass their own label anyway.

The new version of DoIf is:

{--}

{ Recognize and Translate an IF Construct }

procedure Block(L: string); Forward;

procedure DoIf(L: string);

var L1, L2: string;

begin

 Match('i');

 Condition;

 L1 := NewLabel;

 L2 := L1;

 EmitLn('BEQ ' + L1);

 Block(L);

 if Look = 'l' then begin

 Match('l');

 L2 := NewLabel;

 EmitLn('BRA ' + L2);

 PostLabel(L1);

 Block(L);

 end;

 Match('e');

 PostLabel(L2);

end;

{--}

Here, the only thing that changes is the addition of the

parameter to procedure Block. An IF statement doesn't change the

loop nesting level, so DoIf just passes the label along. No

matter how many levels of IF nesting we have, the same label will

be used.

Now, remember that DoProgram also calls Block, so it now needs to

pass it a label. An attempt to exit the outermost block is an

error, so DoProgram passes a null label which is caught by

DoBreak:

{--}

{ Recognize and Translate a BREAK }

procedure DoBreak(L: string);

begin

 Match('b');

 if L <> '' then

 EmitLn('BRA ' + L)

 else Abort('No loop to break from');

end;

{--}

{ Parse and Translate a Program }

procedure DoProgram;

begin

 Block('');

 if Look <> 'e' then Expected('End');

 EmitLn('END')

end;

{--}

That ALMOST takes care of everything. Give it a try, see if you

can "break" it <pun>. Careful, though. By this time we've used

so many letters, it's hard to think of characters that aren't now

representing reserved words. Remember: before you try the

program, you're going to have to edit every occurence of Block in

the other loop constructs to include the new parameter. Do it

just like I did for LOOP.

I said ALMOST above. There is one slight problem: if you take a

hard look at the code generated for DO, you'll see that if you

break out of this loop, the value of the loop counter is still

left on the stack. We're going to have to fix that! A shame ...

that was one of our smaller routines, but it can't be helped.

Here's a version that doesn't have the problem:

{--}

{ Parse and Translate a DO Statement }

procedure Dodo;

var L1, L2: string;

begin

 Match('d');

 L1 := NewLabel;

 L2 := NewLabel;

 Expression;

 EmitLn('SUBQ #1,D0');

 PostLabel(L1);

 EmitLn('MOVE D0,-(SP)');

 Block(L2);

 EmitLn('MOVE (SP)+,D0');

 EmitLn('DBRA D0,' + L1);

 EmitLn('SUBQ #2,SP');

 PostLabel(L2);

 EmitLn('ADDQ #2,SP');

end;

{--}

The two extra instructions, the SUBQ and ADDQ, take care of

leaving the stack in the right shape.

CONCLUSION

At this point we have created a number of control constructs ...

a richer set, really, than that provided by almost any other pro-

gramming language. And, except for the FOR loop, it was pretty

easy to do. Even that one was tricky only because it's tricky in

assembler language.

I'll conclude this session here. To wrap the thing up with a red

ribbon, we really should have a go at having real keywords

instead of these mickey-mouse single-character things. You've

already seen that the extension to multi-character words is not

difficult, but in this case it will make a big difference in the

appearance of our input code. I'll save that little bit for the

next installment. In that installment we'll also address Boolean

expressions, so we can get rid of the dummy version of Condition

that we've used here. See you then.

For reference purposes, here is the completed parser for this

session:

program Branch;

{--}

{ Constant Declarations }

const TAB = ^I;

 CR = ^M;

{--}

{ Variable Declarations }

var Look : char; { Lookahead Character }

 Lcount: integer; { Label Counter }

{--}

{ Read New Character From Input Stream }

procedure GetChar;

begin

 Read(Look);

end;

{--}

{ Report an Error }

procedure Error(s: string);

begin

 WriteLn;

 WriteLn(^G, 'Error: ', s, '.');

end;

{--}

{ Report Error and Halt }

procedure Abort(s: string);

begin

 Error(s);

 Halt;

end;

{--}

{ Report What Was Expected }

procedure Expected(s: string);

begin

 Abort(s + ' Expected');

end;

{--}

{ Match a Specific Input Character }

procedure Match(x: char);

begin

 if Look = x then GetChar

 else Expected('''' + x + '''');

end;

{--}

{ Recognize an Alpha Character }

function IsAlpha(c: char): boolean;

begin

 IsAlpha := UpCase(c) in ['A'..'Z'];

end;

{--}

{ Recognize a Decimal Digit }

function IsDigit(c: char): boolean;

begin

 IsDigit := c in ['0'..'9'];

end;

{--}

{ Recognize an Addop }

function IsAddop(c: char): boolean;

begin

 IsAddop := c in ['+', '-'];

end;

{--}

{ Recognize White Space }

function IsWhite(c: char): boolean;

begin

 IsWhite := c in [' ', TAB];

end;

{--}

{ Skip Over Leading White Space }

procedure SkipWhite;

begin

 while IsWhite(Look) do

 GetChar;

end;

{--}

{ Get an Identifier }

function GetName: char;

begin

 if not IsAlpha(Look) then Expected('Name');

 GetName := UpCase(Look);

 GetChar;

end;

{--}

{ Get a Number }

function GetNum: char;

begin

 if not IsDigit(Look) then Expected('Integer');

 GetNum := Look;

 GetChar;

end;

{--}

{ Generate a Unique Label }

function NewLabel: string;

var S: string;

begin

 Str(LCount, S);

 NewLabel := 'L' + S;

 Inc(LCount);

end;

{--}

{ Post a Label To Output }

procedure PostLabel(L: string);

begin

 WriteLn(L, ':');

end;

{--}

{ Output a String with Tab }

procedure Emit(s: string);

begin

 Write(TAB, s);

end;

{--}

{ Output a String with Tab and CRLF }

procedure EmitLn(s: string);

begin

 Emit(s);

 WriteLn;

end;

{--}

{ Parse and Translate a Boolean Condition }

procedure Condition;

begin

 EmitLn('<condition>');

end;

{--}

{ Parse and Translate a Math Expression }

procedure Expression;

begin

 EmitLn('<expr>');

end;

{--}

{ Recognize and Translate an IF Construct }

procedure Block(L: string); Forward;

procedure DoIf(L: string);

var L1, L2: string;

begin

 Match('i');

 Condition;

 L1 := NewLabel;

 L2 := L1;

 EmitLn('BEQ ' + L1);

 Block(L);

 if Look = 'l' then begin

 Match('l');

 L2 := NewLabel;

 EmitLn('BRA ' + L2);

 PostLabel(L1);

 Block(L);

 end;

 Match('e');

 PostLabel(L2);

end;

{--}

{ Parse and Translate a WHILE Statement }

procedure DoWhile;

var L1, L2: string;

begin

 Match('w');

 L1 := NewLabel;

 L2 := NewLabel;

 PostLabel(L1);

 Condition;

 EmitLn('BEQ ' + L2);

 Block(L2);

 Match('e');

 EmitLn('BRA ' + L1);

 PostLabel(L2);

end;

{--}

{ Parse and Translate a LOOP Statement }

procedure DoLoop;

var L1, L2: string;

begin

 Match('p');

 L1 := NewLabel;

 L2 := NewLabel;

 PostLabel(L1);

 Block(L2);

 Match('e');

 EmitLn('BRA ' + L1);

 PostLabel(L2);

end;

{--}

{ Parse and Translate a REPEAT Statement }

procedure DoRepeat;

var L1, L2: string;

begin

 Match('r');

 L1 := NewLabel;

 L2 := NewLabel;

 PostLabel(L1);

 Block(L2);

 Match('u');

 Condition;

 EmitLn('BEQ ' + L1);

 PostLabel(L2);

end;

{--}

{ Parse and Translate a FOR Statement }

procedure DoFor;

var L1, L2: string;

 Name: char;

begin

 Match('f');

 L1 := NewLabel;

 L2 := NewLabel;

 Name := GetName;

 Match('=');

 Expression;

 EmitLn('SUBQ #1,D0');

 EmitLn('LEA ' + Name + '(PC),A0');

 EmitLn('MOVE D0,(A0)');

 Expression;

 EmitLn('MOVE D0,-(SP)');

 PostLabel(L1);

 EmitLn('LEA ' + Name + '(PC),A0');

 EmitLn('MOVE (A0),D0');

 EmitLn('ADDQ #1,D0');

 EmitLn('MOVE D0,(A0)');

 EmitLn('CMP (SP),D0');

 EmitLn('BGT ' + L2);

 Block(L2);

 Match('e');

 EmitLn('BRA ' + L1);

 PostLabel(L2);

 EmitLn('ADDQ #2,SP');

end;

{--}

{ Parse and Translate a DO Statement }

procedure Dodo;

var L1, L2: string;

begin

 Match('d');

 L1 := NewLabel;

 L2 := NewLabel;

 Expression;

 EmitLn('SUBQ #1,D0');

 PostLabel(L1);

 EmitLn('MOVE D0,-(SP)');

 Block(L2);

 EmitLn('MOVE (SP)+,D0');

 EmitLn('DBRA D0,' + L1);

 EmitLn('SUBQ #2,SP');

 PostLabel(L2);

 EmitLn('ADDQ #2,SP');

end;

{--}

{ Recognize and Translate a BREAK }

procedure DoBreak(L: string);

begin

 Match('b');

 EmitLn('BRA ' + L);

end;

{--}

{ Recognize and Translate an "Other" }

procedure Other;

begin

 EmitLn(GetName);

end;

{--}

{ Recognize and Translate a Statement Block }

procedure Block(L: string);

begin

 while not(Look in ['e', 'l', 'u']) do begin

 case Look of

 'i': DoIf(L);

 'w': DoWhile;

 'p': DoLoop;

 'r': DoRepeat;

 'f': DoFor;

 'd': DoDo;

 'b': DoBreak(L);

 else Other;

 end;

 end;

end;

{--}

{ Parse and Translate a Program }

procedure DoProgram;

begin

 Block('');

 if Look <> 'e' then Expected('End');

 EmitLn('END')

end;

{--}

{ Initialize }

procedure Init;

begin

 LCount := 0;

 GetChar;

end;

{--}

{ Main Program }

begin

 Init;

 DoProgram;

end.

{--}

