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Abstract 
The aim of this thesis is to present opportunities on implementations of spiking neural 

network for image recognition and proving learning algorithms in MATLAB 

environment. 

In this thesis provided examples of the use of common types of artificial neural networks 

for image recognition and classification. Also presented spiking neural network areas of 

use, as well as the principles of image recognition by this type of neural network. 

The result of this work is the realization of the learning algorithm in MATLAB 

environment, as well as the ability to recognize handwritten numbers from the MNIST 

database. Besides this presented the opportunity to recognizing Latin letters with 

dimensions of 3x3 and 5x7 pixels. 

In addition, were proposed User Guide for masters course ISS0023 Intelligent Control 

System in TUT. 

 

This thesis is written in English and is 62 pages long, including 6 chapters, 61 figures and 

4 tables. 
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Annotatsioon 

Kujutise tuvastamine impulsi närvivõrkudega 
Selle väitekiri eesmärgiks on tutvustada impulsi närvivõrgu kasutamisvõimalused, samuti 

näidata õpetamise algoritmi MATLAB keskkonnas. 

Töös esitatakse levinumaid tehisnärvivõrgu kasutamise näidet kujutise tuvastamiseks ja 

klassifitseerimiseks. Esitatud impulsi närvivõrkude kasutamise alad ja kujundite 

tuvastamise põhimõtted. 

Magistritöö lõpptulemusena on rakendatud õpetamise algoritm MATLAB keskkonnas, 

lisaks on võimalik tuvastada käekirja numbrit MNIST andmebaasist. Peale selle on 

võimalik tunnustada ladina tähestiku suurusega 5x7 ja 3x3 pikslit. 

Välja on töötatud õpematerjal/ praktilise töö juhend magistriõppe aine ISS0023 Arukad 

juhtimissüsteemid jaoks. 

 

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 62 leheküljel, 6 peatükki, 61 

joonist, 4 tabelit. 
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List of abbreviations and terms 

ANN Artificial neural network 

FFNN 
SLNN 

FeedForward neural network 
Self-Learning neural network 

RBFN Radial based function network 

RNN Recurrent neural network 

HTM Hierarchical temporal memory 

SNN Spiking neural network 

FPGA Field-programmable gate array 

nPU Neural processing unit 

IBM International Business Machines 

CMOS Complementary metal-oxide-semiconductor 

STDP-learning Spike-timing-dependent plasticity 

LIF Leaky integrate-and-fire 

jAER Java tools for Address-Event Representation  

DVS Dynamic Vision Sensor 

AER-EAR Address-event representation ear 

DBN Deep belief network 

RBM Restricted Boltzmann machine 

MNIST Mixed National Institute of Standards and Technology 
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1. Artificial neural networks 
Artificial neural network is a software and/or hardware realization of a mathematical 

model, based on principles of organization and functioning of the biological neural 

network.  

 

Fig. 1.1(A) Human neuron; (B) artificial neuron; (C) biological synapse; (D) ANN synapses [1]  

 

Last generation neural network usually operates up to several million artificial neurons 

and axons. But this size is not enough to fully reproduce human brain and can be 

compared to thinking level of a protozoa [2]. 

To “teach” neural network can be used one of the learning technics: 

• Supervised learning – for each case provided situation and requested solution 

• Unsupervised learning – provided only situation, agent categorize results itself 

• Reinforcement learning – network cooperate with “environment” without 

knowledge about system 

In general, ANN can be classified in a groups, which are listed and explained below. 

Additionally, provided an example of image processing/recognition with this network 

type. 
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1.1 Feedforward neural network 

First and, basically, most simple type on ANN. Information goes only in one direction – 

forward. No cycles or loops in the network. Can have from 1 to N numbers of inputs and 

outputs. Also, from 0 to N hidden layers [3]. 

 

Fig. 1.2 Structure of feedforward neural network 

This approach can be used for simple optical character recognition. 

 

Fig. 1.3 Feedforward neural network recognition demo [4] 

 

Fig. 1.4 Feedforward neural network recognition workflow [4] 
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1.2 Radial basis function network 

RBFN have some advantages over FFNN [5]:  

 

• This type of network models arbitrary nonlinear function only with one hidden 

layer. This helps to remove requirements in additional hidden layers 

• The parameters of the linear combination in the output layer can be fully 

optimized using well-known linear optimization methods that work quickly.  

• In addition, the RBFN network is trained very quickly. 

 

 

Fig. 1.5 Structure of radial basis function 

 

 

Fig. 1.6 Example of area categorizing using RBFN [6] 
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1.3 Recurrent neural network 

The main point of the RNNs in an opportunity to use feedback. In the classical neural 

network, a signal flows only straight forward and this limits implementation field. Every 

single calculation had influence to the follows input Presence of feedback allows access 

to networks internal memory, which can help it field of recognition and classification 

problem [7]. 

 

 

Fig. 1.7 The architecture of a recurrent neural network 

 
 

Fig. 1.8 RNN in combine with convolutional neural network can be used  

for generation description of unlabeled images [8] 
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1.4 Physical neural network 

The main difference from “traditional” artificial neural networks is that in physical neural 

networks electrical components are used to imitate brain activity.  

 

Fig. 1.9 Physical neural network liquid state machine utilizing nanotechnology [9] 

 

 

Fig. 1.10 Physical robots and neural network controller [10]  
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1.5 Other types of network 

A few words about self-sustained neural networks 

1.5.1 Neuro-fuzzy networks 

From the network name it is clear, that this method based on the fuzzy logic implemented 

in ANN. Using this approach reveals opportunity to use neuro-fuzzy networks as 

universal approximators with focus to IF-THEN rules [11]. 

 

Fig. 1.11 (a) Example of Takagi-Sugeno rules. (b) Equivalent Neuro-fuzzy network [11] 

 

 
 

Fig. 1.12 Emotion recognition with neuro-fuzzy logic [12] 
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1.5.2 Hierarchical temporal memory 

Hierarchical temporal memory is an unsupervised to semi-supervised online machine 

learning model, which models some of the structural and algorithmic properties of 

the neocortex. HTM is a biomimetic model based on the memory-prediction theory of 

brain function [13]. 

 

 

Fig. 1.13 HTM network with four levels [14] 

 

Fig. 1.14 Visualization of estimated results with HTM recognition [14]  
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1.5.3 Spiking neural networks 

At the moment, SNNs are considered one of the most advanced neural networks. The 

reason is in the very close representation of the concept of the human brain. Besides 

synaptic and neuronal state, SNN has included an idea of time in the workflow. The point 

of the SNN is in the activity of the neurons. Unlike traditional multi-layer ANNs, in SNNs 

neurons is active only then the membrane potential, a difference in electric potential 

between neurons, is exceeded predetermined value. After neuron activation, generated 

spikes reach other neurons and cause a neurons potentials change in favor with received 

value (increase or decrease of potential) [15]. 

 

Fig. 1.15 Example of “brain-like” model of spiking neural network [16] 

 

Opportunities of using spiking neural networks as the most advanced technic for image 

processing and recognition I will provide in the next chapter. 
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1.6 Comparison 

Any of mentioned above ANNs can be used for image processing and recognition, but all 

of them have they own pros and cons.  

 Field of use 
(most common) 

Complexity of 
images to 
process 

Ability to 
learn 

Computation 
power 

(similar task 
or close to it) 
in abstract 
units [17] 

Feedforward 
neural network 

Recognition Simple image 
with minimal 

noise and 
disturbance 

Training 
Pattern 

1 

Radial basis 
function 
network 

Classification Must present 
similar pattern 

for classification 

Training 
Pattern 

0.7 

Recurrent 
neural network 

Classification Must be 
combined with 

other NN 

Training 
Memory 

0.8 

Physical neural 
network 

Control Live image Training 
Pattern 

0.5 

Neuro-fuzzy 
network 

Recognition Live image Training 
Pattern 

1.3 

Hierarchical 
temporary 
memory 

Recognition Live image with 
minimal 

disturbance 

Training 
Memory 

1.6 

Spiking neural 
network 

Recognition Live image Learn in 
process 

Prediction 

0.9 

Table 1.1 Comparison of usage different ANN for image processing 

Based on the requirement assigned for neural network for image recognition, the best 

choice is spiking neural network. It can work with work with large live feed using less 

computational power. 
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2. Spiking neural network as a tool 

As was mentioned before, spiking neural networks are the most advanced development 

in intention to replicate human brain. It was achieved by implementing individual spike. 

It's revealing opportunity to include spatial-temporal information in cross layer 

connection. Traditionally rate coding was used, now neurons use pulse coding. This 

means that neurons process individual pulses what is allows for information multiplexing. 

Research shows that this is how real neurons work [18].  

2.1 Spiking models 

As a model, spiking artificial neural network have the same internals as their biological 

analogs [19]:  

• They can process information coming from many inputs and release single spike 

as response. 

• The probability of spike generations is increased by excitatory inputs and 

decreased by inhibitory inputs 

• When neuron activation threshold is achieved, spikes most be generated.  

Spiking neural network models can be divided in three main categories [20]:  

1. Feedforward networks – no feedback connection. Signal move only straight 

forward from input to output. Can be applied multilayer system. 

2.  Recurrent networks – neurons interact with each other not only forward, but also 

with feedback connection to the previous layer. This approach helps SNNs 

remonstrate dynamic temporal behavior. 

3. Hybrid networks – in this category presented 2 types of SNNs in which have in 

structure feedforward and recurrent combined:  

• Synfire chain – A multi-layered architecture in which spike pulses can spread 

as a synchronous wave of neuron activation from one layer of the chain to 

other. 

• Reservoir computing – Abstraction paradigm, that uses opportunities of 

recurrent network, but at the same time don’t have training disadvantages. 
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2.2 Application where used spiking neural networks 

The last decade was marked by the rapid development of the third generation of neural 

networks - spiking neural networks. This was caused by the emergence of the opportunity 

to develop and produce large hardware neural networks implemented in the form of chips, 

which made it possible to introduce a replacement in many areas of application of the 

traditional von Neumann architecture computers to a spiking neural network based 

solution with low energy consumption.  

There are some advantages which have SNN over neural networks of previous 

generations [21]: 

• SNNs are dynamic, and therefore perfectly suited for working with dynamic 

processes (speech recognition and dynamic images); 

• SNNs have multitasking, because the input data is processed in a neural network 

with feedbacks, and different groups of reading neurons can be trained to solve 

different tasks; 

• SNNs are able to perform foresight recognition (it is not necessary to have 

complete information about the object or to know the result of the process); 

• SNN is simply to teach since it is sufficient to train only the output reading 

neurons; 

• SNNs have increased information processing and noise immunity because they 

use a timeline information presentation; 

• SNN requires a smaller number of neurons since each neuron of a pulsed neural 

network replaces two neurons (exciting and inhibitory) of the classical ANN; 

• SNNs have a high speed of operation and a great potential for parallelization since 

for the transmission of the pulse it is necessary to send 1 bit, rather than a 

continuous value, as in frequency ANNs; 

• SNN can be trained in the process of work. 
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Disadvantages are also presented: 

• It is not advisable to use the SNNs in systems with a small number of neurons; 

• There is no perfect learning algorithm. 

Based on the opportunities of using SNNs, main directions of implementations can be 

highlighted. 

2.2.1 Prosthetics 

At the moment most developed field of implementation of SNNs in medicine. Especially 

in neuroprosthetics. Since the principles of coding sensory information entering the brain 

are known, appeared the idea to emulate the signals in diseased, injured or amputated 

sense organs and feed them through the electrodes to the nerves coming from these senses 

or even directly to regions of the cerebral cortex responsible for processing of relevant 

sensory information. Similarly, knowledge of the coding of commands coming from the 

brain to the muscles makes it possible for them to be interpreted by special prostheses 

controlled by microprocessors that reproduce the actions normally performed by a healthy 

limb [22]. 

 

Fig. 2.1 Principal components of SNN-based neuroprosthetic control paradigm [23] 



24 

For over 10 years, there are visual neuroprostheses that provide signals from arrays of 

light-sensitive elements that are encoded as a series of spikes in the visual cortex 

departments completely blind patients, giving them the ability to navigate in space and 

even read. Another long and successful history of developing the use of hearing 

neuroprosthesis in patients with profound hearing loss (including the deaf from birth) 

[23]. 

Another area of neuroprosthetics is direct electrical stimulation of the brain. The sending 

of spike sequences through electrodes implanted in certain deep structures of the brain 

helps to alleviate or completely eliminate the symptoms of Parkinson's disease, dystonia, 

chronic pain and even psychiatric diseases (manic-depressive psychosis, schizophrenia). 

Here we are talking about directed intervention in the brain. 

2.2.2 Robotics 

Since spiking neural networks have ability to “see” and analyze they can be used as a part 

of advanced robotics. Here is needed to mention a company named “Brain Corporation” 

from San-Diego, USA. Founder of this company is Dr. Eugene Izhikevich. He is known 

for his foremost of the theory of spiking networks. Dr. Izhikevich with his team 

implemented the world’s largest thalamo-cortical model. “Brain Corporation” is software 

company specializing in the development of intelligent, autonomous systems that 

automate commercial equipment. The company is now focused on developing advanced 

machine learning and computer vision systems for the next generation of self-driving 

vehicles [24]. 

 

Fig. 2.2 BrainOS build-in module in cleaning machine [24] 
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2.2.3 Hardware 

At the moment 2 major player in the field of computing power are working on they own 

so-called “neural processing unit”.  

“Intel is interested in this because use of this approach can accelerate specific functions 

(e.g. complex neural networks, video codecs or search algorithms) and could deliver up 

to 10x performance efficiency across a variety of workloads, and integrating the FPGA 

with coherent and non-coherent links within the Xeon package (versus discreet FPGAs) 

could lead to an additional 2x performance improvement.” [25] 

Qualcomm have they own research in neurocomputing. Advantages of Zeroth processor 

is in the ability to recreate the way of brain behavior. Zeroth are created for image and 

sound processing. It means that it can recognize and analyze faces, gestures and also 

speech. Besides that, it can be used for optimizing processes, for example for battery life 

extension [26]. 

 

 

Fig. 2.3 Qualcomm's brain-inspired chip [26] 
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2.2.4 Computer vision 

SNN have been successfully used for image classification. They provide a model for the 

mammalian visual cortex, image segmentation and pattern recognition. Different spiking 

neuron mathematical models exist, but their computational complexity makes them ill-

suited for hardware implementation at the moment [27].  

But still, IBM has developed neuromorphic chip called “True North”. “True North 

consists of 1 million programmable neurons and 256 million programmable synapses 

conveying signals between the digital neurons. With a total of 5.4 billion transistors, the 

computer chip is one of the largest CMOS chips ever built. Yet it uses just 70 mW in 

operation and has a power density about 1/10,000 that of most modern microprocessors. 

That brings neuromorphic engineering closer to the human brain’s marvelous efficiency 

as a grapefruit-size organ that consumes just 20 W.” [28] 

Applying this approach can eliminate von Neumann computing restriction, when 

several tasks cannot be performed in one processing unit in the same time. 

 

 

Fig. 2.4 IBM Neuromorphic System [29] 
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Fig. 2.5 Video feed recognition with TrueNorth chip [30] 

 
 
“A video camera on Hoover Tower at Stanford University is looking down at the plaza, 

below. A simulated network of IBM TrueNorth chips takes in the video data and locates 

interesting objects. Objects might look interesting to the system because they are moving 

or have a different color or texture than the background. The system then further processes 

those portions of the interesting video to determine what the objects are. It is trained in 

several specific categories, such as buses, cars, people, and cyclists. In a monitoring 

application, the camera would only need to communicate when it found an interesting 

object, rather than continually streaming video to a central location.” [30] 
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3. Handwriting processing in MATLAB with spiking neural 

network 
As an example of image processing, I will consider handwriting recognition solution 

developed by research team from Institute of Neuroinformatics, University of Zurich and 

ETH Zurich, Zurich, Switzerland. This method is based on the jAER open-source project 

and training process is implemented in MATLAB environment [31]. 

This project was developed as proof-of-concept for real time recognition of handwritten 

digits and letters from 128x128 Dynamic Vision Sensor with pre training in MATLAB.  

I will focus only in the part of recognition and result analysis for MATLAB environment.  

3.1 Methodology 

3.1.1 Deep Belief Neural Network and Restricted Boltzmann Machines 

DBN can be described as graphical model with several hidden layers. This means that 

neurons within one layer are not connected with each other, but connected with neurons 

from other layers. RBM are using stochastic structure approach but based on the same 

principles. Connections inside this model are only between “visible” and “hidden” group 

nodes, not within one group. In comparison with Standard Boltzmann Machine in 

Restricted model nodes of one layer are not connected. This makes learning and 

classification process tractable in RBM [32].By stacking RBM in form of a DBN, the 

lower layer of RBM become of the visible layer of the higher RBM. This structure allows 

teach RBM to analyze more specific tasks [33].  

 

Fig. 3.1 Boltzmann and Restricted Boltzmann Machines [31] 
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“In a binary RBM the units stochastically take on states 0 or 1, depending on their inputs 

from the other layer. Denoting the states of visible units with vi, the states of hidden units 

with hj, the weights connecting these units with wij, and the biases of visible and hidden 

units with bi
(v) and bj

(h) respectively, a RBM encodes a joint probability distribution       

p(v, h|θ), defined via the energy function” [31]  

! ", ℎ; & = − )*+
+

*

"*ℎ+ − ,*
-

*
"* − ,+

.

+
ℎ+,      (1) 

where θ = (w, b(v), b(h)). The encoded joint probability can then be written as� 

/ ", ℎ & =
012 34 -,.;5

01267
87

34 -7,.7;5
.     (2) 

“From equations (1) and (2) the following stochastic update rules for the states of units 

were derived, such that on average every update results in a lower energy state, and 

ultimately settles into an equilibrium [34]:” [31] 

3/("* = 1|ℎ, &) = ? )*+
+

ℎ+ + ,*
-      (3) 

4/ ℎ+ = 1 ", & = ? )*+
*

"* + ,+
.
,      (4) 

“where σ(x) = 1/(1 + exp(−x)) is the sigmoid function, and the units will switch to state 0 

otherwise. When left to run freely, the network will generate samples over all possible 

states (v, h) according to the joint probability distribution in (2). This holds for any 

arbitrary initial state of the network, given that the network has enough time to become 

approximately independent of the initial conditions.” [31] 

Previously was mentioned that we creating DBN by stacking RBM. This approach allows 

us to transform hidden layer of the RBM to the visible layer of next level. The upper 

levels of RBM will handle more abstract functions, which provides improved 

classification parameters [35].  
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3.1.2 Discrete-time and event-driven neuron models  

 “In the standard formulation, units within RBMs are binary, and states are sampled 

according to the sigmoidal activation probabilities from Equations (3) and (4). Such 

neuron are called models sigmoid-binary units. It was shown that an equivalent threshold-

linear model can be formulated, in which zero-mean Gaussian noise N (0, σ 
2

n) with 

variance σ2
n is added to the activation functions [36]:” [31] 

	ℎ+ = max	(0, )*+"* + ,+
. + N(0, σI

J)	,*                (5) 

“In this model, each incoming event adds to the membrane potential Vm according to the 

strength wij of the synapse along which the event occurred. Incoming spikes within an 

absolute refractory period tref after an output spike are ignored. Spikes are generated 

deterministically whenever the membrane potential crosses the firing threshold Vth, 

otherwise, the membrane potential decays exponentially with time constant τ. Simple 

versions of LIF neurons can be simulated in an event-based way since membrane 

potentials only need to be updated upon the arrival of input spikes, and spikes can only 

be created at the times of such input events. For a LIF neuron representing hj, which 

receives a constant input current K+ = )*+"**  corresponding to the weighted i sum of 

inputs from connected visible units, the expected firing rate ρj(sj) is [37]:” [31] 

L+(K+) =
MNOP − Q log 1 −

UV6

WX

3Y

0

Z[ K+ ≥ _̂.

`Mℎab)ZKa
      (6) 

“The above equation holds when the neuron is injected with a constant input, but under 

realistic conditions, the neuron receives a continuous stream of input spike trains, each 

arriving to first approximation as samples from a Poisson process with some underlying 

firing rate. For this case, a more accurate prediction of the average firing rate can be 

obtained using Siegert neurons [38]. Siegert neurons have transfer functions that are 

mathematically equivalent to the input-rate output-rate transfer functions of LIF neurons 

with Poisson- process inputs. In order to compute the Siegert transformation for a neuron 

receiving excitatory and inhibitory inputs with rates (/O,	/*) and weights ()O, )*) 

respectively, we first have to compute the auxiliary variables  
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 cd = 	Q∑ )OLO + )fLf             (7)                   ϒ =	 N̂OW_ + cd                        (8)  

 g = 	 QWhI Q                            (9)  	?d
J 	= 	

i

J
∑ )O

JLO + )f
JLf        (10)   

 j = 	?d                                     (11)  	k = l
Y

J
         (12) 

where τsyn is the synaptic time constant (for our purposes considered to be zero), and ζ is 

the Riemann zeta function. Then the average firing rate ρout of the neuron with resting 

potential Vrest and reset potential Vreset can be computed as [39]:” [31] 

Lmn_ = (MNOP +
i

o

p

J
· exp[

(n3ϒ)u

Jou
] · [1 + ab[(

n3ϒ
o J

)]wx)3Y
UV6 z {|o

U}~�~V z {|o

  (13) 

“A RBM trained using Siegert units can thus be easily converted into an equivalent 

network of spiking LIF neurons: By normalizing the firing rate in Equation (13) relative 

to the maximum firing rate 1/tref , ρout can be converted into activation probabilities as 

required to sample RBM units in Equations (3, 4) during standard Contrastive Divergence 

learning with continuous units. After learning, the parameters and weights are retained, 

but instead of sampling every time step, the units generate Poisson spike trains with rates 

computed by the Siegert formula Equation (13).” [31] 

3.2 Training the network 

The source code for MATLAB can be found in the repository of developers [40]. From 

this point, a solution will be considered from the theoretical point of view. More detailed 

implementation can be observed in User Guide at the end of this work. 

Point of this chapter is to evaluate recognition capability of this approach and understand, 

can it be used for other recognition and classification tasks. 

3.2.1 Input data 

As was mentioned previously, for understanding of opportunities of this solution will be 

used MNIST dataset. MNIST is a database of handwritten digits. By itself consists of 

60000 training samples and 10000 test samples. Unfortunately, original data is stored in 

a format, which is not suitable for MATLAB. 
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We will use mnist_uint8.mat which is taken from Deep Learning Toolbox for 

MATLAB[41]. This is converted MNIST database for usage in MATLAB environment. 

In original MNIST input image is 28x28 pixels, but here it is modified as one vector 

input layer with 784 visual input units.  

 

 Fig. 3.2 Example of MNIST and MATLAB dataset sample (7) 

3.2.2 Network Architecture  

Because DBN was created by stacking RBMs, we can consider this network as 

“traditional”. In the simplified view, it will look like: 

  

Fig. 3.3 Spiking DBN architecture for image recognition 

Visual input layer with 784 neurons because the of input vector, equal 28x28 pixel dataset 

image. 

Visual abstraction and Associative layers have both 50 neurons, this is not an optimal or 

perfect amount, but for understanding of opportunities, this is enough. 

Label layer have 10 neurons in favor with digits from 0 to 9. 
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3.2.3 Training  

Spiking neural network training process divided into a few steps. Since our model consists 

of many RBM, they should be trained individually. 

• As an independent RBM, determinates weight coefficients within Input and 

Abstract layers. 

• After that established supervised learning between Associative and Label layer. 

But as input in Associative layer used previously trained RBM (Input and 

Abstract) 

• Every RBM must be trained predefined epoch times 

3.3 Result 

After the execution example.m with parameters from above, was achieved recognition 

rate 90.46%.  

 

Fig. 3.4 Training result for MNIST dataset recognition 

 

In fig 3.5 we can see the distribution of weight coefficient in Abstract layer. Every single 

square represents a set of weight inside a neuron after performing a learning process. 
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Fig. 3.5 RBM weights for MNIST recognition 

 
 
Below are provided some recognition examples. More spikes represent more concern.   

 

Fig. 3.6 Recognition of MNIST sample 48 (7) 

  

Fig. 3.7 Recognition of MNIST sample 655 (1) 
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Fig. 3.8 Recognition of MNIST sample 6592 (4) 

  

Fig. 3.9 Recognition of MNIST sample 7362 (0) 

Due to the % of recognition, some numbers cannot be recognized or are recognized 

wrongly. 

 

Fig. 3.10 Recognition of MNIST sample 74 (9) 

 

Fig. 3.11 Recognition of MNIST sample 492 (8) 

This approach allows recognizing MNIST dataset with 90.46% probability, what is a very 

good percentage. Research team reports that with more advanced setup can be obtained 

recognition level 95.52% [40]. 
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4. Minimal recognition size 
Within discussion about solving capabilities of this approach was asked a question about 

minimal resolution of input.  

4.1 Dataset 

The same approach from chapter 6 was used for data generation, but instead of 5x7 input 

matrix was used 3x3 matrix. This is square form is used for LCD or LED display and 

named “Fakoo alphabet” [42]. 

 

Fig. 4.1 Fakoo alphabet [42] 

4.2 Setup 

Following setup was used for SNN training. Example of program listing can be reviewed 

in User Guide chapter 5.  

edbn.sizes = [9 45 52 26]; 
  
opts.alpha      = 0.5; 
opts.momentum   = 0.5; 
opts.f_decay    = 0.006; 
opts.f_alpha    = 3; 
opts.pcd        = 0.8; 
opts.sp         = 0.2; 
opts.sp_infl    = 0.7; 
opts.ngibbs     = 2; 
opts.batchsize  = 13; 
  
opts.numepochs  = 50; 

Table 4.1 SNN setup for Fakoo alphabet  recognition 
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4.3 Result 

 

Fig. 4.2 Training result of Fakoo alphabet recognition 

 

After training was achieved recognition capability: 100%.  

 

  

Fig. 4.3 Recognition of Fakoo alphabet sample 3 
(C) 

Fig. 4.4 Recognition of Fakoo alphabet sample 15 
(O) 
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Fig. 4.5 Recognition of Fakoo alphabet sample 20 
(T) 

Fig. 4.6 Recognition of Fakoo alphabet sample 24 
(X) 

 

Considering very small size of an input image, this is quite impressive that all characters 

was recognized. 
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5. Character recognition 
The next task was taken from TUT course named Intelligent Control Systems (ISS0023) 

[43] by Eduard Petlenkov. This course provides overview of artificial intelligence 

methods based classification and recognition techniques.  

5.1 Task 

Course task is to train FFNN for alphabet character recognition in two ways (supervised 

and unsupervised). My aim is to solve the same task with spiking neural network and 

compare opportunities of this networks by accuracy, used time and number of epoch. 

All character is given as 5x7 matrix. In total 26 samples. 

 

Fig. 5.1 Example of characters A, B and C as matrix 

 
Fig. 5.2 Example of characters A, B and C as image 

For training purpose, set consist of pure image and images with applied noise 

5%,10%,20% and 30%. Testing data are designed with 22% noise. 

  

Fig. 5.3 Letter A with noise 20%, 30% and 22% 
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5.2 Training results with FeedForward Neural Network 

After training and verification, were achieved following results: 

• Accuracy – 100% (all letters recognized correctly) 

 

Fig. 5.4 FFNN lab task accuracy result 

• Time – 3.571 seconds (CPU usage) 

    

Fig. 5.5 FFNN lab task time result 

• Number of epoch – 1744 

 

Fig. 5.6 FFNN lab task epoch 

Examples of test data: 

                 

Fig. 5.7 Lab task testing data sample 4 (D)       Fig. 5.8 Lab task testing data sample 15 (O) 

As we can see, Feedforward neural network performed training and recognition 

task as needed. 
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5.3 Training with Self-Learning Neural Network 

Here will be presented optimal epoch number for self-learning neural network training. 

To find it, I will use comparison between clean letter and with noise. 
 
 
for	i=1:26	
	
test=alphabet(:,i);	
test_n=test+randn(35,1)*0.22;	

Cycle	for	every	letter		
	
Clean	letter																																																																																		
Same	latter	with	22%	noise		

t=sim(net_c,test);		
t_n=sim(net_c,test_n);	

Recognition	of	clear	letter																													
Recognition	of	letter	with	noise		

test_out	(i)	=	vec2ind(t);	
test_out_n	(i)	=	vec2ind(t_n);	
end	

Writing	recognition	results	

test_out	(26)	=	vec2ind(t)	
test_out_n	(26)	=	vec2ind(t_n)	

Final	result	of	recognition	

test_out	==	test_out_n	
	
match=isequal(test_out,test_out_n)	

Comparison	side-by-side	
	
Does	2	vectors	equal	or	not	

Table 5.1  Lab task self-learning neural network recognition verification 

Epoch = 10, not enough for all character recognition. 

Fig. 5.9 Lab task self-learning verification with 10 epoch 

Epoch=20, also not enough. 

 

Fig. 5.10 Lab task self-learning verification with 20 epoch 
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Epoch=25, not enough. 

 

Fig. 5.11 Lab task self-learning verification with 25 epoch 

Epoch=30, enough, all characters recognized. 

 

Fig. 5.12 Lab task self-learning verification with 30 epoch 

 

30 epochs were enough for correct recognition of all character and will be used in 

recognition methods comparison for self-learning network. 
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After training and verification, were achieved following results: 

• Accuracy – 100% (all letters recognized correctly, attempts are presented in Appendix 1) 

  

Fig. 5.13 SLNN lab task accuracy result 

• Time – 4.590 seconds (CPU usage) 

      

Fig. 5.14 SLNN lab task time result 

• Number of epoch – 30 

 

Fig. 5.15 SLNN lab task epoch 

Examples of test data: 

                 

Fig. 5.16 Lab task testing data sample 3 (C)       Fig. 5.17 Lab task testing data sample 17 (Q) 

Self-learning network also performed well. 
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5.4 Training with Spiking Neural Network 

Detailed setup and training process presented in User Guide chapter 7. 

 

After training and verification, were achieved following results: 

• Accuracy – 100% (all letters recognized correctly) 

 

Fig. 5.18 SNN lab task accuracy result 

• Time – 1.691 seconds (CPU usage) 

     

Fig. 5.19 SNN lab task time result 

• Number of epoch – 50 (25 epochs for each RBM) 

 

Fig. 5.20 SNN lab task epoch 
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Fig. 5.21 Recognition of sample 3 (C) 

 
 

 
 

Fig. 5.22 Recognition of sample 4 (D) 

 
 

 
Fig. 5.23 Recognition of sample 15 (O) 

 
 

 
Fig. 5.24 Recognition of sample 17 (Q) 
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5.5 Comparison of the results 

Obtained learning results can be easily compared. 

 Accuracy  Neurons in 

hidden layer 

Time Epoch 

Feedforward neural 

network 

100% 35+26 3.571 1744 

Self-learning neural 

network 

100% 26 4.590 30 

Spiking neural network 100% 35+26 1.691 50 

Table 5.2 Lab task result comparison 

 
 
Based on the obtained data, spiking neural network can be considered as one of the 

solution of image recognition problem and can be demonstrated as entry point for more 

advanced neural network. 
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6. Summary  
 
In this thesis was presented one of the approaches in recognition technics. Wide range of 

future development in this field can be implemented in everyday life. But the complexity 

of the recognition and classification process requires the synergy of different 

methodology from a different field. At the moment neuromorphic computing faces the 

problem of big data. Existing applications and solutions give as a place of improvement 

and development to overcome the barrier and reach a new level in artificial neural 

networks. 

Spiking neural network can be used in digitizing handwriting materials or speech 

recognition. Ability to make real-time recognition great opportunity to use in mobile 

applications or in robotics. A lot of existing solution require a data connection with 

external servers. This connection can be restricted, for example in remote areas. 

This particular solution is a proof-of-concept and good starting point for learning spiking 

neural network recognition opportunities. 

As a future development of this real-time solution can be adjusting other external 

equipment and processing more complex problem. 
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User guide 
Following manual is designed as entry point for those, who wants to try and understand 
basics of this particular solution for image recognition using spiking neural network in 
MATLAB environment.  

1. Software 
First thing that you must have is MATLAB/SIMULINK program. I have used version 
R2014b. Also you must have following toolboxes: 
To check which modules are installed, enter in Command Window “ver” 
 

 
 

2. Package 
Since at the moment there is no proper toolbox for spiking neural network in MATLAB, 
main files can be downloaded from Github repository [44]. 
 
After download and extraction, you should have folder with name “edbn-master” with 
following set of files. 

 
 
 
Optional: because this solution is a part of bigger project, only files with green cycle is needed 
for work  
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3. MATLAB 
After extraction “edbn-master” folder must be placed as a current working folder in 
MATLAB. Easiest way to do it is drag-n-drop folder in “Current Folder” section in 
MATLAB. After that, double tap on this folder in MATLAB. 
 
If all previous steps done correctly, in MATLAB should be followed file structure. 
 

 

3.1  Installation verification 

To proof, if everything is set correctly, enter “example” in Command Window and press 
enter. 
 
Training of the network takes time. At the end in the command window you should see 
similar result, but mean error, score and time can be different. 
 

 
 
Also, 2 new window must appear. 

 
 
Meaning of this values and graphs will be explained later. 
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4. Files 
Here are listed all used filed with short explanation what this files used for [45]. 

 
• edbnclean.m - cleans out all the temporary activations to save a minimum-size 

EDBN file. 

• edbnsetup.m - initializes the network and load defaults. 

• edbntest.m – perform testing comparison 

• edbntoptrain.m - performs supervised training by concatenating the top layer to 
the top-2 layer, and jointly training a (top-2, top) <-> (top-1) RBM, then unrolling 
again. 

• edbntrain.m - performs unsupervised training of the network.  

• erbmup.m / erbmdown.m - propagates rate-based activations up or down 
through LIF neurons. 

• erbmtrain.m - trains a single RBM layer in the DBN. This is the core source file 
for the algorithm. 

• example.m - runs an example. 

• live_edbn.m - run the weights on an actual spiking network of neurons. 

• mnist_uint8.mat – prepared MNIST dataset 

• siegert.m - calculates the output spike rate of an input rate and input weights for 
LIF neurons. 

• visualize.m – visualize weights of the RBM 
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5.   Settings 
As was mentioned before, we deal with a part of bigger project. So, to simplify 
understanding and remove unnecessary errors, some changes in example.m can 
be made. 
Removed code lanes will be highlighted. 
 

5.1 Basic 
Main work file in this approach is example.m. Below are explained what is 
inside this file and how it can be used. 

 
%% Load paths 
addpath(genpath('.')); 

Returns path to MATLAB toolbox folder 
and ad this path to search path for this 
session 

%% Load data 
load mnist_uint8; 

Load MNIST dataset as training and testing 
data 

% Convert data and rescale between 0 
and 0.2 
train_x = double(train_x) / 255 * 0.2; 
test_x  = double(test_x)  / 255 * 0.2; 
train_y = double(train_y) * 0.2; 
test_y  = double(test_y)  * 0.2; 

Data in dataset in uint8 format and must be 
converted to double. Also inputs (*_x files) 
are given from 0 (white) to 255 (black) and 
must be rescaled for range from 0 to 1.  
Multiplication by 0.2 is needed for 
maximizing spike firing. 

%% Train network 
% Setup 
rand('seed', 42); 
clear edbn opts; 
edbn.sizes = [784 100 10]; 
opts.numepochs = 6; 

Seeds the random number generator using 
the nonnegative integer. 
Removes previously entered network 
settings. 
Set number of inputs, neurons in hidden 
layer and number of outputs.  
Number of training cycles for each hidden 
layer. 

[edbn, opts] = edbnsetup(edbn, opts); Load setting in network initializing file. 
% Train 
fprintf('Beginning training.\n'); 
edbn = edbntrain(edbn, train_x, opts); 
% Use supervised training on the top 
layer 
edbn = edbntoptrain(edbn, train_x, 
opts, train_y); 

Prints message about training start. 
Perform supervised training of every single 
layer. 
Train the top layer by merging the top layer 
to a lower layer and jointly training the set.  

% Show results 
figure; 
visualize(edbn.erbm{1}.W');   %  
Visualize the RBM weights 
er = edbntest (edbn, test_x, test_y); 
fprintf('Scored: %2.2f\n', (1-
er)*100); 

 
Create a figure. 
Shows vector of weigh for each neuron. 
Calculates an error in recognition set. 
Prints message with percent of recognition. 

%% Show the EDBN in action 
spike_list = live_edbn(edbn, test_x(1, 
:), opts); 
output_idxs = (spike_list.layers == 
numel(edbn.sizes)); 

Show feed with spike activity.  

figure(2); clf; 
hist(spike_list.addrs(output_idxs) - 
1, 0:edbn.sizes(end)); 
xlabel('Digit Guessed'); 
ylabel('Histogram Spike Count'); 
title('Label Layer Classification 
Spikes'); 

Show result of recognition. 

%% Export to xml 
edbntoxml(edbn, opts, 'mnist_edbn'); 

Creates a base64-encoded representation of 
the network. 
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5.2 Advanced 
More specific setting can be found in edbnsetup.m.  

 
opts.alpha     =      
1 

Learning rate 

opts.decay     = 
0.0001 

Spike decay speed 

opts.momentum  =    
0.0 

Impuse 

opts.temp      =  
0.005 

Noise for Siegert function 

opts.tau_m     =    
5.0 

Membrane time constent 

opts.tau_s     =  
0.001 

Synaptic response time constant 

opts.t_ref     =  
0.002 

Absolute refractory time 

opts.v_thr     =  
0.005 

Threshold of Siegert function 

opts.f_infl    =      
1 

Fast weight coefficient 

opts.f_decay   =   
0.05 

Fast weight incorporate decay 

opts.f_alpha   =      
5 

Fast weight learning rate 

opts.pcd       =      
1 

Persistent contrastive divergence 

opts.sp        =    
0.1 

Sparsify 

opts.sp_infl   =    
0.2 

Sparsify fast weight coefficient  

opts.ngibbs    =      
2 

Fast weight restriction for obtaining model sample 

opts.initscl   =   
0.01 

Weight coefficient 

opts.batchsize =     
50 

Number of training samples in one neuron 

opts.reup      =      
1 

Train the composite layer  

opts.wtreset   =      
1 

Weights and biases update 

 
To change recognition feed setting, open live_edbn.m file. 

 
opts.recreate    =      
1   

Show recognized image 

opts.timespan    =      
4 

Time of live feed 

opts.numspikes   =   
2000 

Number of spikes used 

opts.delay       =  
0.001 

Delay between spikes firing 

opts.show_dt     =  
0.010 

 
Dependency for spike     exp(-opts.show_dt / opts.vis_tau); 

opts.vis_tau     =   
0.05 
opts.makespikes  =      
1 

Create spike proportional to intensity 

opts.makevisdim  =      
1 

Build show dimensions 
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6 Results 

6.1 Training 
After execution “example.m” in Command Window will appear: 

 
Beginning training. 
Training has started. 
 
Epoch 1: mean error: 0.00843. 
Passed training cycles and error between desired and obtained error. Lower value 
means better result. 
 

6.2 Feedback 
 
When training is finished, following information will be available in Command 
Window. 
 
Scored: 91.80 
Percentage of recognized inputs. 
 
Completed 2000 input spikes occurring over 4.00 seconds, in 5.557 seconds of real 
time. 
Number of spikes and time, used for active processing. 

 

6.3 Visual representation 
 

First graph – weight coefficients  

 
 
Each square represents vector of weight merged into each neuron. 
 
 

58



54 

 
Second graph – spike activity 

 
 

Input image processing with 
spikes 

Inner spike 
activity 

Recognized 
input 

Restored input 
 

 
Third graph – recognized input 

 
 
Number of activated spikes used for recognition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

59



55 

7 Laboratory work 
As a part of TUT course named Intelligent Control Systems (ISS0023) below will be 
provided example of alphabet recognition. 

7.1 Task 
The task is to train spiking neural network for character recognition. Every character is 
given as 5x7 matrix. In total 26 samples. 

7.2 Training and testing data 
For dataset creation will be used lectures materials ([43]- materials - laboratory works – 
image recognition lab). From the archive we will use letter.m (dataset) and 
recognition_by_FF_net (training and test data). 
 
Letter.m file must be placed in the same folder where are files from Section 3 of this 
guide. 
 
After merging letter.m should be look like: 
letterA =  [0 0 1 0 0 ... 
            0 1 0 1 0 ... 
            0 1 0 1 0 ... 
            1 0 0 0 1 ... 
            1 1 1 1 1 ... 
            1 0 0 0 1 ... 
            1 0 0 0 1 ]'; 

Letter A as 5x7 matrix 
written as vector 

… Letters from A to Z 
letterZ =  [1 1 1 1 1 ... 
            0 0 0 0 1 ... 
            0 0 0 1 0 ... 
            0 0 1 0 0 ... 
            0 1 0 0 0 ... 
            1 0 0 0 0 ... 
            1 1 1 1 1 ]'; 

Letter Z as 5x7 matrix 
written as vector 

alphabet = 
[letterA,letterB,letterC,letterD, 
letterE,letterF,letterG,letterH,... 
letterI,letterJ,letterK,letterL, 
letterM,letterN,letterO,letterP,... 
letterQ,letterR,letterS,letterT, 
letterU,letterV,letterW,letterX,... 
letterY,letterZ]; 

Dataset 

targets = eye(26); Matrix with 1 on diagonal 
P=[alphabet, alphabet+randn(35,26)*0.05,... 
    alphabet+randn(35,26)*0.1,... 
    alphabet+randn(35,26)*0.2,... 
    alphabet+randn(35,26)*0.3,... 
    ]; 

Training data generation 

T=[targets targets targets targets targets 
]; 

Training data answers 

test_data=alphabet+randn(35,26)*0.22; Test data generation 
test=eye(26); Test data answers, for error 

calculation 
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7.3 Setup 
To run Spiking neural network with this dataset changes in example.m must be applied. 
Main modifiers will be highlited. 
%% Load data 
run letters.m; 

Load alphabet dataset as training and 
testing data 

%% Convert data       %without advanced better use 0.3 
train_x = double(abs(P.'))*0.4; 
test_x  = double(abs(test_data.'))*0.4; 
train_y = double(abs(T.'))*0.4; 
test_y  = double(abs(test.'))*0.4; 

(*.’) is needed for input, because 
system accept sample as row. In dataset 
samples stored as column. abs(*) 
removes negative values.   
Multiplication by 0.4 is needed for 
maximizing spike firing.  

%% Train network 
% Setup 
rand('seed', 42); 
clear edbn opts; 
edbn.sizes = [35 35 26 26];%without advanced better 
use 35 50 50 26 
opts.alpha     = 0.4; 
opts.momentum  = 0.3; 
opts.f_decay   = 0.003; 
opts.f_alpha   = 1; 
opts.pcd       = 0.6; 
opts.sp        = 0.1; 
opts.sp_infl   = 0.9; 
opts.ngibbs    = 3; 
opts.batchsize = 13; % Can be 1,2,5,10,13,26,65,120 
  
opts.numepochs = 25; %without advanced better use 50 

Seeds the random number generator 
using the nonnegative integer. 
Removes previously entered network 
settings. 
Set number of inputs, neurons in hidden 
layer and number of outputs.  
Number of training cycles for each 
hidden layer. 
Number of samples per neuron. 

[edbn, opts] = edbnsetup(edbn, opts); Load setting in network initializing file. 
% Train 
fprintf('Beginning training.\n'); 
edbn = edbntrain(edbn, train_x, opts); 
% Use supervised training on the top layer 
edbn = edbntoptrain(edbn, train_x, opts, 
train_y); 

 
Prints message about training start. 
Perform supervised training of every 
single layer. 
Train the top layer by merging the top 
layer to a lower layer and jointly 
training the set.  

% Show results 
figure; 
visualize(edbn.erbm{1}.W');   %  Visualize the 
RBM weights 
er = edbntest (edbn, test_x, test_y); 
fprintf('Scored: %2.2f\n', (1-er)*100); 

 
Create a figure. 
Shows vector of weigh for each neuron. 
Calculates an error in recognition set. 
Prints message with percent of 
recognition. 

%% Show the EDBN in action 
spike_list = live_edbn(edbn, test_x(1, :), 
opts); 
output_idxs = (spike_list.layers == 
numel(edbn.sizes)); 

Show feed with spike activity.  
 
Highlighted digit represents testing 
sample. 
In this case can be changed from 1 up 
to 26. 

figure(2); 
hist(spike_list.addrs(output_idxs) - 1, 
0:edbn.sizes(end)); 
xlabel('Letter Guessed'); 
ylabel('Histogram Spike Count'); 
xlim([0 25]); 
set (gca,'xtick', [0 1 2 3 4 5 6 7 8 9 10 11  
12 13 14 15 16 17 18 19 20 21 22 23 24 25]); 
set (gca,'xtickLabel',{'A','B','C','D','E', 
'F','G','H','I','J','K','L','M','N','O','P', 
'Q','R','S','T','U','V','W','X','Y','Z'});  
title('Label Layer Classification Spikes'); 

Show result of recognition. 
 
 
 
 
 
 
Add scale tick for each alphabet letter. 
 
Name this tick with letter 

For more deep setup, see chapter 5.2 of this guide. 
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To achieve better visualization, in live_edbn.m file in section «% Build show dimensions» is 
needed to change  
opts.show_dims{i} = [prod(factors(2:2:end)) prod(factors(1:2:end))]; 
to 
opts.show_dims{i} = [prod(factors(1:2:end)) prod(factors(2:2:end))]; 
otherwise, matrix will be displayed in first graph as 7x5, but not 5x7. 

7.4 Result 
After the setup preparation and execution of the modified letter.m will start training 
process. 
Since we used 2 hidden layers and 120 epoch training will take some time. 
 
When training is finished. In Command Window “Score” should be 100.00. It means 
that all of the 26 testing samples are recognized as correct letter. 
Also graphs with recognition results will be created. 
 
First one is graph with weight coefficient for each neuron for hidden layer.  

 
 
The second group represents recognition process and obtained result. In our case letter A. 
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