PROGRAMMEERIMISE SÜSTEEM
Operatsioonisüsteem laiemas mõttes on programmeerimise süsteem.
Operatsioonisüsteemi üks osa, mille ülesanne on sisestada ja tõlkida kasutaja ülesanded arvuti sisekeelde.
Tendetsiks on programmeerimis keelte lähenemine loomulikele keeltele. Tõlkimine arvuti sisekeelde on üldjuhul mitme etapiline ning sõltub sisestatava ülesande keele tasemest. Keeled on jaotatud 4. eri tasemeks:

0 - tasemel arvuti sisekeel;
1 - mnemokoodi e, assembleritase, tõlkimine arvuti sisekeelde toimub 1:1 s.t. sisendkeele igale sümbolile vastab siseüks sümbol;
2 - Makroassembler. Tõlkimine 1: M Sisend keele ühele elemendile vastab sisekeele mitu elementi;
3 - Protsess orienteeritud e. algoritmilised keeled. Neid võib klassifitseerida: Kasutusala järgi, struktuuri järgi (semantiline lähenemine).

Näiteks kasutusala põhjal:

· Teadus tehnika Java, C++
· Modelleerimiskeeled MODULA

· Majndusinfo COBOL

· Nimistutöötlus LISP ,C##
· Universaalkeeled Python
·
 4 - Probleemorjenteeritud keeled e, struktuurkeeled (anda ül - kirjeldus)

Igat loomulikku- ja tehiskeelt iseloomustavad alfabeet, süntaks ja semantika.

Leksika - sõnade hulk;

Süntaks - lauseõpetus;

 Semantika - lausete nimeline tähendus.

Alfabeet, leksika ja süntaks määravad täielikult lubatavate keelekonstruktsioonide hulga ja nendevahelised seosed. Semantika seob konstruktsioonid erinevates keeltes. Transleerimine on seotud alati alfabeediga, leksika ja süntaksiga ning võib olla seotud semantikaga.

Transleerimine on tänu sellel alati mitme etapiline.

 I etapp - leksikaanalüüs,
 II etapp - süntaksianalüüs,

III etapp - semantikaanalüüs,
IV etapp - semantilise tõlke redigeerimine e. optimeerimine.

V etapp- koodi genereerimine

VI etapp- laadimine ehk transleerimine absoluutaadressiteks

Sageli toimub transleerimine mitte otse lähtekeelest masina sisekeelde; vaid läbi vahekeele.

I töö teeb ära skanner, mis viib lähteprogrammi standard kujule jättes ära tühikud ja mitteolulised sümbolid vähendades lähteteksti mahtu.

II töö teeb ära parser - süntaksianalüüs ning viib teksti st. kujult vahekeelde.

III töö - vahekuju võtab töötluse alla koodigeneraator, mis lõpetab transleerimise luues objektmoodulid.

Sellise skeemiga saadakse olukord, kus transleerimine jaguneb 2 suureks osaks:

.Sealjuures - ei olene, kuidas vahekeel saadud. Praktikas sellest sageli kinni ei peeta. Teoreetiliselt peaks nii olema võimalik.
Õeldakse, et transleerimine on 1, 2 või 3 etapiline vastavalt sellele, mitu iseseisvat faili tekib transleerimise käigus. Praegu enamasti ühekäigulised. Vahekeelena kasutatud enamikel juhtudel postfikskuju.
 Dijkstra meetodil prioriteetidega (poola kuju).
 Meetodi põhisisu: sisendvoos eraldatakse operaatoritest operandid nii, et operandid lähevad otse väljundkujusse, operaator aga läbi pinu.
 Selleks igale operaatorile antakse prioriteet 0...7.
Kehtib reegel: kui saabuva operaatori prioriteet j on suurem pinus oleva prioriteedist i kui j<=i, siis pinust viiakse välja kõik operaatorid, kuni j<=i kehtib.
On 2 erandit:
1) 0 prioriteediga operaatorid alati kirje pinusse, kuid kunagi ei tooda välja
2)sulg toob alati välja kõik operandid I avava suluni ning teda ennast pinusse ei kirjutata.

n. A+B/C-K*(S/L-D)
Kui selline väljundvoog saadud, liigutakse v-p I operandini, võetakse 2 temast vasakul olevat operandi, nendega tehakse tehe. Jne.
 Kui nii oli jaotatud kolmikuteks, vaadati skeemi, mis tekste sooritumisel
Rg*M=Rg
Rg*M=M
Vajadusel lisatakse 4-s element ja sooritakse tehe. Seega koodi generaator moodustub käskude jada, mis adekvaatne poola kujuga.
Kuna transleerimine on keerukas, mitmeetapiline. Translaatori kirjutamine nõuab vilumust, aega, on rakenduspaketides laialt levinud paketid nimega translaatorite translaatorid. Sellised programmid koosnevad 2-st osast: tuuma osast ja juhttabelist. Juhttabelid jagunevad omakorda kaheks: süntaksi ja semantika tabel. Sellised translaatorid on aeglased, kuid nende koostamine mõõdetav päevadega. 80 lõpus olid sellised translaatorid eriti levinud graafika (projekteerimis) pakettide koostamisel.

LINKURID JA LAADURID

Ülesande lahendusel kaks olulist etappi - transleerimine ja täitmine. Need kaks etappi võivad olla ka ühendatud ning see on ka kohustuslik dialoogkeelte jaoks.
Transleerimine (ülesande mõistetavaks tegemine arvutile) võtab palju aega ning selle käigus kasutakse palju mälu. Kui täitmine ja transleerimine on ühendatud, siis on väga raske programme transleerida osadeks. Seepärast tavaliselt transleerimise lõpus tehakse iseseiseva ülesande kirjeldus e. objektmoodul.

Transleerimine ja täitmine on õigustatud:
 1) väikese mälumahu korral;
 2) dialoogkeele korral, kus iga lause on iseseisev ülesanne.
Tavaliselt ei ole transleeritud programm e. objektmoodul valmis täitmiseks, kuna tema kood on suhtaadressides ning puuduvad eraldi viidad alamprogrammidele ja süsteemsetele alamprogrammidele.

Üldjuhul transleerimine ja täitmise vahel tuleb realiseerida järgmised neli funktsiooni järgimises järjekorras:

1. Põhimälu eraldamine ja jaotamine programmidele.
2. Süsteemsete alamprogrammide ja eraldi transleeritud programmide linkimine.
3. Häälestada programme absoluutaadressidele e. üleminek suhtaadressidelt absoluutsetele.
4. Programmi koodi füüsiline salvestamine põhimällu ja juhtimise andmine esimesele käsule (esimene käsk käsuloendrisse ning täidetava fragmendi füüsiline salvestamine põhimällu).

Kõik neid funktsioone realiseerivad süsteemsed programmid: linkur ja laadur, mis seega kuuluvad operatsioonisüsteemi, mitte programmi keele koosseisu.
 On olemas kolme liiki süsteemseid programme selleks otstarbeks:

Absoluutne laadur. Programm, mis eeldab, et objektmoodul on absoluutaadressides, seega laaditakse programm mälus alati ühele ja samale kohale. Absoluutset laadurit kasutakse ainult mikroarvutites välissündmusele vastava katkestusprogrammi täitmiseks.

Häälestav laadur. Objektmoodul on suhtaadressides või on jaotatud teatud tabeli abil eri osadeks. Laadimine võib toimuda mistahes mälupiirkonda ja ülesandeks on järeltransleerimine. Sellisel puhul arvuti arhitektuur peab toetama häälestavat laadurit taasadresseerimisega ja mälu dispetseerimisega. Enamikel juhtudel võimaldab teostada swappingut st. ümberlaadimist täitmise ajal.

Linkiv laadur. Ühendab enne laadimist eraldi asuvad objektmoodulid alati tervikuks ning salvestab saadud mooduli üldjuhul välismällu. Linkimine sõltub programmi struktuurist.

Toetab nelja struktuuri
A. lihtne struktuur - ei ole alamprogramme;
B. ülekattega (overlay); (mitu objektmoodulit)
C. dünaamiline jada struktuur;
D. dünaamiline paralleel struktuur.
Lihtne struktuur st., et programm koosneb ühest objekt moodulist ja ühest laademoodulist ning linkimise ajal lisatakse süsteemsed alamprogrammid.

Ülekatte struktuuri programm koosneb mitmest objektmoodulist ja ühest laademoodulist. Ülekatte antakse linkimise juhtandmetega ja selle teostab linkur. Ülekaetud osade laadimine toimub automaatselt.

Dünaamilise struktuuri programm koosneb mitmest laademoodulist ning linkimine ja laadimine on programmeeritud ning toimub täitmiskeskkonnas ilmutatud kujul.

Dünaamiline paralleelstruktuuri korral võivad erimoodulid moodustada alamülesande ja töötada assünkroonselt. Viimane eeldab, et on kasutusel mehhanism sünkroniseerimiseks vastavate toodete sisseviimisega. Üldjuhul operatsioonisüsteemi annab sellistel alamobjektidega ülesannetel endaga ühised ressursid.

