Capabilities of SQL SELECT Statements
A SELECT statement retrieves information from the database. Using a SELECT statement, you can do the following:

· Selection: You can use the selection capability in SQL to choose the rows in a table that you want
returned by a query. You can use various criteria to selectively restrict the rows that you see.

· Projection: You can use the projection capability in SQL to choose the columns in a table that you want returned by your query. You can choose as few or as many columns of the table as you require.

· Join: You can use the join capability in SQL to bring together data that is stored in different tables by creating a link between them. You will learn more about joins in a later lesson.
Basic SELECT Statement
In its simplest form, a SELECT statement must include the following:

· A SELECT clause, which specifies the columns to be displayed

· A FROM clause, which specifies the table containing the columns listed in the SELECT clause
In the syntax:

SELECT

is a list of one or more columns.

DISTINCT

suppresses duplicates.

*

selects all columns.

column

selects the named column.

alias

gives selected columns different headings.

FROM table
specifies the table containing the columns.

Note: Throughout this course, the words keyword, clause, and statement are used.

· A keyword refers to an individual SQL element.
For example, SELECT and FROM are keywords.

· A clause is a part of a SQL statement.
For example, SELECT empno, ename, ... is a clause.

· A statement is a combination of two or more clauses.
For example, SELECT * FROM emp is a SQL statement.

Writing SQL Statements
Using the following simple rules and guidelines, you can construct valid statements that are both easy to read and easy to edit:

•
SQL statements are not case sensitive, unless indicated.

· SQL statements can be entered on one or many lines.

•
Keywords cannot be split across lines or abbreviated.

· Clauses are usually placed on separate lines for readability and ease of editing.

•
Tabs and indents can be used to make code more readable.

·
Keywords typically are entered in uppercase; all other words, such as table names and columns, are entered in lowercase.

•
Within SQL*Plus, a SQL statement is entered at the SQL prompt, and the subsequent lines are numbered. This is called the SQL buffer. Only one statement can be current at any time within the buffer.
Executing SQL Statements
· Place a semicolon (;) at the end of the last clause.

· Place a slash on the last line in the buffer.

· Place a slash at the SQL prompt.

· Issue a SQL*Plus RUN command at the SQL prompt.

Selecting All Columns, All Rows
You can display all columns of data in a table by following the SELECT keyword with an asterisk (*). In the example on the slide, the department table contains three columns: DEPTNO, DNAME, and LOC. The table contains four rows, one for each department.

You can also display all columns in the table by listing all the columns after the SELECT keyword. For example, the following SQL statement, like the example on the slide, displays all columns and all rows of the DEPT table:

 Selecting Specific Columns, All Rows
You can use the SELECT statement to display specific columns of the table by specifying the column names, separated by commas. The example on the slide displays all the department numbers and locations from the DEPT table.

In the SELECT clause, specify the columns that you want to see, in the order in which you want them to appear in the output.
Column Heading Defaults
Character column heading and data as well as date column heading and data are left-justified within a column width. Number headings and data are right-justified.

Character and date column headings can be truncated, but number headings cannot be truncated. The column headings appear in uppercase by default. You can override the column heading display with an alias. Column aliases are covered later in this lesson.

Arithmetic Expressions
You may need to modify the way in which data is displayed, perform calculations, or look at what-if scenarios. This is possible using arithmetic expressions. An arithmetic expression may contain column names, constant numeric values, and the arithmetic operators.

Arithmetic Operators
The slide lists the arithmetic operators available in SQL. You can use arithmetic operators in any clause of a SQL statement except the FROM clause.

Instructor Note

You can use only the addition and subtraction operators with DATE datatypes.

Using Arithmetic Operators
The example in the slide uses the addition operator to calculate a salary increase of $300 for all employees and displays a new SAL+300 column in the output.

Note that the resultant calculated column SAL+300 is not a new column in the EMP table; it is for display only. By default, the name of a new column comes from the calculation that generated it—in this case, sal+300.

Note: SQL*Plus ignores blank spaces before and after the arithmetic operator.

Operator Precedence
If an arithmetic expression contains more than one operator, multiplication and division are evaluated first. If operators within an expression are of same priority, then evaluation is done from left to right.

You can use parentheses to force the expression within parentheses to be evaluated first.

Using Parentheses
You can override the rules of precedence by using parentheses to specify the order in which operators are executed.

The example on the slide displays the name, salary, and annual compensation of employees. It calculates the annual compensation as monthly salary plus a monthly bonus of $100, multiplied by 12. Because of the parentheses, addition takes priority over multiplication.

 Null Values
If a row lacks the data value for a particular column, that value is said to be null, or to contain null.

A null value is a value that is unavailable, unassigned, unknown, or inapplicable. A null value is not the same as zero or a space. Zero is a number, and a space is a character.

Columns of any datatype can contain null values, unless the column was defined as NOT NULL or as PRIMARY KEY when the column was created.

In the COMM column in the EMP table, you notice that only a SALESMAN can earn commission. Other employees are not entitled to earn commission. A null value represents that fact. Turner, who is a salesman, does not earn any commission. Notice that his commission is zero and not null.

Instructor Note
Demo: l1null.sql

Purpose: To illustrate calculating with null values.

Null Values (continued)
If any column value in an arithmetic expression is null, the result is null. For example, if you attempt to perform division with zero, you get an error. However, if you divide a number by null, the result is a null or unknown.

In the example on the slide, employee KING is not in SALESMAN and does not get any commission. Because the COMM column in the arithmetic expression is null, the result is null.

For more information, see Oracle Server SQL Reference, Release 8, “Elements of SQL.”

Column Aliases
When displaying the result of a query, SQL*Plus normally uses the name of the selected column as the column heading. In many cases, this heading may not be descriptive and hence is difficult to understand. You can change a column heading by using a column alias.

Specify the alias after the column in the SELECT list using a space as a separator. By default, alias headings appear in uppercase. If the alias contains spaces, special characters (such as # or $), or is case sensitive, enclose the alias in double quotation marks (" ").

Instructor Note
Within a SQL statement, a column alias can be used in both the SELECT clause and the ORDER BY clause. You cannot use column aliases in the WHERE clause. Both alias features comply with the ANSI SQL 92 standard.

Demo: l1alias.sql

Purpose: To illustrate the use of aliases in expressions.

Column Aliases (continued)
The first example displays the name and the monthly salary of all the employees. Notice that the optional AS keyword has been used before the column alias name. The result of the query would be the same whether the AS keyword is used or not. Also notice that the SQL statement has the column aliases, name and salary, in lowercase, whereas the result of the query displays the column headings in uppercase. As mentioned in the last slide, column headings appear in uppercase by default.

The second example displays the name and annual salary of all the employees. Because Annual Salary contains spaces, it has been enclosed in double quotation marks. Notice that the column heading in the output is exactly the same as the column alias.

Instructor Note
Point out the optional AS keyword in the first example and the double quotation marks in the second example. Also show that the aliases always appear in uppercase, unless enclosed within double quotation marks.

Concatenation Operator
You can link columns to other columns, arithmetic expressions, or constant values to create a character expression by using the concatenation operator (||). Columns on either side of the operator are combined to make a single output column.

Concatenation Operator (continued)
In the example, ENAME and JOB are concatenated, and they are given the alias Employees. Notice that the employee number and job are combined to make a single output column.

The AS keyword before the alias name makes the SELECT clause easier to read

Literal Character Strings
A literal is character, a number, or a date included in the SELECT list that is not a column name or a column alias. It is printed for each row returned. Literal strings of free-format text can be included in the query result and are treated the same as a column in the SELECT list.
Date and character literals must be enclosed within single quotation marks (' '); number literals must not.
Literal Character Strings (continued)
The example on the slide displays names and jobs of all employees. The column has the heading Employee Details. Notice the spaces between the single quotation marks in the SELECT statement. The spaces improve the readability of the output.

In the following example, the name and salary for each employee is concatenated with a literal to give the returned rows more meaning.
Duplicate Rows
Unless you indicate otherwise, SQL*Plus displays the results of a query without eliminating duplicate rows. The example on the slide displays all the department numbers from the EMP table. Notice that the department numbers are repeated.
Duplicate Rows (continued)
To eliminate duplicate rows in the result, include the DISTINCT keyword in the SELECT clause immediately after the SELECT keyword. In the example on the slide, the EMP table actually contains fourteen rows but there are only three unique department numbers in the table.

You can specify multiple columns after the DISTINCT qualifier. The DISTINCT qualifier affects all the selected columns, and the result represents a distinct combination of the columns.

 DEPTNO JOB
 ------ ---------

 10 CLERK

 10 MANAGER

 10 PRESIDENT

 20 ANALYST

 ...

 9 rows selected.
SQL and SQL*Plus
SQL is a command language for communication with the Oracle Server from any tool or application. Oracle SQL contains many extensions. When you enter a SQL statement, it is stored in a part of memory called the SQL buffer and remains there until you enter a new statement.

SQL*Plus is an Oracle tool that recognizes and submits SQL statements to the Oracle Server for execution and contains its own command language.

Features of SQL
· Can be used by a range of users, including those with little or no programming experience

· Is a nonprocedural language

· Reduces the amount of time required for creating and maintaining systems

· Is an English-like language

Features of SQL*Plus
· Accepts ad hoc entry of statements

· Accepts SQL input from files

· Provides a line editor for modifying SQL statements

· Controls environmental settings

· Formats query results into a basic report

· Accesses local and remote databases

SQL and SQL*Plus (continued)
The following table compares SQL and SQL*Plus:

SQL*Plus
SQL*Plus is an environment in which you can do the following:

· Execute SQL statements to retrieve, modify, add, and remove data from the database

· Format, perform calculations on, store, and print query results in the form of reports

· Create script files to store SQL statements for repetitive use in the future

SQL*Plus commands can be divided into the following main categories:

Instructor Note (for page 1-27)
Snippet: “Establishing a Database Session”

Logging in to SQL*Plus: Release number may vary, depending on the version installed.

 Displaying Table Structure
In SQL*Plus, you can display the structure of a table using the DESCRIBE command. The result of the command is to see the column names and datatypes as well as whether a column must contain data.

In the syntax:

tablename
is the name of any existing table, view, or synonym accessible to the user

 Displaying Table Structure (continued)
The example on the slide displays the information about the structure of the DEPT table.

In the result:

Null?

indicates whether a column must contain data; NOT NULL indicates that a

column must contain data

Type

displays the datatype for a column

The datatypes are described in the following table:

Instructor Note
Inform students that the column sequence in DESCRIBE tablename is the same as that in SELECT * FROM tablename . The order in which the columns are displayed is determined when the table is created.

SQL*Plus Editing Commands
SQL*Plus commands are entered one line at a time and are not stored in the SQL buffer.

Guidelines
· If you press [Return] before completing a command, SQL*Plus prompts you with a line number.

· You terminate the SQL buffer by either entering one of the terminator characters (semicolon or slash) or pressing [Return] twice. You then see the SQL prompt.

