Ülesanne L3.
Luua abstraktne klass Lind, milles on mitteabstraktne (ehtne virtuaalne) meetod lehvitaTiibu(). Tuletada sellest klassist abstraktsed klassid UjuvLind, LendavLind ja UjuvJaLendavLind koos vastavate abstraktsete (ehtsate virtuaalsete) meetoditega uju() ja/või lenda().
Tuletada eelnimetatud klassidest vähemalt 6 mitteabstraktset alamklassi - näiteks klassid Emu, Tuvi, Koduhani, Luik, Pingviin, Part vms.

Luua 4 klassi, mis modelleerivad järgmisi linnuparvi:
1. Suvaliste lindude parv

2. Lennuvõimeliste lindude parv

3. Ujuda oskavate lindude parv

4. Lennata ja ujuda oskavate lindude parv

Nendes klassides peab olema meetod vastavat tüüpi lindude lisamiseks parve - mis tuleks realiseerida vector tüüpi objekti abil. „Võõrobjektide” lisamine vastavatesse parvedesse peab olema välistatud! Klasside struktuur peab olema selline, et näiteks luige võiks lisada suvalisse eelnimetatud linnuparve. Eelnimetatud klassides peab olema ka meetod, mis paneb kõik sellesse parve kuuluvad linnud ühiselt tegutsema: kõik parve kuuluvad linnud teevad kõike seda, mida kõik sellesse parve kuuluvad linnud peavad oskama teha (lehvitavad ja/või lendavad ja/või ujuvad). Kõigi tegutsemiste korral tuleks printida sisukas teade.
Testprogrammis luua vastavat tüüpi linnuparved, lisada neisse mõned linnud (mõne linnu võib panna ka mitmesse parve) ja panna need parved tegutsema.
Lindude klasside hierarhia luua selline, et hõlpsasti oleks realiseeritav ka näiteks ujuda oskavate objektide massiiv
*ujuja[] = { new Luik(), new Allveelaev(), new Pingviin(),
 new Krokodill() };
for(int k=0; k<ujuja.length; k++)

ujuja[k]->uju();
Programmis demonstreerida eelnimetatud võimalusi.
Objektide kirjeldamine, klassid
Nagu varasemalt räägitud, objekt on „see midagi“, mida me kirjeldada tahame. Klass on objekti, „selle millegi“ kirjeldus. C++ kasutab klassi defineerimiseks võtmesõna class.

Lihtne näide: Olgu meil vaja kirjeldada valgusallikat (peame siinkohal silmas mitte Päikest ja muid sääraseid reakodaniku juhtimisele allumatuid asju, vaid selliseid, mida inimene oma soovi järgi kamandada saab). Erinevat tüüpi valgusallikaid võib muidugi üles loetleda sadu, kuid neil kõigil on siiski ka mingid ühised omadused. Ühiseks omaduseks on näiteks teatavas olekus valguse kiirgamine (ja teatavas olekus mittekiirgamine), st, see et neid saab läita ja kustutada. Läitmise ja kustutamise tegevus oleksid sellist tüüpi objekti meetodid. Seisund (läidetud/kustutatud) aga kajastuksid objekti olekut kirjeldavates admetes.

class TLightSource

{

 private:

 int lightState;

 public:

 TLightSource() { lightState = 0; }

 ~TLightSource();

 void TurnOn (void) { lightState = 1; }

 void TurnOff (void) { lightState = 0; }

 int IsOn(void) { return lightState; }

};

Eeltoodud näites on tegemist kaugeltki mitte „küpse“ klassiga, kuid esimese lähenduses on see juba midagi, mille najal võib kirjeldada valgusallika olemust.

Võtmesõna class tähistab klassi kirjelduse algust, sellele järgneb klassi nimetus. Klassi kirjeldus ise antakse järgnevas skoobis. Võtmesõna private ütleb, et järgnevad muutujad ja meetodid on privaatsed, st neid pole võimalik „väljastpoolt“ kätte saada. Antud näites on privaatne vaid olekut kirjeldav täisarvuline muutuja lightState. public on võtmesõna, mille järel loetletakse avalikud andmed-meetodid (muutujad-funktsioonid).

TLightSource() ja ~TLightSource() on erilised meetodid, mis, nagu näha, omavad täpselt samasugust nime nagu klass ise. Need meetodid on vastavalt klassi konstruktor ja destruktor (nimetus iseenesest sama, kuid selle ette on lisatud tilde, '~'). Esimene neist käivitub siis, kui klassi eksemplar (instance) luuakse, teine siis, kui see hävitatakse. Hävitamine võib olla ka nii elementaarne, et mingeid erilisi tegevusi pole vaja ette võtta, siintoodud näites just sellise juhtumiga tegemist ongi. Konstruktoreid võib olla ka mitu, sel juhul eristatakse neid üksteisest argumentide järgi. Käesoleval juhul on tegemist konstruktoriga, mis nö algväärtustab valgusallika andmed e omadused – seab ta kustutatud olekusse (eeldusel, et meil on omavahel kokku lepitud, et muutuja lightState väärtus 0 tähistab täielikku pimedust ja väärtus 1 täiest jõust helendamist). Konstruktor ja destruktor võivad klassi kirjeldusest ka puududa, sel juhul kasutatakse nn automaatseid konstruktoreid ja destruktoreid.

Kui eksemplar loodud, siis seda valgusallikat läita ja kustutada saab meetodite TurnOn() ja TurnOff() kaudu, mis seavad muutuja lightState väärtust vastavalt soovitule. Meetod IsOn() tagastab aga konkteetse valgusallika eksemplari seisundi. Kuna lightState on privaatne muutuja, siis väljaspoolt objekti ei saa seda muutuja väärtust otseselt ei muuta ega isegi vaadata – kogu tegevust peab käima läbi nn avaliku liidese.

Virtuaalsed funktsioonid
Arendades eeltoodud näidet edasi saame sellise objekti:

class TLightSource

{

 private:

 int lightState;

 virtual void Light(void) = 0;

 virtual void Dark (void) = 0;

 public:

 TLightSource() { lightState = 0; }

 ~TLightSource();

 void TurnOn (void) { if(!lightState) { Light(); lightState = 1; }}

 void TurnOff (void) { if(lightState) { Dark(); lightState = 0; }}

 inline int IsOn(void) { return (lightState != 0); }

};

Kõigepealt muutus meetodi IsOn() juures. See on nüüd deklareeritud inline funktsioonina. Sellisena deklareeritud funktsioone võib (aga ei pruugi) kompilaator teatavas mõttes optimeerida moel, et nende väljakutsumisele kulub vähem aega. Võib tähendab siinkohal seda, et isegi kui on kasutatud võtmesõna inline, võib juhtuda, et kompilaator seda ignoreerib. Tegelikult pole inline-funktsioonide juures kiiruse kasv ja muud head omadused garanteeritud – nad võivad töötada kiiremini kui nende mitte-inline analoogid, aga võivad osutuda ka aeglasemateks; nad võivad osutuda kompaktsema koodiga olevaiks, kuid võib juhtuda ka vastupidine... Kõik sõltub paljudest asjadest, millel me siinkohal ei peatu (ja mis seal pattu salata – pole mulle päris selged samuti). Põhiline idee võiks olla järgmine: kui tegemist on lühikese ja suhteliselt vähestes kohtades väljakutsutava funktsiooniga, siis võib selle deklareerida kui inline-funktsiooni ja sellest ka kasu lõigata.

Nüüd veel üks oluline märkus – nimelt on meie klassis kõik funktsioonid inline-tüüpi! Kui funktsiooni kood (skoop) on klassi enese defineeringu sees, siis see on automaatselt inline-tüüpi. Seega IsOn() näide on tegelikult vaid natuke rohkem illustreeritud... Kui me tahaksime, et muud funktsioonid selles klassis ei oleks inline-funktsioonid, peaksime nende koodi viima väljapoole klassi, jättes viimasesse vaid vastava prototüübi. See näeks välja nii (klassi nime, funktsiooni nime ja nende vahel paiknevate koolonite tähenduse peaks olema loogiliselt taibatav):

class TLightSource

{

 private:

 int lightState;

 virtual void Light(void) = 0;

 virtual void Dark (void) = 0;

 public:

 TLightSource() {lightState = 0;}

 ~TLightSource();

 void TurnOn(void);

 void TurnOff(void);

 inline int IsOn(void) {return (lightState != 0);}

};

// TurnOn() and TurnOff() are now non-inline methods

void TLightSource::TurnOn(void)

{

 if(!lightState){

 Light();

 lightState = 1;

 }

}

void TLightSource::TurnOff(void)

{

 if(lightState){

 Dark();

 lightState = 0;

 }

}

Mõlema näite juures on olulisemad muutused toimunud klassi privaatses alas. Lisandunud on kaks privaatset meetodit, Light() ja Dark(), nagu nimede põhjal võib aimata, on üks neist vastava objekti eksemplari läitmiseks ja teine kustutamiseks. Samas pole need päris lihtsad funktsioonid, eripära petub võtmesõnas virtual ja nullväärtusega väärtustamises. Selliseid funktsioone nimetatakse puhtaks virtuaalseteks funktsiooniks – pure virtual function (kui funktsioon on deklareeritud kui virtual, kuid samas ei ole tal sabas seda „=0“, siis on see „lihtsalt“ virtuaalfunktsioon). Puhas virtuaalfunktsioon eksisteerib vaid kontseptsioonina, ta ei oma mitte mingit koodi, seega pole programmi töötamise ajal sellist funktsiooni võimalik käivitada. Selliseid kontseptsioonilisi funktsioone kasutatakse nn baasklassides, mis kirjeldavad vastavatüübiliste objektide üldist arhitektuuri. Reaalselt ei saa taolist klassi objekti eksemplari loomiseks kasutada, sellest klassist saab põlvnema panna teisi klasse, mis peavad ise kirjeldama puhastele virtuaalfunktsioonidele vastavad tegelikud töötavad funktsioonid. Seega TLightSource objekti eksemplar justkui lubaks kasutajale mingit teenust (meetodit) kuid tegelikult haigutab selle koha peal pirakas auk. Samas nõuab see igalt põlvnevalt objektilt, et need ilmtingimata defineeriksid sellise meetodi. Seega võib öelda, et puhas virtuaalfunktsioon on selline virtuaalfunktsioon, mis nõuab põlvnevas klassis selle funktsiooni kohustuslikku „ümberlaadimist“ (override) juhul, kui seda klassi tahetakse kasutada objektieksemplaride loomiseks. Klassi, mis sisaldab ise vähemalt üht puhast virtuaalfunktsiooni või ümberlaadimata puhast virtuaalfunktsiooni, nimetatakse abstraktseks klassiks.

Puhtaks virtuaalseks võib muuta ka klassi destruktori. Sellise triki võib ette võta juhul, kui on soov muuta klass abstraktseks, vältimaks klassi eksemplaride loomise võimalust samas kui ühtegi muud puhast virtuaalset funktsiooni klassis pole. Loomulikult tuleb siis põlvneva(te)s klassi(de)s destruktor kirjeldada, kui on soov neist eksemplare luua.

Veel mõni sõna destruktori virtualiseerimisest: kui klass luuakse kavatsusega kasutada teda baasklassina, siis tuleks klassi destruktor muuta virtuaalseks (vaikimisi seda ei tehta, sest on olemas suur hulk klasse, mis pole loodud baasklassideks olema). Kui baasklass sisaldab kasvõi üht virtuaalset funktsiooni, siis ka destruktor peaks olema virtuaalne, sest sellisel juhul (baasklassis virtuaalse funktsiooni olemasolu korral) on üldiselt tegemist olukorraga, kus baasklassi kasutatakse põlvneva klassi liidesena. Kui see on nii, siis võib juhtuda, et põlvneva klassi objekti eksemplar võib saada hävitatud läbi baasklassile viitava viida. Sõnaga, kui baasklassi destruktor poleks virtuaalne, siis põlvneva klassi destruktorit ei kutsutaks ja nii võib juhtuda, et põlvneva klassi poolt hõivatud ressursid jäävad vabastamata. Illustreeriv näide (olgu nimetatud, et võtmesõna new abil luuakse dünaamiliselt uus eksemplar ning rida class Derived : public Base ütleb, et klass Derived põlvneb klassist Base):

class Base

{

 // ...

 virtual ~Base();

};

class Derived : public Base

{

 // ...

 ~Derived();

};

void KillThem(void)

{

 Base *p = new Derived;

 delete p; // virtual destructor used to ensure that ~Derived is called

}

Erinevalt destruktoritest ei saa konstruktorid olla virtuaalsed.

Klassi TLightSource ei saa objekti eksemplari loomiseks kasutada (tegu on ju abstraktse klassiga). Edasises arenduses võiks luua mingeid erinevaid põlvnevaid klasse. Vastav näide:

Näide N-1.1

//

//

// Sample 1.1: tungsten.cc

//

//

#include <iostream>

using namespace std;

class TLightSource

{

 private:

 int lightState;

 virtual void Light(void) = 0;

 virtual void Dark (void) = 0;

 public:

 TLightSource() { lightState = 0; }

 void TurnOn (void) { if(!lightState) { Light(); lightState = 1; }}

 void TurnOff (void) { if(lightState) { Dark(); lightState = 0; }}

 int IsOn(void) { return (lightState != 0); }

};

class TTungstenBulb : public TLightSource

{

 private:

 virtual void Light(void);

 virtual void Dark(void);

};

void TTungstenBulb::Light(void)

{

 cout << "Turning this tungsten bulb ON...\n";

}

void TTungstenBulb::Dark(void)

{

 cout << "Turning this tungsten bulb OFF...\n";

}

int main(void)

{

 TTungstenBulb MyLamp;

 cout << "Initial status " << MyLamp.IsOn() << "\n";

 MyLamp.TurnOn();

 cout << "Current status " << MyLamp.IsOn() << "\n";

 MyLamp.TurnOn(); // What's happening if we turn on some more times?

 MyLamp.TurnOn();

 MyLamp.TurnOff();

 cout << "Current status " << MyLamp.IsOn() << "\n";

 return 0;

}

(Nagu järeldada võib, võib klassis, millest luuakse objekti eksemplar, olla virtuaalne funktsioon või mitugi, see ei häiri eksemplari loomist.)

Pääsukontroll – private, public, protected
Mõni sõna juurdepääsukontrollist. Kõigepealt baasklassi pääsukontroll – kui klass päritakse kui public, siis kõik baasklassi avalikud liikmed saavad põlvneva klassi avalikeks liikmeteks ning on seega juurdepääsetavad programmi teistele osadele. private liikmed jäävad baasklassi privaatseteks liikmeteks ning ei ole põlvneva klassi jaoks juurdepääsetavad (ammugi siis programmi teistele osadele). Kui klass päritakse kui private, siis kõik baasklassi avalikud liikmed saavad põlvneva klassi privaatseteks liikmeteks. Sellest johtuvalt ei pääse programmi muud osad põlvneva klassi kaudu neile enam ligi (põlvnev klass ise loomulikult pääseb neile ligi).

Kuidas aga saavutada olukorda, kus (baas)klassi liige oleks „välismaailma“ eest kaitstud (oleks privaatne liige) aga samas põlvnevatele klassidele kättesaadav (avalik liige). Sellise paindlikuse saamiseks ongi võtmesõna protected. Sel moel deklareeritud klassi liige on mitteliikmeselementidele (programmi teistele osadele) kättesaamatu (sarnaselt privaatsete liikmetega), kuid on juurdepääsetav põlvnevatele klassidele. public-tüüpi põlvnemise korral muutuvad baasklassi protected liikmed põlvneva klassi protected liikmeteks.

Ülesanne 1.1
Koosta järgmise metamudeli põhjal töötav programm ja uuri selle käitumist. Tee järeldused. NB! Kui alljärgnev kood ilma teatavate täiendusteta kompileerida, on tulemuseks hulk veateateid! ;)

class TBase

{

 public:

 virtual Show() { cout << "Base class\n"; };

}

class TDerived : public TBase

{

 public:

 virtual Show() { cout << "Derived class\n"; };

}

...

TBase Base;

TDerived Derived;

TBase *BasePtr;

Base.Show();

Derived.Show();

BasePtr = &Base;

BasePtr->Show();

BasePtr = &Derived;

BasePtr->Show();

