

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies Department

of Computer Systems

Ihor Kornitskyi 230628MVEB

Matrix Formation and Display

Using Subroutines in C

Homework II

Supervisor: Vladimir Viies

2

Tallinn 2024

Author’s declaration of originality

I confirm that I am the sole author of this thesis. All sources and literature references have

been properly cited, and the work has not been submitted for examination elsewhere.

Author: Ihor Kornitskyi

22.09.2024

3

Table of contents

Author’s declaration of originality ... 2

Table of contents .. 3

List of figures ... 4

1 Task description .. 5

2 Solution description .. 5

2.1 Program flow .. 6

2.2 Algorithm ... 7

3 Summary ... 8

References .. 9

Appendix 1 – Screenshots (Code & Output) .. 10

4

List of figures

Figure 1. UML diagram of the application algorithm from Visual Paradigm 7

5

1 Task description

The task was to create a C program that reads a specific number of elements into an

array A, organizes these elements into a matrix B based on a user-defined row length k,

and then displays the matrix row by row. If the total elements in array A didn't perfectly

fit the matrix, the remaining slots in the matrix needed to be filled with zeros.

Additionally, the solution had to be modular, utilizing multiple subroutines (functions) to

handle different parts of the process.

2 Solution description

I implemented the program by breaking it into five subroutines (functions) to handle

each part of the task efficiently. This approach made the code more organized, easier to

manage, and ensured that the program met the assignment requirements for using

subroutines.

1. User Input:

The program first prompts the user for three main inputs:

• An integer n representing the number of elements in array A. The user is asked to

enter a value between 2 and 9.

• n real numbers (floating-point) to fill array A.

• A positive integer k, representing the number of columns for matrix B.

The program checks for valid inputs at each step and displays an error message if the

inputs are out of range or invalid.

2. Data Storage:

• The program stores n elements entered by the user in a one-dimensional array A.

• It then creates a two-dimensional matrix B based on the user-defined value k.

The matrix B has rows calculated as (n+k−1) /k (n + k - 1) / k (n+k−1)/k,

ensuring enough space to store all elements from A, with extra positions filled

with zeros if necessary.

3. Results:
The final output is the matrix B, displayed row by row on the screen. Each row shows

the elements from array A in their respective positions, and any remaining positions in

the last row are filled with zeros to maintain the matrix's shape.

6

2.1 Program flow

Here’s how it goes step-by-step:

1. Input the Number of Elements (readNumberOfElements):

• First, I used the readNumberOfElements function to ask the user for

the number of elements, n, that would be stored in array A. The

function checked that n was between 2 and 9. If it wasn't, the program

displayed an error message and stopped running.

2. Reading the Array Elements (readArrayElements):

• Once I had a valid n, the program called the readArrayElements

function. This function prompted the user to input nnn floating-point

numbers, which were stored in array A. This step ensured that the data

for matrix formation was ready.

3. Input the Row Length kkk (readRowLength):

• After getting the elements of A, the program called readRowLength.

This function asked the user to enter a positive integer k for the

matrix's row length. It validated the input to make sure k was greater

than zero; otherwise, an error message was displayed, and the

program stopped.

4. Creating the Matrix (formMatrix):

• With n, k, and the elements of A ready, the formMatrix function was

used to fill a matrix B with the elements from A. The function iterated

over the elements of A and placed them into matrix B row by row. If

there were any leftover positions (meaning n wasn't a perfect multiple

of k), the function filled those spots with zeros.

5. Displaying the Matrix (displayMatrix):

• Finally, the program called the displayMatrix function to output

matrix B row by row on the screen. This function displayed the matrix

with two decimal places for each element, making the output neat and

easy to read.

Why This Flow Works: By separating each part of the program into its own function,

the flow became much clearer and easier to manage. It allowed me to focus on one task

at a time, ensuring that each part worked correctly before moving on to the next. This

approach also made the program easy to debug and modify if needed.

7

2.2 Algorithm

Figure 2. UML diagram of the application algorithm from Visual Paradigm.

8

3 Summary

In this homework, I created a modular C program that reads user inputs, stores the data

in an array, and then formats that data into a matrix. The solution met all requirements

by using subroutines for each step, making the program easier to read, understand, and

maintain. I learned how to efficiently manage data using arrays and matrices and how to

structure my program using functions for a cleaner, more organized approach. This

experience improved my understanding of working with 2D arrays and user input

handling in C.

Any feedback is welcome and will be applied to improve the code!

9

References

[1] Kernighan, B. W., & Ritchie, D. M. (1988). The C Programming Language (2nd ed.).

Prentice Hall.

10

Appendix 1 – Screenshots (Code & Output)

11

